ANÁLISE DE FILME CONTÍNUO ATRAVÉS DA PERFILOMETRIA E DE MEV/EDS EM CONCRETO C30 SUBMETIDO À AGRESSIVIDADE CLASSE III ¹

Carmen Couto² Joana Darc Silva³ G. Cristina Godoy⁴ Roberto Fontes⁵ Jacqueline Flor⁶

Resumo

Este trabalho tem como objetivo avaliar um concreto C30, NBR-8953 "Concreto para Fins Estruturais", o qual foi produzido com um fator água-cimento de 0,50. A avaliação da degradação do concreto foi feita em corpos de prova protegidos por filme contínuo, através da perfilometria e de MEV/EDS. A resistência à compressão de 30MPa foi obtida em função da dosagem proposta e de cuidados referentes à produção propriamente dita. Os corpos de prova foram submetidos a meio agressivo ácido (H₂SO₄-2,5%) por imersão, com e sem camada protetora. O filme contínuo formado por uma composição à base de selador (hidrofugante silano-siloxano), associado à tinta acrílica (resina acrílica em solvente), foi avaliado através de imagens em 3D, parâmetros de amplitude topográficos e de MEV/EDS. As imagens e os parâmetros de amplitude gerados pelo perfilômetro permitiram ter uma clara visão do processo de degradação do concreto atacado por ácido, e a minimização deste efeito, comprovada por uma menor variação dos parâmetros de amplitude e pela manutenção da integridade da camada protetora visualizada e analisada pelo MEV/EDS. A metodologia proposta neste trabalho demonstra que a associação de métodos já consagrados na metalurgia, perfilometria e MEV/EDS, podem contribuir significativamente em pesquisas sobre a durabilidade do concreto.

Palavras-chave: Durabilidade do concreto; Perfilometria; Microscopia eletrônica; Superfície protetora.

ANALYSIS OF CONTINUOUS FILM THROUGH THE PROFILEMETRY AND MEV/EDS IN C30 CONCRETE SUBMITTED TO CLASS III AGGRESSIVENESS

Abstract

The present work aims to evaluate the C30 concrete, NBR-8953 "Concrete for Structural Purposes", which was produced with a water-cement factor of 0.50. The concrete degradation assessment was made in tests specimens protected by continuous film, through profilemetry and MEV/EDS. The resistance to compression of 30MPa was obtained according to the proposal dosage and the care for the production itself. The tests specimens were submitted to aggressive acid environment (H₂SO₄-2,5%) by immersion, with and without protective layer. The continuous film formed by a composition-based sealer (silane-siloxane), associated with the acrylic paint (acrylic resin in solvent), was evaluated by means of 3D images, topographical amplitude parameters and MEV/EDS. The images of the concrete degradation attacked by acid, and the minimization of this effect, proven by a lesser variation of the amplitude parameters and by the maintenance of the integrity of the protective layer visualized and analyzed by the MEV/EDS. The methodology proposed in this work demonstrates that the association of methods already renowned in metallurgy, profilemetry and MEV/ EDS, can contribute significantly in research on the concrete durability.

Key words: Concrete Durability, Profilemetry, Electronic Microscopy, Protective Surface Layer.

- ³ Eng^a Civil, Prof^a PUC.MG, Doutora pela UFMG;
- ⁴ Física, Prof^o UFMG, Doutora pela UFMG;
- ⁵ Eng^o Civil, Prof^o UFMG, Mestre pela UFMG;
- ⁶ Eng^a Civil, Prof^a UFMG, Mestre pela UFMG, Doutoranda CPGEM.

¹ Contribuição técnica ao 64° Congresso Anual da ABM, 13 a 17 de julho de 2009, Belo Horizonte, MG, Brasil.

² Eng^a Civil, Prof^a UFMG, Doutora pela École Nationale des Ponts et Chaussées;

1 INTRODUÇÃO

Este trabalho se propõe a avaliar um concreto classe C30, NBR 8953 "Concreto para Fins Estruturais", tendo sido produzido com um fator água-cimento de 0,50, em consonância com a NB-1 "Projeto de Estruturas de Concreto", que em sua nova versão, considera que se deve utilizar um concreto compatível para cada tipo de ambiente, subdividido-o em classes que correlacionam resistência à compressão, fator água-cimento e agressividade ambiental visando garantir sua durabilidade.^(1.2)

A durabilidade está diretamente ligada à resistência à compressão do concreto e à sua impermeabilidade. Estas características podem ser obtidas por um adequado consumo de cimento, uma baixa relação água-cimento e uma trabalhabilidade condizente com a utilização proposta.⁽³⁻⁵⁾

Em condições adversas de exposição devem ser tomadas ainda medidas especiais de proteção e conservação, tais como aplicação de revestimentos hidrofugantes e pinturas impermeabilizantes sobre a superfície do concreto.⁽²⁾

