FENÔMENOS NA INTERFASE METAL-ÓXIDO DURANTE A OXIDAÇÃO A ALTA TEMPERATURA DO COBALTO (1)

David Fuller Brain⁽²⁾ Hernán Suárez Suárez ⁽³⁾

RESUMO

Ao oxidar o cobalto metálico ao ar, a temperaturas compreendidas entre 400°C e 1424°C, encontrou-se, na interfase metal-óxido, que o óxido cobaltoso apresenta uma estrutura de grãos bem finos entre o metal e os grandes cristais de tipo basáltico que formam o resto do óxido cobaltoso. Neste trabalho apresentam-se quatro hipóteses para explicar o fenômeno. Mostram-se os ensaios que se efetuaram para discernir qual dessas hipóteses seria mais aceitável.

1. INTRODUÇÃO

Em publicação anterior foi apresentado um trabalho sôbre a oxidação do cobalto metálico entre 400°C e 1424°C 1,2 ao ar ambiente; indicou-se a presença de uma zona porosa no $C_{\circ}\text{O}$ em contacto com o metal. Durante a oxidação de outros metais 3,4 , notou-se um efeito semelhante, que os experimentadores atribuiram a motivos diversos. Na presente publicação apresentaremos os ensaios efetuados para apurar a causa dêste fenômeno.

2. PARTE EXPERIMENTAL

O cobalto empregado foi proporcionado por Johnson, Mathey and Co. Limited, London, com um conteúdo mínimo de 99,97% de cobalto. A preparação das amostras e a realização dos ensaios se descreveu em todos os seus pormenores anteriormente 1, 2. Em poucas palavras, esta constava de um polimento

⁽¹⁾ Contribuição Técnica n.º 397. Apresentada na Comissão «C» do XIV Congresso da ABM; São Paulo, julho de 1960. Versão do castelhano para o vernáculo pela Secretaria da ABM. Na Discussão, a taquigrafia apanhou muito mal os apartes naquela lingua.

⁽²⁾ Membro da ABM; do Laboratório de Metalurgia da Universidade de Concepción; Chile.

⁽³⁾ Membro da ABM; do Laboratório de Metalurgia da Universidade de Concepción; Chile.

mecânico com papel esmeril até 4/0 dos corpos de prova, cuias dimensões eram 16 × 11 mm e de espessuras compreendidas entre 0.3 e 1 mm. A seguir mediam-se cuidadosamente: lavavamse em um solvente apropriado; eram submetidas a um recozimento, primeiro em hidrogênio a 1000°C durante 16 horas, e finalmente no vacuo durante 3 h, a 850°C. A pressão neste último foi controlada rigorosamente, porém foi inferior a 10^{-5} mm de mercúrio. As amostras preparadas submeteram-se à oxidacão ao ar ambiente em forno vertical de contrôle dilatométrico. que assegura uma precisão de ± 1°C. A temperatura foi medida com um termopar platina-platina ródio conectado a um potenció-Como duração de cada ensaio considerou-se o tempo transcorrido entre a introdução e a retirada da amostra do forno. As amostras de cobalto oxidadas, contendo ainda metal sem oxidar, permitiram estudar a cinética do processo que constituiu o tema de publicação anterior 2.

A observação ao microscópio de cortes perpendiculares à superfície das láminas oxidadas, indicou a presença de uma zona perturbada do óxido cobaltoso, diretamente em contacto com o cobalto metálico residual (fig. 1). Êste mesmo fenômeno foi observado no óxido ferroso produzido durante a oxidação do ferro, por Paidassi ³ e Collongues ⁴, os quais o atribuiram à

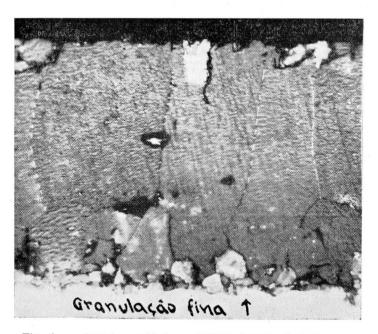


Fig. 1 — Amostra oxidada a 1000°C durante 1 hora, com esfriamento em 60 segundos (\times 1250).

acumulação de impurezas. H. Preece e G. Lucas ⁵ pensam que esta capa, mais o metal residual, correspondem à espessura original da amostra.

