INFLUÊNCIA DO TRATAMENTO INTERCRÍTICO NA TENACIDADE E MICROMECANISMO DE FRATURA DE UM AÇO API 5L X65¹

Valdir Alves Guimarães² Tácito Brandão Pinto³ Enrico José Giordano⁴ Itamar Ferreira⁵

RESUMO

Atualmente, uma parcela considerável das pesquisas em aços de baixo carbono está direcionada no sentido de se obter microestruturas que apresentem altos níveis de resistência mecânica associados a altos níveis de tenacidade à fratura. O aco API 5L X65, microligado ao Nb-Ti-V, vem sendo utilizado em aplicações em condições severas, sendo que há uma grande necessidade de otimização das suas propriedades mecânicas, principalmente a tenacidade à fratura. Este trabalho tem por objetivos estudar a influência de algumas variações microestruturais de um aço API 5L X65, obtidos por tratamentos térmicos intercríticos com diferentes taxas de resfriamento, na resistência mecânica, micromecanismo de fratura e tenacidade à fratura. Observou-se que a microestrutura polifásica, constituída de ferrita, perlita e bainita, obtida por resfriamento ao ar e revenida a 623 K, apresentou a melhor combinação de resistência mecânica - $\sigma_t = 511$ MPa - e tenacidade à fratura - $\delta_m = 0,57$ mm - e micromecanismo de fratura alveolar ("dimples"). Por um outro lado, a microestrutura bifásica ferritamartensita, obtida por resfriada em água, apresentou altos níveis de resistência à tração - $\sigma_t = 971$ MPa - com baixos níveis de tenacidade à fratura - $\delta_m = 0.06$ mm - e micromecanismo de fratura alveolar com presença de facetas de quase-clivagem.

Palavras-Chaves: Aços bifásicos; Tenacidade à fratura; Micromecanismo de fratura.

¹ I Seminário de Mecânica de Fratura, 01 e 02 de junho de 1995 - Ouro Preto - MG;

² Professor Assistente da FEG/UNESP e aluno de doutorado do Curso de Pós-Graduação em Eng. Mecânica da UNICAMP;

³ Aluno de mestrado do Curso de Pós-Graduação em Eng. Mecânica da FEM/UNICAMP;

⁴ Aluno de mestrado do Curso de Pós-Graduação em Eng. Mecânica da FEM/UNICAMP;

⁵ Professor Assistente Doutor da FEM/UNICAMP.

1. INTRODUÇÃO

Nos últimos 20 anos houve um progresso considerável no sentido de se obter melhorias na resistência mecânica e tenacidade, sem prejuízo da soldabilidade dos acos de baixo carbono, através de microadições e tratamentos termo-mecânicos controlados [1-3]. Com o descobrimento das enormes reservas de energia na região Ártica, a demanda de tubos para transportar óleo e gás em grandes quantidades através de regiões com climas severos tem tido grande aumento onde tem-se procurado, portanto, a utilização de tubos de grande diâmetro e que operem em alta pressão. Como resultado dessas exigências, a especificação dos acos tem se tornado cada vez mais crítica, principalmente no que se refere à resistência mecânica, tenacidade em baixas temperaturas, soldabilidade e resistência à fragilização pelo hidrogênio [4]. O material que tem apresentado utilização crescente para estas aplicações são os aços microligados que se caracterizam por apresentar bons níveis de resistência e tenacidade, além da possibilidade de obtenção de uma grande quantidade de microestruturas resultantes das variações de composição química e das taxas de resfriamento após o tratamento termo-mecânico, variações estas que podem resultar em uma melhor combinação de propriedades[5]. Os efeitos específicos de componentes individuais das microestruturas desses acos, tais como, tamanho de grão, precipitados, tipo das fases, subestrutura de discordâncias, carbonetos e inclusões, sobre a resistência mecânica e tenacidade tem sido bastante estudados. Atualmente, é conhecido que alguns fatores como tamanho de grão ferrítico grande, fases frágeis, grandes frações volumétricas de precipitados, alta densidade de discordâncias e presença de nitrogênio podem contribuir para uma fratura frágil [6]. No entanto, a importância relativa desses fatores nas microestruturas complexas encontradas nos acos microligados, e a influência dos produtos de transformação em baixas temperaturas como a bainita e a martensita, ainda não estão bem esclarecidos [7].

