

ADEQUAÇÃO DO SISTEMA DE CONTROLE DE COROA E PLANICIDADE AO NOVO RITMO DE PRODUÇÃO DO LTQ DA ARCELORMITTAL TUBARÃO¹

Gleyson Marcos Barbosa² Francisco Coutinho Dornelas³ Cristina Maria Oliveira Lima Roque⁴

Resumo

Em julho de 2009 entrou em operação o segundo forno de reaquecimento de placas do LTQ da ArcelorMittal Tubarão que, juntamente com outros investimentos permitiu a elevação da produção anual de 2,8 Mt/ano para 4,0 Mt/ano. Com isto prevíamos uma série de variações no processo decorrentes da esperada elevação da temperatura dos cilindros de laminação, que por sua vez poderiam comprometer tanto a estabilidade da linha como o controle de perfil transversal das tiras. Neste artigo são apresentadas as ações que foram planejadas e implementadas para se evitar estas alterações no perfil transversal, visando manter a performance do controle do mesmo dentro dos parâmetros requeridos pelos clientes, num cenário de alta produtividade.

Palavras-chave: Perfil; Laminação de tiras a quente; Coroamento térmico.

FLATNESS IMPROVEMENT OF HOT ROLLED STRIP AT ARCELORMITTAL TUBARÃO

Abstracts

In July 2009 the ArcelorMittal Tubarão started the operation of its second reheating furnace, which besides other investments allowed to increase annual production from 2.8 Mt/y to 4.0 Mt/y. As the new production rhythm would increase the roll temperature a series of variations in process was expected. This variations could affect not only the stability of the line but also the control of cross-section of the strips. This article presents the actions that were planned and implemented to prevent these changes in cross-section, to maintain the performance of control within the parameters required by customers, in a scenario of high productivity **Key words**: Profile; Hot strip mill; Thermal crown.

² Engenheiro Metalurgista, MSc, Especialista em LTQ da ArcelorMittal Tubarão

⁴ Engenheira Mecânica, MSc, Especialista em Automação da ArcelorMittal Tubarão

¹ Contribuição técnica ao 47° Seminário de Laminação – Processos e Produtos Laminados e Revestidos, 26 a 29 de outubro de 2010, Belo Horizonte, MG.

³ Engenheiro Metalurgista, Gerente do Controle de Processo de Produção de Placas e Bobinas da ArcelorMittal Tubarão

ISSN 1983-4764

1 INTRODUÇÃO

O Laminador a Quente da ArcelorMittal Tubarão tem apresentado bons resultados de perfil e planicidade, desempenho obtido através da utilização de recursos tecnológicos de ponta e uma série de trabalhos técnicos desenvolvidos e sustentado por uma política sólida de melhoria contínua de produtos e processos.⁽¹⁻³⁾ Finalizando uma etapa do plano de expansão, foi iniciada a operação de seu segundo forno de reaquecimento de placas em Julho de 2009, elevando com isto a capacidade de produção anual de 2,8 Mt/ano para 4.0 Mt/ano.

O aumento do ritmo de produção de um LTQ implica em uma série de mudanças que impactam não somente o processo, mas também a qualidade de seus produtos. O ciclo de refrigeração de cilindros é altamente impactado, visto que o aumento do tempo de laminação implica na elevação da temperatura de cilindros e, com isto, obtém a elevação do coroamento térmico dos cilindros, que por sua vez, tendem a diminuir o coroamento do produto laminado a quente.

Este trabalho pretende mostrar as intervenções realizadas para, num cenário de maior produtividade do LTQ, manter o nível de controle de perfil das tiras.

2 MATERIAIS E MÉTODOS

2.1 Descrição dos Equipamentos Utilizados na Laminação a Quente da ArcelorMittal Tubarão

Figura 1 – Lay-out do Laminador de Tiras a Quente da ArcelorMittal Tubarão.