Desta afirmação, duvidou Kubschewski ⁶. Também se afirmou que nesta zona existe uma grande porosidade e uma capa de óxido cobaltoso diferente do resto ⁷, porém isto se deve a um polimento mal efetuado, como se vê nas figs. 2 e 3, nas quais se observa a mesma amostra polida em duas formas diferentes. Na primeira, o corpo de prova montado em plástico e cortado em disco de esmeril foi polido diretamente sôbre um disco de cêra com alumina; na segunda, eliminou-se a capa porosa que aparece por efeito das vibrações durante o corte, polindo-a a mão com papel esmeril do N.º 1 ao 4/0 antes de proceder a um rápido polimento final com alumina.

Baseando-se na bibliografia e em nossas próprias experiências, podemos atribuir a formação da capa de granulometria fina a diferentes causas, as que já indicamos como hipótese. Nosso trabalho consistiu em realizar ensaios com o fim de descartar ou provar a validez destas hipóteses.

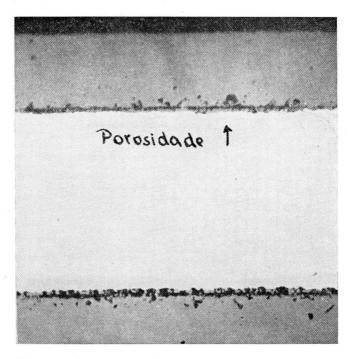


Fig. 2 — Amostra mal polida. Capa porosa junto ao metal. 1000°C durante 1 hora (\times 400).

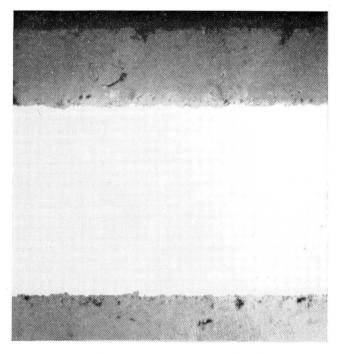


Fig. 3 — Amostra bem polida. 1000°C durante 1 hora (\times 400).

Ao nosso ver, as causas que possam provocar a formação de uma capa de granulometria fina no óxido cobaltoso durante a oxidação do cobalto, podem ser: a) diferença entre os coeficientes de dilatação do cobalto metálico e do óxido cobaltoso; b) acumulação de impurezas na interfase metal-óxido; c) difusão dos ions de metal e de oxigênio no interior da rêde cristalina do óxido; d) diferença entre as malhas cristalinas do cobalto e do óxido cobaltoso.

ENSAIOS REALIZADOS E EXPLICAÇÕES DAS HIPÓTESES

a) Hipótese baseada nos diferentes coeficientes de dilatação do cobalto metálico e do óxido cobaltoso:

Para sua explicação tomamos como base a temperatura de 1.000°C e variamos a velocidade de esfriamento da amostra ao retirá-la do interior do forno, desde 15 minutos até frações de

segundos, mediante têmperas enérgicas. Éstes valores e o das espessuras da capa fina podem-se encontrar na Tabela I.

Tempo de esfriamento da amostra (seg) 780 60 1 1/10 Espessura total do oxido (4) 56,4 53 52 50,6	
Espessura total do oxido (4) 56,4 57 52 50,	o(§)
Espessura do metal remanente (4) 361 106 615 334	
Espessura da capa fina (4) 2,8 2,44 1,74 1,8	i
Espessura relativa da capa fina, em % 4,96 4,6 3,35 3,56	5
Temperatura de oxi dação (°C) 1000 1000 1000 1000 1000)
Tempo de oxidação em horas 1 1 1 1	

(§) Os tempos de esfriamento das amostras se calcularam de um trabalho publicado por Collongues², que os mediu para as têmperas que empregamos.

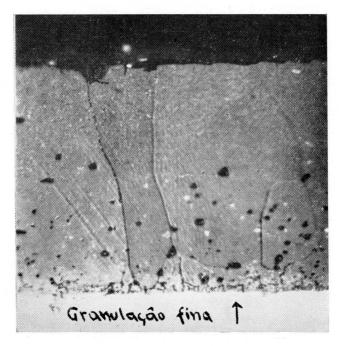


Fig. 4 — Amostra oxidada a 1000°C durante 1 hora com esfriamento em 1/10 segundo (\times 1250).

