

EVOLUTION OF DIFFERENT GENERATIONS OF GAMMA PRIME PRECIPITATES IN A COMMERCIAL NICKEL BASE SUPERALLOY

Antariksh Singh¹ Soumya Nag¹ Jaimie Tiley² Babu Viswanathan² Yunzhi Wang³ Hamish Fraser³ Rajarshi Banerjee¹

Abstract

During continuous cooling of nickel base superalloys from the single gamma phase field, the cooling rate plays a critical role in determining the precipitation of the ordered gamma prime phase. Depending on the cooling rate, either a single or multiple bursts of gamma prime nucleation can occur, changing their size distribution, morphology, and, composition. This study focuses on the compositional and microstructural evolution of different generations of γ^{2} precipitates during the continuous cooling, followed by isothermal aging, of a commercial nickel base superalloy, Rene 88DT, characterized by three dimensional atom probe tomography (3DAP) coupled with energy-filtered transmission electron microscopy (EFTEM) and high-resolution scanning electron microscopy (SEM) studies. Composition and morphology of different generations of gamma prime precipitates as a function of cooling rate will be addressed and compared with previously reported phase-field simulation results. The experimental findings would be compared with simulation results obtained via phase-field and solution thermodynamic modeling.

¹ Center for Advanced Research and Technology and Department of Materials Science and Engineering, University of North Texas.

² Materials and Manufacturing Directorate Air Force Research Laboratory.

³ Center for the Accelerated Maturation of Materials and Department of Materials Science and Engineering, The Ohio State University.