CORROSÃO SOB TENSÃO EM AÇO INOXIDÁVEL DUPLEX, EM SOLUÇÃO AQUOSA CONTENDO 42% DE MgCl₂, A 143 °C, ATRAVÉS DO ENSAIO DE CARGA CONSTANTE¹

Luiz Cláudio Cândido² Edwin Auza Villegas³

RESUMO

Estudou-se o fenômeno de corrosão sob tensão (CST) em aço inoxidável duplex, SAF 2205, em solução aquosa contendo 42% (peso) de MgCl₂, na temperatura de ebulição, no potencial de corrosão, empregando a técnica de carga constante, através do corpo de prova do tipo tração-compacto. Abordou-se aspectos da Mecânica de Fratura Linear Elástica para avaliar o nível de intensidade de tensão limiar a partir da qual ocorre CST, K_{Icst}, através de curvas: K_I versus tempo de fratura, e taxa de propagação de trincas versus K_I. Analisou-se, também as características fractográficas dos corpos de prova.

Palavras-Chaves: corrosão sob tensão; aço inox. duplex; cloreto de magnésio; ensaio de carga constante

1. INTRODUÇÃO

A corrosão sob tensão (CST) de aços inoxidáveis em soluções contendo halogenetos, particularmente cloretos, é tão grave que tem levado diversos centros de pesquisas e universidades a intensas pesquisas no sentido de minimizar o problema.

Sabe-se que além do tempo para que o fenômeno de CST ocorra é necessário que se tenha um sistema específico: metal ou liga/meio corrosivo e, ainda, esforço mecânico de tração.⁽¹⁻³⁾

¹ Contribuição técnica para o I Seminário de Mecânica de Fratura, da ABM, Junho de 1995, Ouro Preto - MG

² Doutorando pelo Curso de Pos-Graduação em Engenharia Metalúrgica e de Minas (CPGEMM) da UFMG, M. Sc.; Prof. do Depto. de Metalurgia da UFOP

³ M.Sc., Ph.D., Prof. do CPGEMM / UFMG

Nos últimos anos têm se desenvolvido os aços inoxidáveis duplex (AID), austenoferríticos, encontrando estes aplicação na fabricação de estruturas, particularmente nas indústrias química, petroquímica e nuclear.

Os aços duplex podem conter teores relativamente altos de elementos de liga; no entanto, devem estar devidamente balanceados para assegurarem propriedades desejáveis, tais como resistência mecânica, tenacidade, resistência à corrosão e ao desgaste. Os elementos de liga C, Ni, N, Mn, Co, Cu e Al concentram-se preferencialmente na austenita, já os elementos Cr, Si, Mo, W, Nb, Ti e P concentram-se na ferrita.⁽⁴⁾ Os teores de cromo dos AID estão entre 19 e 26%, com teores de níquel de 4 a 8% e baixas concentrações de carbono. Além disto, estes materiais ainda são ligados com molibdênio (1,5 a 4,5%) buscando-se obter elevada resistência à CST em meios contendo cloretos, além do aumento da resistência à corrosão por pites.⁽⁵⁾

Os AID oferecem várias vantagens em relação aos aços inoxidáveis austeníticos convencionais (AIAC). Eles são altamente resistentes à CST em determinados meios cloretados; apresentam excelentes resistências à corrosão por pite e por fresta; são duas vezes mais resistentes mecânicamente; e ainda, contém em torno da metade do conteúdo de níquel; sendo, portanto, menos sensíveis às flutuações de preço do mercado deste metal. ^(6,7)

A utilização dos conceitos de Mecânica de Fratura Linear Elástica (MFLE), além do emprego da microscopia eletrônica, tem contribuído decisivamente no estudo de CST.

Utilizou-se, neste trabalho, a técnica de carga constante, através do sistema de equipamento do tipo "peso-morto", onde aplicou-se diversos valores de carga e, por conseguinte, intensidades de tensão, segundo o modo de deformação por tração, K_I, desde valores correspondentes a 100% do limite de escoamento até níveis de intensidade de tensão limiar, K_{Iest}, abaixo da qual o fenômeno de CST não ocorre.