Na década passada, os acos bifásicos com microestruturas constituídas de ferrita e martensita provocaram grande atenção devido, a sua capacidade de conciliar excelente ductilidade e alta resistência mecânica. No entanto, estudos detalhados sobre o comportamento desses acos revelaram que eles sofrem diminuição de resistência mecânica na zona termicamente afetada pela soldagem, que leva a deformação localizada e fratura da solda durante um eventual processo de conformação plástica posterior [8]. Recentemente, alguns resultados tem sido publicados na literatura a cerca da vantagem da substituição de parte da martensita dos aços bifásicos por bainita. Essa composição estrutural que pode ser obtida por aços de baixo carbono microligados ao Nb-Ti-V, apresentou melhor resistência à fadiga e melhor conformabilidade [9-10]. Desse modo, atualmente as pesquisas estão direcionadas no sentido de se conhecer o comportamento mecânico de microestruturas bifásicas e polifásicas e a melhor proporção entre as fases, com a intenção de encontrar melhores combinações de propriedades mecânicas, ou seja, aumentar os níveis de tenacidade à fratura sem diminuir os níveis de resistência mecânica [11]. Outra técnica recentemente utilizada que tem surgido como um meio para aumentar a tenacidade dos aços, sem influenciar a resistência mecânica, é o aquecimento do material até a região

intercrítica com resfriamento posterior ao ar [12]. Alguns trabalhos tem sugerido que esse efeito ocorre devido à segregação de manganês nos contornos de α e γ , que diminue a temperatura de transformação da austenita em cementita, fazendo com que esse carboneto só se forme nos contornos em baixas temperaturas [13]. A melhoria da resistência ao impacto decorrente do recozimento intercrítico foi verificada em pequenos tempos de exposição (entre 15 e 30 minutos), e que devido à simplicidade e o baixo custo, esse tipo de tratamento térmico deveria merecer uma atenção maior do que simplesmente interesse acadêmico [14].

No presente trabalho foram estudadas algumas variações microestruturais de um aço API 5L X65 obtidos por tratamentos térmicos intercríticos com variações nas taxas de resfriamento, onde procurou-se avaliar a contribuição das fases na resistência mecânica, micromecanismo de fratura e tenacidade à fratura. O parâmetro utilizado para a caracterização da tenacidade a fratura foi o deslocamento de abertura da ponta da trinca (CTOD) que representa a resistência à propagação de uma trinca aguda no material e é, dentre as propriedades mecânicas de materiais metálicos, uma das mais sensíveis às variações microestruturais. Esse parâmetro, juntamente com a análise da superfície de fratura, representa uma técnica importantíssima para o estudo da influência de variáveis microestruturais no comportamento mecânico de materiais metálicos, além de estar entre os parâmetros de maior interesse para seleção de materiais que são submetidos a condições de trabalho em climas severos.

2. MATERIAIS E MÉTODOS

O material utilizado neste trabalho foi um aço API 5L X65, produzido pela Companhia Siderúrgica Paulista, microligado ao nióbio - titânio - vanádio e utilizado basicamente na fabricação de tubos. O material foi recebido na forma de chapa com 9 mm de espessura, cuja composição química em porcentagem em peso dos principais elementos está indicada na Tabela 1.

Inicialmente o material foi cortado em barras de 13x100 mm², sendo em seguida usinados os corpos de prova de tração e tenacidade à fratura, cuja geometria está esquematizada na Figura 1. Os corpos de prova para o ensaio de tração foram orientados na direção de laminação, e os de tenacidade à fratura (CTOD) com o plano da trinca orientado na direção L-T.