2 MATERIAIS E MÉTODOS

O concreto foi dosado através do método do ACI – American Concrete Institute, e da fixação de um fator água-cimento de 0,50, valor preconizado pela NB-1 para concretos submetidos a forte agressividade.⁽⁶⁾

Os corpos de prova foram submetidos a meio agressivo ácido (H_2SO_4 -2,5%) por imersão, sem e com camada protetora, camada formada por uma composição à base de selador associado à tinta acrílica. A degradação do concreto, após ataque ácido foi feita por uma comparação entre corpos de prova 'in natura' e corpos de prova protegidos por filme contínuo através de imagens em 3D, parâmetros de amplitude topográficos e Microscopia Eletrônica de Varredura - MEV/EDS.⁽⁷⁻⁹⁾

3 RESULTADOS E DISCUSSÕES

3.1 Resistência à Compressão

A dosagem realizada, os cuidados referentes à produção e a cura em câmara úmida permitiram a obtenção de resistências à compressão a 28 dias acima do valor inicialmente proposto de 30 MPa.

São apresentadas na Tabela 1 as resistências à compressão a 7 dias e 28 dias de um concreto C30.

Dosagem	Consumo de cimento	Aditivo super	Fator	Resistência à compressão (MPa)	
Ū	(kg/m³) plastificante	agua/cimento	7 dias	28 dias	
1	370	1%	0,50	28,0	35,0
2	370	1%	0,50	26,5	39,1

Tabela 1 - Evolução da resistência à compressão em função da idade

3.2 Análise Topográfica da Textura Superficial do Concreto

Foram feitas varreduras nos topos dos corpos de prova numa área de 15x15mm, a qual foi subdividida em 30 perfis bi-dimensionais gerados por aproximadamente 8.000 pontos cada, permitindo caracterizar topograficamente a superfície do concreto do ponto de vista estatístico. Vale ressaltar também que foram realizadas réplicas em todas as situações estudadas, permitindo comprovar a mesma tendência dos deltas analisados.⁽⁸⁾

Observa-se uma nítida degradação do concreto sem proteção após o ataque químico comparativamente ao concreto antes de ser submetido ao ataqu (Figuras 1 e 2), o que pode ser confirmado através do parâmetro S_t , distância entre o pico mais alto o vale mais profundo, que variou de 443 μ m para 1.429 μ m, o que corresponde uma variação de 223%.

Figura 1 - Imagem 3D do concreto sem proteção, antes do ataque químico de H₂SO₄.

Figura 2 – Imagem 3D do concreto sem proteção, após ataque químico de H₂SO₄.

A comparação topográfica entre os corpos de prova que receberam a aplicação de filme contínuo, selador e tinta acrílica antes e após ataque, feita através do parâmetro S_t, permite verificar uma variação de aproximadamente 100%, 379 μ m para 768 μ m (Figuras 3 e 4), que é significativamente menor do que apresentada para um concreto sem proteção, da ordem de 223%, o que demonstra a eficiência da proteção superficial do concreto.

Figura 3 - Imagem 3D do concreto com proteção selador/acrílica, antes do ataque.

Figura 4 - Imagem 3D do concreto com proteção selador/acrílica, após ataque.

A eficiência da proteção do concreto comparativamente a um concreto sem proteção pode se confirmada através dos parâmetros de amplitude S_a , S_q , S_p , S_v , S_t e S_r , os quais são apresentados na Tabela 2.

	Concreto Sem Proteção		Concreto com Selador/Acrílica			
Parâmetros	Antes do	Após	Dalta*	Antes do	Após	Delte*
	ataque	ataque	(%)	ataque	ataque	(%)
	(μm)	(µm)		(μm)	(μ m)	
S _a	7,62	157	1.960	39,3	81,8	108
S	15,8	202	1.178	48,5	103	112
S _n	47,8	740	1.448	203	426	110
S _v	395	689	74	176	342	94
S,	443	1.429	223	379	768	103
S _z	239	1.129	372	280	587	110
$S_{(antes ataque)} - S_{(após ataque)}$ 100						

Fabela 2 -	Parâmetros	de amplitude
------------	------------	--------------

 $* Delta = \frac{S_{(antes \ ataque)} - S_{(após \ ataque)}}{S_{(antes \ ataque)}} x100$

3.3 Análise Microestrutural por Microscopia Eletrônica de Varredura

Foram realizados ensaios com microscópio eletrônico de varredura (MEV), a fim de se fazer uma análise da microestrutura do concreto submetido a meio agressivo e da influência da proteção na manutenção da durabilidade. O concreto tem uma estrutura heterogênea e complexa e sua caracterização microestrutural enfocou a superfície do concreto abordando os dois constituintes presentes em sua área superfícial, pasta (cimento e água) e agregados (areia e brita).⁽¹⁰⁾

A análise microestrutural permitiu identificar os compostos da pasta de cimento, silicatos de cálcio hidratado - C-S-H; cristais de hidróxido de cálcio - portlandita e sulfoaluminatos de cálcio - estringita, os quais são derivados do clínquer obtido na fabricação do cimento. Os compostos provenientes dos agregados, brita de gnaisse e areia natural, quartzo, feldspato, mica, anfibólio e granada (Ca, AI, Si, O, Mg, Mn, Fe) também foram identificados pelo MEV/EDS.