2. PROCEDIMENTO EXPERIMENTAL

Realizou-se testes de CST em AID, austeno-ferrítico, do tipo SAF 2205 (Sandvik), com aproximadamente 55% de ferrita (α) e 45% de austenita (γ), em solução contendo 42% (peso) de MgCl₂, na temperatura de ebulição, no potencial de corrosão. A composição química da liga é dada na Tabela I. A Tabela II mostra os valores de algumas propriedades mecânicas do aço. A espessura da chapa era de 3 mm, onde os corpos de prova (CP) foram retirados no sentido longitudinal (SL) e transversal (ST) de laminação.

Os CP empregados foram do tipo tração-compacto, segundo a norma da ASTM E399-83.⁽⁸⁾ A pré-trinca por fadiga foi obtida através de uma máquina MTS (10 ton.) do tipo servo-hidráulica, onde usou-se frequência de 30 Hz; fator $R = P_{min} / P_{max} = 0,3$; e, aplicou-se carga máxima correspondente a 60% do limite de escoamento do material, no sentido de minimizar o tamanho da zona plástica desenvolvida nos vértices das pré-

trincas. A Figura 01 apresenta um diagrama esquemático do CP. Salienta-se que o valor do comprimento de trinca \underline{a} é igual a l = 20 mm (correspondente ao entalhe inicial - feito por uma ferramenta da fresa, com ângulo final de aproximadamente 60°) e mais o comprimento da pré-trinca (5 mm). Este valor foi estipulado dentro da exigência de que $0,2 \le a/W < 1$, onde o valor ficou a/W = 0,5.

Adotou-se, arbitrariamente, W = 50 mm; logo, C = 1,25W = 62,5 mm; H = 0,6W = 30 mm; D = 0,25W = 12,5 mm; F = 1,6D = 20 mm; $N = 0,065W_{\text{max.}} = 3,25 \text{ mm}$; $l = 0,25 \text{ a} 0,40W = 12,5 \text{ a} 20 \text{ mm} \implies l = 20 \text{ mm}$; $a = 0,45W \text{ a} 0,55W = 22,5 \text{ a} 27,5 \text{ mm} \implies a = 25 \text{ mm}$

De acordo com os critérios da MFLE, e do tipo de CP escolhido para os estudos, tem-se as relações para os cálculos de tensões nominais (σ) e intensidades de tensão (K_I), dadas por:

$$\sigma = \frac{2P(2W+a)}{B(W-a)^2} \qquad ; \qquad K_I = f\left(\frac{a}{W}\right) \frac{P}{BW^{\frac{1}{2}}}$$

$$f\left(\frac{a}{W}\right) = \frac{\left(2 + \frac{a}{W}\right)\left[0,886 + 4,640\left(\frac{a}{W}\right) - 13,320\left(\frac{a}{W}\right)^2 + 14,762\left(\frac{a}{W}\right)^3 - 5,600\left(\frac{a}{W}\right)^4\right]}{\left(1 - \frac{a}{W}\right)^{\frac{3}{2}}}$$

onde,

a - comprimento da trinca [m]
W - distância entre o ponto de aplicação da carga e o extremo inferior do CP [m]
B - espessura do CP [m]
f(a/W) - fator geométrico - relacionado com a compliância (compliance) do CP
P - carga aplicada [N]
σ - tensão nominal aplicada [MPa]

 K_{I} - intensidade de tensão correspondente ao modo de tração [MPa \sqrt{m}]

Assim, como a / W = 0.5; tem-se: f(a / W) = 9,862; logo,

 $\sigma \cong 133333 \cdot P$ [MPa]

 $K_1 \cong 14433 . P \qquad [MPa\sqrt{m}]$

313

A partir destas expressões pode-se aplicar diferentes níveis de carga aos CP, onde registrou-se tempos médios de início e de fratura, com acompanhamento da propagação das trincas, através de lupa (20X), em um reticulado graduado feito nos CP.

A Tabela III mostra os níveis de cargas aplicadas, os valores médios dos tempos de fratura e taxas de propagação de trincas, além dos potenciais de corrosão correspondentes.

A Figura 02 mostra a fotomicrografia do AID estudado. A Figura 03 mostra o diagrama da curva intensidade de tensão, K_{I} , versus tempo de fratura, t_{f} , e, a Figura 04 ilustra a curva taxa de propagação de trinca, da/dt, versus K_{I} .