Os tratamentos térmicos utilizados, cuja seqüência está esquematizada na Figura 2, consistiu de uma normalização a 1223 K por 1 hora, reaquecimento a 1223 K por 40 minutos, e em seguida, um tratamento intercrítico a 1033 K por 40 minutos. O resfriamento final foi realizado em três meios distintos, com a intenção de se obter taxas de resfriamento diferenciadas: em água (taxa média de resfriamento de 95 K/s), em óleo (taxa média de resfriamento de 40 K/s) e ao ar (taxa média de resfriamento de 3 K/s). Alguns corpos de prova foram reaquecidos a 623 K por 30 minutos com o objetivo de se verificar a influência do revenido na tenacidade à fratura.

Os corpos de prova foram ensaiados em uma máquina MTS modelo 812. Os ensaios de tração foram baseados na norma ABNT NBR 6152 [15] e os ensaios de

tenacidade à fratura do tipo flexão em três pontos foram realizados segundo a norma ASTM E 1290-89 [16]. O parâmetro de tenacidade à fratura utilizado foi o δ_m , ou seja, o valor do CTOD na máxima carga. Todos os ensaios foram realizados com velocidade de deslocamento de 0,01 mm/s e a temperatura ambiente (25 °C).

Após os tratamentos térmicos foram realizadas análises metalográficas em um microscópio Neophot 32 e após os ensaios de tenacidade à fratura análise da superfície de fratura (fractografia) em um microscópio eletrônico de varredura Cambridge S4-10.

3. RESULTADOS E DISCUSSÃO

As micrografias da Figura 3 mostram as microestruturas obtidas para as condições como fornecido (CF), resfriada em água (RA), resfriada em óleo (RO) e resfriadas ao ar (RAr), onde pode-se notar diferenças microestruturais acentuadas provocadas pelo tratamento térmico intercrítico e pelas variações das taxas de resfriamento. Inicialmente, para o aço como fornecido, a microestrutura era tipicamente ferrítica-perlítica (α +P), com tamanho de grão relativamente pequeno e com textura de laminação bem definida. Após o tratamento térmico intercrítico, foram observadas grandes diferenças microestruturais; os corpos de prova resfriados em água e óleo apresentaram microestrutura bifásica constituida de ferrita e matensita (α +M), sendo que foi possível observar, por microscopia ótica, diferenças morfológicas e de fração volumétrica das ilhas de martensita, para essas duas condições. Estas diferenças estão provavelmente relacionadas com a variação do teor de carbono da martensita, que para este caso, varia em função da fração volumétrica das fases [18]. Os corpos de prova resfriados ao ar apresentaram microestrutura polifásica constituida de ferrita-

As micrografias da Figura 4 mostram as microestruturas para as condições revenidas: resfriada em água e revenida (RAR), resfriada em óleo e revenida (ROR) e resfriada ao ar e revenida (RAR). Nota-se que não houve mudanças significativas, a nível de microscopia ótica, das condições revenidas com relação às condições somente resfriadas.

Através da análise dos resultados dos ensaios de tração e de tenacidade à fratura, mostrados na Tabela 3 pode-se observar que as microestruturas constituídas de ferrita e matensita apresentaram ganho expressivo de resistência à tração, quando comparadas à microestrutura ferrítica-perlítica, da condição como fornecido. A microestrutura polifásica ferrita-perlita-bainita, obtida pelo resfriamento ao ar, apresentou níveis de resistência à tração comparável à microestrutura bifásica α -P, da condição como fornecida, no entanto, apresentou ganho considerável de tenacidade à fratura, chegando a níveis de até 63% para a condição resfriada ao ar e revenida (RArR). As microestruturas bifásicas ferrítica-martensita apresentaram, como já era esperado, os mais baixos níveis de tenacidade ã fratura com redução variando entre 40 a 83% para as condições ROR e RA respectivamente. A dutilidade apresentou o mesmo comportamento verificado para a tenacidade à fratura, porém com menor variação, ou seja, menor sensibilidade. Dentro deste mesmo contexto, verificou-se a

clássica relação inversa entre tenacidade à fratura e resistência mecânica[19] para as diversas microestruturas do aço API 5L X 65, o que pode ser visto na Figura 7.