É importante ressaltar que o volume de sólidos de uma pasta de cimento Portland completamente hidratado é constituído por 50 a 60% de silicato de cálcio hidratado, sendo, portanto, o composto mais determinante e que a portlandita constitui de 20% a 25% do volume da pasta hidratada e os sulfoaluminatos de cálcio, C₄ASH₁₈ ocupam de 15% a 20% do volume de sólidos na pasta endurecida.

A seguir, são apresentadas as imagens geradas pelo microscópio eletrônico (ME), os espectros de EDS e a composição química das superfícies de corpos de prova de concreto, antes e após ataque químico, com e sem proteção.

Figura 5 - Imagem de elétrons secundários, obtida em microscópio eletrônico (ME), da superfície do concreto sem proteção e sem ataque químico, ampliada 100x.

Na Figura 6, observa-se uma predominância de Ca e O (19,8% e 28%, respectivamente), indicando a presença de cristais de portlandita - Ca $(OH)_2$, produto resultante da hidratação do cimento, podendo-se constatar também através da Tabela 3, os elementos Al e Si, que compõem a pasta de cimento.

Figura 6 - Espectro EDS, correspondente a figura 5, do concreto sem proteção e sem ataque químico.

Elementos	% Peso	% Atômica
С	29.96	48.22
0	23.54	28.43
Na	0.28	0.24
Mg	0.13	0.10
AI	0.67	0.48
Si	3.10	2.13
S	0.38	0.23
К	0.44	0.22
Ca	41.08	19.81
Fe	0.42	0.14
	100.00	100.00

Tabela 3 - Composição química do concreto sem proteção e sem ataque químico

A Figura 7 permite visualizar grandes cristais sob forma de prismas hexagonais, formados pela portlandita, Ca(OH)₂ presente na pasta de cimento.

Figura 7 – Imagem ampliada 5.000x (Figura 5) da superfície do concreto sem proteção e sem ataque químico, mostrando detalhe dos cristais de portlandita – $Ca(OH)_2$.

Na Figura 8, pode-se observar cristais de portlandita recobertos por um material esbranquiçado. Através da Figura 9 e da Tabela 4 é possível apreender que este material é composto pelos elementos Si, Ca e O, provenientes do agregado e de enxofre originário do ácido sulfúrico utilizado no ataque do concreto (H_2SO_4) .

Figura 8 - Imagem ampliada 1,000x da superfície do concreto sem proteção e após ataque químico.

Figura 9 - Espectro EDS, correspondente a figura 8, do concreto sem proteção, após ataque químico.

eligae dannea ac concrete com protogae, ap			
Elementos	% Peso	% Atômoca	
С	37.94	54.39	
0	23.82	25.64	
Na	0.01	0.00	
Mg	0.00	0.00	
AI	0.37	0.24	
Si	13.40	8.22	
S	9.66	5.19	
K	0.08	0.04	
Ca	14.40	6.19	
Fe	0.31	0.10	
	100.00	100.00	

Tabela 4 - Composição química do concreto sem proteção, após ataque químico

São apresentados, a seguir, imagens, espectros e composição química do concreto com proteção, selador e tinta acrílica, antes e após ataque químico. As imagens obtidas no MEV (Figuras 10 e 11) mostram superfícies mais homogêneas,

sem falhas no recobrimento, indicando uma boa aderência do selador/tinta ao substrato.

Figura 10 – Imagem ampliada 1000x da superfície do concreto com proteção selador/acrílica e sem ataque químico.

A análise por EDS mostra a predominância de C, O e Ti originários da proteção selador e tinta acrílica (Figura 11), sendo que a tinta contém também Al, Si e Ca em menores proporções (Tabela 5).

Figura 11 - Espectro EDS, correspondente a Figura 10, concreto com proteção selador/acrílica e sem ataque químico.

Tabela 5 - Composição química do concreto com proteção selador/acrílica e sem ataque químico

Elemento	% Peso	% Atômica
С	85.06	91.46
0	7.41	5.98
Na	0.00	0.00
Mg	0.15	0.08
AI	0.70	0.34
Si	1.64	0.76
S	0.22	0.09
CI	0.09	0.03
К	0.09	0.03
Ca	0.53	0.17
Ti	3.26	0.88
Fe	0.32	0.07
Zn	0.51	0.10
	100.00	100.00

Pode-se observar na Figura 12 uma superfície esbranquiçada no concreto protegido com selador e tinta acrílica após ataque com H_2SO_4 , resultante do ácido sulfúrico empregado no ataque.