A micrografia da fig. 1 corresponde a uma amostra esfriada em 60 seg e a da fig. 4, às mesmas condições de ensaio, porém esfriada em 1/10 de segundo aproximadamente. Nesta tabela anterior se observa que a espessura dos grãos finos diminuem à medida que aumenta a velocidade de esfriamento, ou pelo menos nas duas primeiras amostras, a espessura do grão fino é muito maior que no caso das duas últimas. Também tivemos oportunidade de comprovar que a espessura relativa diminui, por isso pensamos na possibilidade de que, como o cobalto metálico têm um coeficiente de dilatação muito maior que o do óxido cobaltoso, na zona da interfase se produz uma ruptura dos cristais de óxido, dando lugar à capa de grãos finos, devido às tensões que ali aparecem. Isto de que o grão fino se produza por tensões, se acentua pelo fato de que nas esquinas, onde existe um raio de curvatura maior no metal, a espessura da dita capa aumenta de uma maneira muito marcada, como se aprecia na micrografia da fig. 5. Esta hipótese tivemos que deixá-la de lado, porque ao oxidar totalmente uma amostra, sempre se observa esta capa de grãos finos, a qual não deveria haver-se formado, porque ao não haver metal remanescente, não se produziriam as tensões.

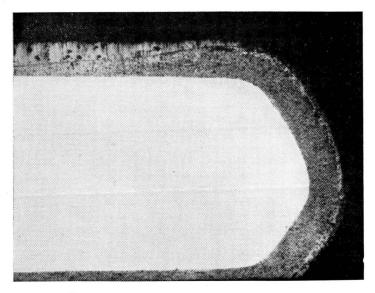


Fig. 5 — Micrografia que mostra o crescimento do grão fino nos cantos por efeito da curvatura.

b) Hipótese baseada na acumulação de impurezas na interfase metal-óxido:

Esta hipótese é dada por Paidassi ³ e Collongues ⁴ para explicar a presença do grão fino, porém ela pode ficar a um lado no nosso caso, porque não haveria razão para que nos bordos da amostra, esta acumulação de impurezas fosse tão extraordinàriamente maior que no centro dela, de modo que explicasse o fenômeno que se pode apreciar na fig. 5. Por outra parte, a espessura relativa desta capa deveria ser constante. No caso mais desfavorável, em que haja dissolução de impurezas a certa temperatura, deveria manter-se constante a espessura relativa da capa fina a uma mesma temperatura. Os resultados das experiências estão resumidos na Tabela II; indicam que em geral decrescem com o aumento do tempo de oxidação. Outro fator contra esta hipótese é o de que a espessura desta capa de grãos finos varia com a velocidade de esfriamento das amostras.

TABELA II

Espessura da capa de granulometria fina expressa em % da espessura total de óxido

Tempo	6000	7009	8009	8500	9000	10000	11000	12000	13009	14000
1'	-	-	-	-	\ <u>-</u>	-	-	-	13,9	11,1
4.	-	-	-	-	-	-	-	-	11,2	11,6
15'	-	-	-	10,0	10,0	7,1	8,3	7,5	12,1	11,6
1 h	-	-	7,2	10,1	6,7	6,7	6,0	6,9	12,2	11,6
4 h	-	-	8,3	10,0	6,7	6,0	5,5	5,2	11,1	-
8 h	-	-	-	-	-	-	-	4,9	-	-
16 h	-	4,6	4,5	7,0	6,8	5,0	5,5	-	-	-
1 d	-	-	-	-	_	-	_	-	-	-
2 d	-	5,9	7,9	6,9	5,1	4,3	-	-	-	-
3 d	16,7	-	-	-	-	-	-	-	-	•
4 a	20,0	7,7	8,0	-	-	-	_	-	-	-
8 đ	26,7	14,3	-	_	_	-	-	_	-	-

c) Hipótese baseada na difusão dos ions de metal e oxigênio na rêde cristalina do óxido:

Vários autores observaram a presença de uma linha de separação bem marcada entre a capa de grãos finos e a de grandes cristais basálticos do óxido cobaltoso. Preece e Lucas ⁵ indicaram que a zona de granulometria fina mais o metal residual, correspondia à espessura original da amostra. Segundo nossas experiências, podemos abandonar esta explicação, já que em uma amostra de espessura original de 190 microns, oxidada quase completamente, a capa fina mediu sòmente 14 microns, segundo a fig. 6.

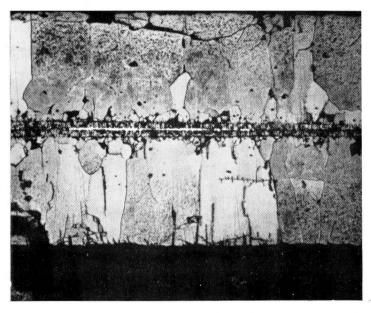


Fig. 6 — Amostra oxidada a 1000°C durante 16 horas. Atacada (× 300). A capa fina mediu sòmente 14 microns.