O LTQ da ArcelorMittal Tubarão destaca-se por apresentar vários recursos que visam garantir a boa planicidade entre as cadeiras do trem acabador, o que, sem dúvida, proporciona também uma melhor planicidade na saída da cadeira F6. O trem acabador apresenta cilindros de contraflexão (*bending* positivo) em todas as cadeiras com capacidade de até 1.500 kN, o que associado ao *shifting* de ±150 mm e à curva do cilindros de trabalho com formato CVC (*continuous variable crown*), também em todas as cadeiras, permite uma grande flexibilidade para controle de forma da tira. O setup de *shifting* e *bending* é calculado por um computador de processo, cujo modelo de controle (*PCFC - Profile Contour and Flatness Control*) se baseia principalmente na previsão da coroa térmica, desgaste e comportamento elástico dos cilindros de trabalho e encosto.

Essas tecnologias, quando utilizadas em conjunto com os medidores de planicidade existentes na linha, proporcionam também grande eficiência no controle da planicidade da tira. O principal medidor da linha, que se baseia em raios-X e está localizado na saída do trem acabador, provê o *feedback* para a correção da força de *bending* na última cadeira até que a ponta da tira alcance a bobinadeira. Os outros medidores existentes na linha são os *loopers* segmentados (*tensiometer loopers - TML*), entre as cadeiras F4/F5 e F5/F6, capazes de fazer a dupla função de *loopers* e de medidores de planicidade ao longo da largura da tira, permitindo com isso a correção automática do nivelamento e de ondulações simétricas.

O PCFC utiliza os resultados dos modelos de cálculo de desgaste e temperatura para estimar a coroa mecânica e térmica dos cilindros e assim, calcular o gap entre cilindros de trabalho. Tal gap retrata o perfil transversal da tira que o complementa durante laminação. Assim, a qualidade do modelamento de desgaste e coroamento térmico é fundamental para o PCFC propor setup adequado de *shifting* e *bending* e atender os requisitos de forma e planicidade. Dentre as conseqüências de um modelamento inadequado, está a obtenção de um perfil transversal diferente do calculado e visado, conforme exemplificado na Figura 2.

Figura 2 – Influência do desgaste e coroamento térmico no coroamento resultante durante laminação. Imprecisão do modelamento de desgaste e/ou coroa térmica pode causar perfil na tira diferente do objetivado.

O modelo matemático para cálculo de desgaste de cilindros utilizado é baseado em equações físicas que consideram o efeito da força de laminação, largura laminada, arco de contato, comprimento laminado e tipo de material utilizado nos cilindros. Os coeficientes das equações são customizados de acordo com o tipo de cilindro e cadeira de laminação. Neste modelo, os cilindros são divididos em 150 unidades para as quais o desgaste é calculado individualmente. Assim, pode-se distinguir o desgaste nas regiões dos cilindros que tocam as bordas e centro da tira, conforme exemplificado na Figura 3. Os parâmetros considerados para descrever o contorno do desgaste calculado são passiveis de ajustes.

A coroa térmica dos cilindros é causada pela elevação da temperatura durante a laminação. Tal temperatura é continuamente calculada pelo método de elementos finitos, sendo que o cilindro é dividido em 99 partes ao longo do comprimento e 4 anéis axiais (Figura 4). Assim, o perfil térmico do cilindro é estimado durante todo momento de laminação e repouso.

A obtenção de tiras planas requer a manutenção do coroamento relativo (coroamento/espessura) após cada cadeira, conforme exemplificado na Figura 5. O setup do PCFC é elaborado de forma a atender este requisito. Assim, o ponto de

partida é o coroamento do esboço que, atualmente, é estimado como em função da espessura do mesmo.