A Figura 5 mostra as fractografias de corpos de prova do ensaio de tenacidade à fratura, para as condições CF, RA, RO e Rar, e a Figura 6 para as condições revenidas. Observa-se que a condição CF apresenta um micromecanismo de fratura alveolar ("dimples") com evidência de grande quantidade de partículas com diâmetro médio de 5 µm. Torna-se importante salientar que esse micromecanismo de fratura se refere à nucleação, crescimento e coalescimento de vazios em partículas de segunda fase; o aco API 5L X 65 apresenta basicamente três tipos diferentes de partículas [17]: as finas e as intermediárias a base de Nb-Ti-Al esféricas, e as partículas grosseiras que são basicamente inclusões não metálicas esféricas ou partículas a base de Nb-Ti-Al-V cubóides ou hexagonais. Assim, é possível notar, na Figura 5.a, que como decorrência dos tipos de partículas também há basicamente três tipos de alvéolos: os grandes, os intermediários e os pequenos, nucleados respectivamente em partículas grandes, intermediárias e pequenas. Os níveis de tenacidade à fratura para a microestrutura ferrítica-perlítica, da condição como fornecido, são relativamente baixos ($\delta_m=0.37$ mm) devido principalmente à presença das partículas grosseiras. A microestrutura bifásica α -M, obtida por resfriamento em óleo, e a polifásica α -P-B, obtida por resfriamento ao ar, também apresentaram micromecanismo alveolar mas com morfologias dos alvéolos diferentes da microestrutura α-P, pois não há evidência de partículas grandes e os alvéolos são menores. Já a microestrutura bifásica α -M, obtida com resfriamento em água, apresentou micromecanismo de fratura nitidamente diferente das condições anteriores, pois nesse caso também há alvéolos, mas com presença de regiões com facetas de quase-clivagem [20]. Nesse caso as facetas de quase-clivagem estão associadas à fase martensita pois a ferrita desse aço não sofre clivagem na temperatura ambiente. Assim, os níveis de tenacidade à fratura são bastante inferiores para a microestrutura bifásica α-M, obtida com resfriamento em água, pois em acos os micromecanismos de clivagem e quase-clivagem estão associados com baixíssimos níveis de tenacidade à fratura. Santos [11] verificou que a microestrutura polifásica ferrita-bainita-martensita apresenta uma boa combinação de resistência mecânica e ductilidade, o que esta de acordo com os resultados obtidos neste trabalho.

4. CONCLUSÕES

Para o aço API 5L X65, nas condições metalúrgicas analisadas neste trabalho, pode-se concluir o seguinte:

A taxa de resfriamento, a partir da região intercrítica (1033 K), apresentou diferentes microestruturas. O resfriamento ao ar levou à formação de uma microestrutura polifásica ferrita-perlita-bainita (α -P-B) e o resfriamento em óleo e água levou à formação de uma microestrutura bifásica ferrita-martensita (α -M) com diferentes morfologias;

A microestrutura polifásica α -P-B, obtida por resfriamento ao ar e revenida, apresentou a melhor combinação de resistência mecânica e tenacidade à fratura ($\sigma_t = 511$ MPa e $\delta_m = 0,57$ mm). A microestrutura bifásica α -M, obtida por resfriamento em água, levou a altos níveis de resistência mecânica ($\sigma_t = 971$ MPa), mas com baixos níveis de tenacidade à fratura ($\delta_m = 0,06$ mm). As demais microestruturas levaram a valores intermediários de resistência mecânica e tenacidade à fratura, mantendo a clássica relação inversa entre essas duas propriedades;

O tratamento de revenido, a 623 K por 30 minutos, para as três condições de resfriamento, levou a um aumento da tenacidade à fratura com pequena diminuição do limite de resistência à tração;

A microestrutura ferrita-perlita, da condição como fornecida, a polifásica α -P-B, da condição resfriada ao ar, e a bifásica α -M, da condição resfriada em óleo, apresentaram o micromecanismo de fratura alveolar ("dimples") com diferentes morfologias. A microestrutura bifásica ferrita-martensita, da condição resfriada em água, apresentou um micromecanismo de fratura diferente, pois nesse caso há também alvéolos mas com presença de regiões de facetas de quase-clivagem.