Doutro lado, Carter e Richardson consideraram que esta linha de separação também correspondia à superfície inicial do cobalto, porém, a medida que transcorre a oxidação, esta superfície ir-se-ia transladando ao interior da amostra e que os cristais basálticos produzir-se-iam pela difusão dos ions metálicos para o exterior; em câmbio a capa fina formar-se-ia em base a esta teoria pela difusão do oxigênio no interior do cobalto. Ainda sendo esta hipótese mais aceitável do que a de Preece e Lucas, podemos dizer, que a velocidade do esfriamento não deveria ter nenhuma influência sôbre a espessura da capa; apesar disso, a tem. (Ver Tabela I).

TABELA III

Sistema cristalino	Temp. ºC	Parametro A	Biblio grafia		
	COBALTO				
Hexagonal compacto	400/500	a = 2,51 $c = 4,07$	(8)		
Cúbico de fa ces centradas	500/1000	a = 3,54	(8)		
Cúbico de fa ces centradas	1100/1400	a = 3,544	(0)		
Hexagonal compacto	1100/1400	a = 2,505 c = 4,060	(9)		
	OXIDO COBA	LTOSO			
Cúbico de f <u>a</u> ces centradas (capa fina)		a = 4,2508	70		
Cúbico de f <u>a</u> ces centradas (capa grossa)	400/1400	a = 4,2548	(8)		

d) Hipótese baseada na diferença que existe entre a malha cristalina do metal e a do óxido cobaltoso:

O cobalto e o óxido cobaltoso a 1000°C possuem uma malha cristalina cúbica (Tabela III), porém seus parâmetros são diferentes, pelo qual os átomos nas malhas deverão reordenar-se para formar a nova malha na zona de interfase, formando a capa fina, e, por conseguinte, a velocidade de esfriamento e a curvatura poderão ter influência na espessura da dita capa. Ademais, como 1100°C o sistema de cristalização do cobalto passa do cúbico ao hexagonal, deveríamos notar variação da espessura da capa de grão fino, o qual para os ensaios efetuados se verifica a 1300°C (Tabela II). O mesmo poderíamos dizer para temperaturas inferiores a 400°C, pois aparece novamente o sistema hexagonal. Podemos ver assim, neste caso, que a 600°C e 700°C a espessura relativa da capa fina aumenta consideràvelmente, como se observa na Tabela II.

Estas duas variações da espessura relativa da zona de granulometria fina podemos atribuí-las às mudanças alotrópicas do cobalto; segundo publicação recente 10, a mudança alotrópica do cobalto aos 400°C mais parece ser uma transformação martensítica com bastante histeresis. Por outra parte, nossas amostras, tratadas a temperaturas superiores a 1100°C devem sofrer

duas mudanças alotrópicas (durante o esfriamento) o qual poderia produzir maiores deformações, provocando uma capa de granulometria fina de maior espessura.

Por último diremos que, se bem seja esta a melhor hipótese para explicar esta granulometria fina, não podemos desconhecer que outros fatôres tenham algum papel; porém consideramos que o mais importante é o último enunciado.

3. OBSERVAÇÕES

Para finalizar êste trabalho, diremos que qualquer fator capaz de produzir tensões no óxido cobaltoso, será causa de falhas e rupturas em dito óxido; ademais a zona que está submetida a maiores tensões é precisamente a correspondente à interfase metal-óxido, e é por isto que nesta zona se produz o grão fino.

Como complementação a êste estudo, podemos indicar que experiências de recozimento do óxido, de duração variável, logo depois do esgotamento do metal base, dariam novas luzes sôbre o fenômeno, assim como também, aquelas em que se empregara um marcador inerte para determinar a localização da interfase inicial nas amostras tratadas.

BIBLIOGRAFIA

- HERNAN SUAREZ, S. Tesis, 5, Universidad de Concepción, Concepción, Chile, 1959.
- JOSÉ A. LOPEZ, C.; HERNAN SUAREZ, S. Boletím Sociedad Chilena de Química, 9:38, 1959.
- 3. J. PAIDASSI Boletim Sociedad Chilena de Química, 7:20-22, 1955.
- 4. R. COLLONGUES Tesis, 6, Paris, 1954.
- H. PREECE; G. LUCAS J. Inst. of Met., 81:220, 1952.
- 6. O. KUBASCHEWSKI Revue de Met., 81:727, 1953.
- CARTER, RICHARDSON Trans. AIME, 200:1244, 1954. J. Metal, 6, 1954.
- 8. E. EVANS; C. PHALNIKAR; B. BALDWIN Case Institute of Tech, Report N.º 1. To Office of Ordenance Research, oct., 1955.
- 9. J. NEWKKIRK; A. GEISLER Acta Met., 4:456-7, 1953.
- 10. C. R. HOUSKA;; B. L. AVERBACH; M. COHEN Acta Met., 8:81, 1960.