Figura 5 – Representação esquemática da evolução do perfil da tira dura o processamento em diferentes cadeiras de laminação

Com o aumento do ritmo de produção o intervalo de tempo entre tiras diminuiu, causando com isto a elevação da temperatura média dos cilindros de trabalho do laminador de desbaste e do trem acabador. Na Figura 6 podemos verificar a evolução da temperatura média dos cilindros do trem acabador. A partir de julho/2009 a temperatura média foi elevada, estabilizando num patamar mais elevado que o históricos dos 2 últimos anos. Com isto, aumentou-se a tendência de diminuir o coroamento do esboço e da tira.

Temperatura Média de Cilindros de Trabalho da FM

Figura 6 – Elevação da temperatura média dos cilindros de trabalho do FM.

Ante o maior aquecimento dos cilindros, o desempenho de acerto de coroamento foi afetado, conforme mostrado na Figura 7, onde é exibido o acerto de coroamento de aços IF's com espessura menor ou igual a 5 mm e largura maior ou igual a 1.700 mm, num range de +/- 40 micra . Podia se observar também uma freqüência do *setup* de *shift* na posição de -150 mm, o que indica que o PCFC procurava utilizar todo recurso de *shithing* para conseguir atender o coroamento visado pelo cliente.

Figura 7 – .Queda da performance de coroamento devido aquecimento de cilindros.

3 RESULTADOS E DISCUSSÃO

Ante a tendência de elevação da temperatura de cilindros e impacto no perfil de coroamento da tira, várias ações foram tomadas:

3.1 Elevação da Vazão da Água de Refrigeração

Esta ação foi realizada na cadeira F1 e F2, conseguindo evitar picos elevados de temperatura que poderiam comprometer a sanidade dos cilindros utilizados.

3.2 Adaptação dos Coeficientes de Desgaste e Temperatura do PCFC para a Nova Condição de Processo

Com isto a assertividade do modelo de desgaste e temperatura voltou às condições normais, conforme exemplo da Figura 8.

Figura 8 – Comparação do desgaste de cilindro de trabalho real x calculado pelo PCFC.

3.3 Alteração das Curvas CVC dos Cilindros

Esta modificação foi realizada de forma a aumentar a assertividade de coroamento no presente cenário de produção. As novas curvas tem aumentada o coroamento máximo capaz se ser impresso no material.

Com a utilização de novas curvas CVC foi possível diminuir a quantidade de tiras processadas com shifting saturado em -150 mm, conforme mostrado na Figura 9.

Figura 9 – Alteração do setup de shifting devido utilização de novas curvas CVC

Em termos de coroamento, a nova curva CVC permitiu um melhor desempenho quando comparada com a curva antiga.

Com a implementação das ações citadas foi restabelecer o nível de acerto de coroamento histórico, conforme mostra a Figura 11.

Figura 11 - Aumento do acerto de coroamento após implementação das ações

4 CONCLUSÕES

Com os trabalhos implementados foi possível manter o controle de perfil dentro dos resultados históricos num cenário de maior produtividade do LTQ.

REFERÊNCIAS

- SILVA, C. N.; COSTA, A. F. L.; CARVALHO, V. R. Melhoria dos resultados de planicidade em bobinas laminadas a quente na CST.In: Seminário de Laminação – Processos e Produltos Laminados e Revestidos, 41., 2004. Joinville. ABM, 2004.
- 2 ROQUE, Cristina Maria Oliveira Lima; MAZZI, Luciano Milanez. Sistema de controle de perfil, contorno e planicidade de tiras a quente.In: Contribuição Técnica para o 1° Seminário da IDE Departamento de Manutenção e Controle de Processo de CST, 2001
- 3 BARBOSA, G. M.; BELLON, J. C.; DORNELAS, F. C.; PEREIRA, J.; ROQUE, C. M. O. L.; RABBI, M. S. Melhoria de Planicidade de Tiras Laminadas a Quente da ArcelorMittal Tubarão .In: Seminário de Laminação – Processos e Produltos Laminados e Revestidos, 46., 2009. Santos. ABM, 2009.

26 a 29 de outubro de 2010 Ouro Minas Palace Hotel - Belo Horizonte - MG