Tabela 1. Composição química do aço API 5L X65 utilizado neste trabalho.

Elemento	C	Si	Mn	P	S	Cr	V	Ti	Nb	Al
% peso	0,094	0,30	1,15	0,027	0,003	0,02	0,05	0,021	0,044	0,055

Tabela 2. Microestrutura e micromecanismos de fratura para as condições metalúrgicas do aço API 5L X65 analisadas neste trabalho

Condição	Microestrutura característica	Micromecanismo de fratura característico
CF	α+P	alveolar
RArR	a+P+B	alveolar
RAr	a+P+B	alveolar
ROR	α+MR	alveolar
RO	α+Μ	alveolar
RAR	α+MR	alveolar +quase-clivagem
RA	α+Μ	alveolar +quase-clivagem

Tabela 3. Resultados dos ensaios de tração e de tenacidade à fratura (CTOD) para o aço API 5L X65, nas condições metalúrgicas abaixo especificadas.

Condição	σ _e (MPa)	σ _t (MPa)	.e _f (%)	δ _m (mm) 0,35	
CF	480	580	25,87		
RArR	362	511	31,60	0,57	
RAr	279	549	29,50	0,50	
ROR	510	680	22,80	0,21	
RO	471	758	21,87	0,16	
RAR	667	800	14,38	0,10	
RA	669	971	15,94	0,06	

Figura 1. Dimensões dos corpos de prova do ensaio de tenacidade à fratura (a) e do ensaio de tração (b).

(b)

(c)

(d)

(b)

(c)

Figura 4. Micrografias do aço API 5L X 65, nas condições metalúrgicas revenidas a 623 K: (a) resfriado ao ar e revenido (RArR); (b) resfriado em óleo e revenido (ROR); (c) resfriado em água e revenido (RAR).

(b)

(c)

(d)

Figura 5. Fractografías da superfície de fratura dos corpos de prova de tenacidade à fratura nas condições: (a) como fornecido (CF); (b) resfriado ao ar (RAr); (c) resfriado em óleo (RO); (d) resfriado em água (RA).

(b)

(c)

Figura 6. Fractografias da superfície de fratura dos corpos de prova de tenacidade à fratura nas condições metalúrgicas revenidas a 623 K: (a) resfriado ao ar e revenido (RArR); (b) resfriado em óleo e revenido (ROR); (c) resfriado em água e revenido (RAR).

Figura 7. Tenacidade à fratura (δ_m) em função do limite de resistência à tração (σ_t) para as várias condições metalúrgicas analisadas neste trabalho.

REFERÊNCIAS BIBLIOGRÁFICAS:

- SHYI-CHIN, W. The effect of titanium and reheating temperature on the microstructure and strenght of plain carbon, vanadium and niobium steels, Journal of Materials Science, v. 25, p. 187-193, 1990.
- [2] VARUGHESE, R., PENSE, A.W. Microstructural development in the coarse, heat affected zone in Ti-V microalloyed steels. Materials Caracterization, v. 30, p. 35-43, 1993.
- [3] DEARDO, A.J. An overview of microalloyed steels. 8th PTD Conference Proceedings, The Metallurgical Society of AIME, Warrendale, PA, p. 67-68, 1988.
- [4] CORTES, C.O.S. Produtos laminados planos de aço baixo carbono e baixa liga -Situação atual e perspectivas. Metalurgia ABM, v. 44, p. 924-937, 1988.
- [5] BHOLE, S.D., FOX, A.G. Some interesting microstructure in very low carbon high manganese steels. Scripta Metallurgica et Materiallia, v. 29, p. 1391-1396, 1993.
- [6] DOGAN, B., COLLINS, L.E., BOYD, J.D. Effects of termomechanical processing on the microstructure and mechanical properties of a Ti-V-N steel. Metallurgical Transactions, v. 19A, p. 1221-1234, 1988.
- [7] DAVIS, C.L., KING, J.E. Effect of cooling rate on intercritically reheated microstructure and toughness in high strenght low alloy steel. Materials Science and Technology, v. 9, p. 8-15, 1983.
- [8] ZHANG, H., HUANG, C., CHEN, H., PANG, G. Study of an as hot rolled low carbon ferrite-bainite sheet steel. In Proc. International Symposium on Low Carbon Steel for the 90's, ASM, TMS, Pittsburg, Pensylvania, p. 367-371, 1993.
- [9] SUDO, M., IWAIT, T. Deformation behaviour and mechanical properties of ferrite-bainite-martensite (triphase steel). Transactions ISIJ, v.23, p. 294-302, 1983.
- [10] SUDO, M. Effect of controlled cooling on the mechanical properties of as hotrolled multi-phase steel sheets. In Proc. Acelerated Cooling of Steels, TMS, AIME, Pittsburg, p. 501-519, 1985.