Figura 12 - Imagem obtida da superfície do concreto com proteção selador/acrílica e após ataque químico, ampliada 100x.

No espectro EDS (Figura 13), pode-se verificar uma diminuição do C, devido à degradação da tinta acrílica e um aumento do Si e O, em consequência do aparecimento dos elementos componentes do concreto (Tabela 6).

Figura 13 - Espectro EDS, correspondente a figura 12, do concreto com proteção selador/acrílica e após ataque químico.

Tabela 6 - Composição química do concreto com proteção selador/acrílica e após ataque químico

Elementos	% Peso	% Atômica
С	63.66	80.24
0	10.07	9.53
Na	0.00	0.00
Mg	0.05	0.03
AI	1.18	0.66
Si	6.29	3.39
S	1.74	0.82
CI	0.10	0.04
К	0.26	0.10
Ca	0.43	0.16
Ti	14.20	4.49
Fe	1.64	0.45
Zn	0.38	0.09
	100.00	100.00

4 CONCLUSÕES

As imagens topográficas geradas pelo perfilômetro demonstram a degradação do concreto provocada pelo ataque por ácido sulfúrico, sendo que a variação do parâmetro S_t, distância entre o pico mais alto o vale mais profundo, possibilita estimar esta forte degradação, uma vez que esta variação foi de 223%.

A análise do parâmetro topográfico S_t permitiu também demonstrar a eficiência da proteção, uma vez que houve uma diminuição deste parâmetro S_t de 223% no caso do concreto submetido a ataque sem proteção, para 100% no caso de um concreto protegido. É importante assinalar que a eficiência do filme contínuo pode ser comprovada também através de outros parâmetros de amplitude, S_a, S_q, S_y, e S_z.

A análise microestrutural feita por microscopia eletrônica de varredura, MEV/EDS, nas seções transversais da superfície do concreto sem proteção antes do ataque químico, permite constatar a predominância de cristais de portlandita, Ca(OH)₂, e de partículas de silicatos de cálcio hidratado, C-S-H, derivados da pasta de cimento, e de quartzo e feldspato, dos agregados. Após ataque químico, constata-se um aumento dos elementos provenientes dos agregados, que se tornam

mais visíveis após a deterioração da pasta de cimento no caso do concreto sem proteção.

O MEV/EDS permite constatar a eficiência da proteção, pois a camada protetora que impede a visualização dos materiais constituintes do concreto antes do ataque sofre apenas alguns danos pontuais após ataque.

Os resultados obtidos permitem uma clara compreensão do processo de degradação do concreto, submetido a ataque químico e a minimização deste efeito, com a aplicação de camada protetora, demonstrando que a metodologia adotada, ensaios clássicos do concreto, técnica da perfilometria e MEV/EDS representam uma importante contribuição às pesquisas sobre a durabilidade do concreto, ampliando ainda mais a interação entre a Engenharia de Materiais e a Engenharia Civil.

REFERÊNCIAS

- 1 ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS, Rio de Janeiro. NB-1; Projeto de estruturas de concreto. Rio de Janeiro, 2003. 221p.
- 2 ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS, Rio de Janeiro. NBR-8953; Concreto para fins estruturais - Classificação por grupos de resistência. Rio de Janeiro, 1992. 2p.
- 3 RIBEIRO, C. C.; PINTO, J.D.S.; STARLING, T. Materiais de Construção Civil, 2^ª ed. Revisada. Editora UFMG, 103p., 2006.
- 4 NEVILLE, A. Propriedades do Concreto, 2ª Ed. São Paulo: Editora Pini, 828p., 1997.
- 5 AITCIN, P.C. The durability characteristics of high performance concrete: a review, Cement & Concrete Composites, n.25, p409-420, 2003.
- 6 ACI, AMERICAN CONCRETE INSTITUTE. Manual of concrete pratice. Part I. 1973.
- 7 ALMUSALLAM, A.A.; KHAN, F.M.; DULAIJAN, S.U.; B.AL-AMOUDI, O.S. Effectiveness of surface coatings in improving concrete durability. Cement & Concrete Composites, n. 25, p.473-481, 2003.
- 8 MUMMERY, L. Surface texture analysis, The Hand Book, 1ed., West Germany: Hommelwerke GmbH, 105p.,1992.
- 9 VEDACIT, Impermeabilizantes. Manual técnico: Recuperação de estruturas. 1ª edição, 102p., 2003.
- 10 MEHTA, P.K. Concreto: Estrutura, Propriedades e Materiais, São Paulo: Editora Pini Ltda, 573p., 1994.