Na Figura 05 tem-se um CP trincado por CST. As Figuras 06 e 07 destacam as trincas transgranulares desenvolvidas nos ensaios. A Figura 08 mostra as regiões de fratura da pré-trinca por fadiga (parte superior) e a zona de fratura por CST. A Figura 09 destaca o aspecto frágil da fratura por CST. Já a Figura 10 caracteriza a fratura dúctil, através dos "dimples", na região do CP que não sofreu CST, onde foi rompido mecânicamente após o término dos ensaios de corrosão.

3. DISCUSSÃO

Nota-se, através da Figura 03, que a medida que K_I diminui o tempo de fratura tende a aumentar. Quando K_I está no nível de intensidade de tensão limiar, K_{Icst}, abaixo da qual a trinca por CST é imperceptível, tem-se que o tempo de fratura é teoricamente infinito. No sistema estudado, estimou-se que K_{Icst} $\cong 11$ MPa \sqrt{m} , durante 1500 horas de ensaio.

Observa-se, na Figura 04, que para níveis de $K_1 \ge 12$ MPa \sqrt{m} as trincas propagam-se com velocidades da ordem de 10⁻⁹ m/s, onde neste estágio a taxa de propagação é fortemente dependente do nível de K₁. Para níveis de K₁ \ge 30 MPa \sqrt{m} , região correspondente ao estágio II, a propagação das trincas praticamente independe de esforços mecânicos aplicados e sim de efeitos eletroquímicos e difusionais que ocorrem nos vértices das trincas.

De acordo com as exigências da MFLE para se ter condições de estado plano de deformações (EPD), ou tri-axial de tensões, é necessário que $B \ge 2,5 (K_1 / \sigma_{y_0})^2$; onde, σ_{y_0} , é o limite de escoamento da liga.⁽⁹⁾ Sendo assim, como B = 3 mm, para níveis de $K_1 \le 20$ MPa \sqrt{m} , garantiu-se o EPD, onde o tamanho da zona plástica desenvolvido nos vértices das trincas foi considerado relativamente pequeno, o que mostra que o valor encontrado de K_{icst} , dentro das condições exigidas pela norma da ASTM E399-83, é válido. Porém, ensaiou-se CP com níveis de cargas correspondentes ao nível de escoamento do material, onde para esta condição, a ordem de grandeza de propagação de trincas foi de 10⁻⁶ m/s; inclusive, com maior incidência de ramificações das trincas em relação aos níveis de $K_1 \le 30$ MPa \sqrt{m} . Isto está de acordo com os estudos realizados por Speidel⁽¹⁰⁾, em aço inoxidável austenítico.

Segundo Gooch⁽¹¹⁾, é aceito que os AID possuem maior resistência à CST, em meios contendo cloretos, em relação aos materiais austeníticos; embora, não seja tão alta quanto as ligas de alto níquel (por ex. 27Cr-31Ni-3,5Mo-Cu).

A vantagem das ligas duplex é comumente atribuída devido à presença da ferrita. Embora a ferrita seja anódica em relação a austenita em meios que causam CST, o limite elástico da austenita é menor do que o da ferrita, tal que algum grau de deformação é concentrado na austenita. Com isto, espera-se que promova CST, mas a austenita é protegida catodicamente pela ferrita. No entanto, para níveis maiores de carga, a deformação também ocorre na ferrita, onde, através desta fase, poderá ocorrer fragilização. Assim, o comportamento mecânico-eletroquímico das duas fases dependerá de suas composições e quantidades presentes, mas o modelo proposto de fragilização é para a ferrita ou interfaces ferrita/austenita, embora em condições extremas as trincas desenvolver-se-ão também na austenita.⁽¹¹⁻¹⁴⁾

Van Gelder et al.⁽¹⁵⁾ estudaram a susceptibilidade à CST em um aço similar, do tipo DIN W.St. 1.4462, em meios contendo cloretos, onde observou-se que a liga trinca, no potencial de corrosão, somente em temperaturas superiores a 80°C e, ainda, na condição de deformação dinâmica do eletrodo, ou seja, sob ensaio de taxa de deformação lenta do CP. Concluíram, também, que as trincas propagam-se na fase ferrita ou em contornos de grão ferrita/austenita, e param na fase austenita.

Notou-se, assim como Shreir et al.⁽¹⁶⁾, que para soluções tão concentradas, como 42% MgCl₂, existe pouca diferença dos AID, em termos de susceptibilidade à CST, em relação aos AIAC. Entretanto, em soluções menos concentradas, por ex. 35% MgCl₂, os AID são geralmente mais resistentes à corrosão do que os AIAC. Isto, é também mostrado por Jones⁽²⁾, onde as tensões limiares a partir da qual ocorre CST, para os AID, são em torno de três vezes maiores do que para os AIAC.