- [11] SANTOS, D.B. The production of poliphasic steels Relation between microstructure and mechanical properties. In Proc. International Symposium on Low Carbon Steel for the 90's, ASM, TMS, Pittsburg, Pensylvania, p. 349-359, 1993.
- [12] NASSAR, A., VIPOND, R., MINTZ, B. Influence of intercritical annealing on strength and impact behaviour of niobium containing steels. Materials Science and Technology, v. 7, p. 699-706, 1991.
- [13] MINTZ, B., KOLAHI, A.J. Metallurgical Transactions, v. 19A, p. 1491, 1988.
- [14] MINTZ, B., VIPOND, R., NASSAR, A. Influence of intercritical annealing on strength and impact behaviour of steels, Materials Science and Technology, v. 9, p. 760-762, 1993.
- [15] ABNT NBR 6152. Determinação das propriedades mecânicas à tração de materiais metálicos, 1980.
- [16] ASTM E 1290-89. Crack tip opening displacement (CTOD) fracture toughness measurements, 1989.
- [17] EMENIKE, C.O.I., BILLINGTON, J.C. Formation of precipitates in multiple microalloyed pipeline steels. Materials Science and Technology, v. 5, p. 566-574, 1989.
- [18] HASHIMOTO, T.M. Fadiga de aço de baixo carbono com microestrutura bifásica. Tese de Doutorado, Universidade Estadual Paulista-UNESP/FEG, Guaratinguetá-SP, 1989, p. 1-150.
- [19] HERTZBERG, R.W. Deformation and fracture mechanics of engineering materials. John Wiley & Sons, 3rd Edition, 1989, p. 353-419.
- [20] BATES, R.C. Mechanics e mechanisms of fracture. Metallurgical Treatises, Metallurgical. Society of AIME, p.551-570, 1981.

EFFECTS OF INTERCRITICAL TREATMENT ON THE FRACTURE TOUGHNESS AND FRACTURE MECHANISMS OF A API 5L X65 STEEL

ABSTRACT

Nowadays, there is a very important effort in terms of research in low carbon steels to obtain high levels of fracture toughness associated to high levels of strenght. The API 5L X65 steel, Nb-Ti-V microalloyed, has been utilized in severe aplications, and there is a big necessity of optimization its mechanical properties, mainly the fracture toughness. The purpose of this paper is to study the effect of some microstructure of a API 5L X65 steel, from intercritical thermal treatment with different cooling rate, on the strenght, fracture toughness and fracture mechanism. It was observed that the multi-phase microstructure ferrite-perlite-bainite, from ar cooling and tempered at 623 K, presented the best combination in terms of strength - $\sigma_t = 511$ MPa - and fracture toughness - $\delta_m = 0,57$ mm - and rupture by dimples. On the other hand, the microstructure dual-phase ferrite-martensite, from water cooling, presented high levels of strength - $\sigma_t = 971$ MPa - and low levels of fracture toughness - $\delta_m = 0,06$ mm - and fracture mechanism of dimples with the presence of quasiclivage facets.

Key-Words: Dual-phase steel; Fracture toughness; Fracture mechanism.