4. CONCLUSÕES

- O aço inoxidável duplex (AID), SAF 2205, sofre CST em solução aquosa aerada contendo 42% MgCl₂, a 143°C, no potencial de corrosão, através do ensaio de carga constante.
- 2. O valor de intensidade de tensão limiar, K_{lest} , foi aproximadamente 11 MPa \sqrt{m} , durante 1500 horas de ensaio.
- 3. Níveis de cargas superiores a $K_I = 30 \text{ MPa}\sqrt{m}$ promoveram tendência a ramificações de trincas, o que dificulta o processo de acompanhamento da etapa de crescimento e medição das mesmas.
- 4. As trincas, correspondentes às regiões de CST, foram transgranulares.

5. As microfractografias mostraram que, nas regiões onde a líga sofreu CST, a fratura é frágil, com presença de facetas de clivagem.

5. REFERÊNCIAS BIBLIOGRÁFICAS

- 1. JONES, D.A. Principles and Prevention of Corrosion. Macmillan Publishing Company, New York, 1992, 568p.
- JONES, R.H. Stress-Corrosion Cracking: Materials Performance and Evaluation. ASM International - The Materials Information Society, Ohio, 1992, 448p.
- SPROWLS, D.O. Tests for stress-corrosion cracking. Metals Handbook, Vol. 8, 1989, p.495-536.
- REICK, W., POHL, M., PADILHA, A. F. O desenvolvimento dos aços inoxidáveis ferríticosausteníticos com microestrutura duplex. Metalurgia & Materiais - ABM - v. 48, n. 409, p. 551-563, set./1992.
- WINKLER, F., TOSCH, J., RABENSTEINER, G., REITERER, P. Soldagem de aços duplex resistentes à corrosão ligados ao Cr-Ni-Mo e N. Boehler Schweisstechnik-View AG, 24p.
- DAVISON, R.M., REDMOND, J.D. Practical guide to using duplex stainless steels. Materials Performance, Vol. 29, No. 1, p.57-62, jan. 1990.
- WESSLING, W., BOCK, H.E. Properties and applications of a recently developed ferritic/austenitic steel containing 0.02% C, 22% Cr, 3% Mo and 0.12% N in comparison with molybdenum-alloyed austenitic steels. Stainless Steels, 1977, p.217-225.
- AMERICAN SOCIETY FOR TESTING AND MATERIALS, Philadelphia, USA. Standard test method for plane-strain fracture toughness of metallic materials, designation: E399-83. Philadelphia, 1989. v. 03.01, p. 487-511.
- 9. KANNINEN, M.F., POPELAR, C.H. Advanced Fracture Mechanics. Oxford University Press, New York, 1985, 563p.
- SPEIDEL, M.O. Stress corrosion cracking growth in austenitic stainless steel. Corrosion, Houston, Vol. 33, No. 6, 1977, p.199-203.
- GOOCH, T.G. A review of stress corrosion cracking of welded duplex ferritic/austenitic stainless steels. International Institute of Welding, Abington Hall, Cambridge, IX-1367-85, 28p.

- THORVALDSSON, T., ERIKSSON, H., KUTKA, J. SALWÉN, A influence of microstructure on mechanical properties of a duplex stainless steel. Stainless Steels, 1984, p.101-105.
- SYMNIOTIS, E., BARRDAHL. Selective corrosion of duplex stainless steels. Stainless Steels, 1987, p.176-185.
- 14. SYMNIOTIS, E. Galvanic effects on the active dissolution of duplex stainless steels. Corrosion, Vol. 46, No. 1, 1990, p.02-12.
- VAN GELDER, K. ERLINGS, J.G., DAMEN, W.M., VISSER, A. The stress corrosion cracking of duplex stainless steel in H₂S / CO₂ / Cl⁻ environments. Corrosion Science, Vol 27, No. 10/11, 1987, p. 1271-1279.
- SHREIR, L.L., JARMAN, R.A., BURSTEIN, G.T. Corrosion -Metal/Environment Reactions. Butterworth Heinemann; Vol. 1; Cap. 8; Third edition; 1994.

С	Cr	Ni	Mo	N	Ti	Co	Nb
0,021	21,760	5,780	2,980	0,1514	0,013	0,006	0,030
Cu	Al	Si	Mn	P	S	Fe	
0,020	0,025	0,580	1,630	0,017	0,012	balanço	

Tabela I - Composição química do aço inoxidável duplex SAF 2205.

Tabela	II -	Propried	lades	mecânicas	da	liga.
--------	------	----------	-------	-----------	----	-------

σ _{vs} (MPa)		σ_u (MPa)		e (%)		Dureza	
SL	ST	SL	ST	SL	ST	(HV)	
586	621	754	783	34	31	267	

Onde,

- σys tensão de escoamento
- σ_u tensão correspondente ao limite de resistência
- ε alongamento
- SL sentido longitudinal de laminação
- ST sentido transversal de laminação

Tabela III - Valores de cargas aplicadas aos corpos de prova sob ensaio de carga constante e resultados obtidos para o aço SAF 2205 em solução com 42% de MgCl₂, na temperatura de ebulição.

P (N)	σ (MPa)	$K_{I}(MPa\sqrt{m})$	σ/σ _{ys} (%)	$t_{f}(h)$	V _t (m/s)	E _{cor} (mV _{ecs})
4395	585,33	63,36	1,00	5,14	1,43x10 ⁻⁶	-284
3962	528,20	57,20	0,90	11,11	6,50x10 ⁻⁷	-320
3440	462,00	50,00	0,78	11,65	6,20x10-7	-292
2198	239,00	32,00	0,50	15,20	4,75x10-7	-300
1319	176,00	19,00	0,30	169,14	4,27x10 ⁻⁸	-312
1040	139,00	15,00	0,24	291,22	2,48x10-8	-320
968	129,00	14,00	0,22	2257	3,20x10 ⁻⁹	-308
840	112,00	12,00	0,19	4514	1,60x10 ⁻⁹	-311
		$K_{Icst} \cong 11,00$				

Figura 01 - Corpo de prova do tipo tração-compacto.

Figura 02 - Fotomicrografia do aço inoxidável duplex SAF 2205 (UNS S31803). Ataque: 10% ácido oxálico. Aumento 260 X.

Figura 03 - Intensidade de tensão aplicada ao corpo de prova, $K_{\rm I}\!\!\!\!$, versus tempo de fratura, $t_{\rm f}\!\!\!\!$

Figura 04 - Taxa de propagação de trinca versus intensidade de tensão.

Figura 05 - Corpo de prova do tipo tração-compacto, após o ensaio de CST; notam-se as trincas.

Figura 06 - Fotomicrografia do aço inoxidável duplex, SAF 2205. onde notam-se trincas transgranulares. Ataque: ácido oxálico 10%. Aumento: 260 X.

Figura 07 - Idem à Figura 06. Aumento: 260 X.

Figura 08 - Microfractografia do aço SAF 2205 ensaiado em carga constante, e em solução contendo 42% de MgCl₂, onde notam-se as regiões de fratura mecânica de fadiga, da pré-trinca, e a zona onde ocorreu CST. Aumento: 30 X.

Figura 09 - Microfractografia da região da Figura 08, correspondente à zona de CST. Destaca-se o aspecto frágil da fratura, através das facetas de clivagem. Aumento: 2000 X (MEV).

Figura 10 - Microiractografia do aço SAF 2205, na região que não sofreu CST, e sim fratura mecânica. Nota-se o aspecto dúctil da fratura, através dos "dimples". Aumento: 1000 X (MEV).

STRESS CORROSION CRACKING OF DUPLEX STAINLESS STEEL IN AQUEOUS SOLUTION CONTAINING 42% MgCl₂, AT 143°C, USING THE CONSTANT LOAD TEST

ABSTRACT

The stress corrosion cracking (SCC) behavior of duplex stainless steel SAF 2205 was studied during the present work. The attacking medium was an aqueous solution containing 42% (wt%) of MgCl₂, at the boiling temperature and corrosion potencial. The used method was a constant load compact-tension type applied through out the specimens. The Linear Elastic Mechanical Fracture was analysed to stablish the threshold tension intensity at wich SCC begins. Values for K_{Iscc} were also determined by means of K_I vs fracture time and crack propagation rates vs K_I curves. Fractographic traits of the specimens were also studied.

Key-Words: stress corrosion cracking; duplex stainless steels ; chloride of magnesium; test of load constant.

