LAMINAÇÃO DE CHAPAS DE PISO NA USIMINAS (1)

Ildeo Fantini (2)
José Erasmo A. Pereira (3)

RESUMC

Apresenta-se os resultados das experiências levadas a efeito na USIMI-NAS na preparação de cilindros e laminação de chapa de piso (Chapa Kadrez), a partir de junho de 1974.

Analisa-se ainda a programação de laminação, a padronização na USIMINAS, con sumo de cilindros de trabalho e aspectos qualitativos do material atualmente exportado.

- (1) Contribuição ao Simpósio de Laminação (CCLAM) da ABM, Guarujá, SP. de 18 a 00 de outubro de 1978.
- (2) Engenheiro de Minas e Metalurgia, Sócio da ABM, Chefe da Divisão de Laminação de Tiras a Quente da USIMINAS.
- (3) Engenheiro Mecânico, Sócio da ABM, Assistente da Divisão de Laminação de Tiras a Quento da USIMINAS.

1 - INTRODUÇÃO

Em 1974 surgiu a possibilidade de se laminar chapa de piso na linha de tiras a quente com o objetivo de atender o consumo na própria usina em virtude das expansões previstas. Até então este material era adquirido no mercado interno e externo com grandes dificuldades ocasionando eventualmente a necessidade de aquisição de chapas de piso estampadas, onerando o custo das linhas em expansão.

Deve-se salientar que a produção deste material estaria em acordo com a política da empresa em pesquisar e desenvolver novos produtos além de oferecer ao mercado nacional um material de difícil aquisição na época.

2 - HISTÓRICO DA PREPARAÇÃO DE CILINDROS

Os esclarecimentos hásicos sobre a técnica de laminação de chapas de piso em tiras a quente já eram conhecidos e dependiam exclusivamente da preparação de cilindros para esta finalidade.

Após estudos preliminares verificou-se que seria necessário adquirir um equipamento semelhante a um torno, com divisores, que permitisse a execução de entalhes na superfície do cilindro obedecendo a mesma profundidade e distância além de fazer a coincidência em função do diâmetro do cilindro.

Um equipamento exclusivamente para esta finalidade teria um preço equivalente a uma retífica de médio porte, para um índice de funcionamento extremamente baixo.

Em vista disto decidiu-se pela compra de um dispositivo adicional para a futura retifica que atenderia o novo laminador de chapas grossas de 160" previsto para o ano de 1976. Entretanto era uma solução a longo prazo e dado a urgência de fabricação de chapas de piso para o atendimento às

expansões da empresa, partiu-se, em 1974, para a preparação de cilindros com um desenho julgado possível na época, que consistia apenas em furar os cilim dros. Com o diâmetro do cilindro escolhido desenvolveu-se sua superfície e, em um papel apropriado, em escala 1:1, executou-se a distribuição unifor me dos furos. Em seguida, envolveu-se o cilindro com este desenho, fixou-o e puncionou-se o centro dos furos.

A furação posterior foi executada com uma pequena mandrilhadora portátil, 'fixada ao cilindro por meio de corrente, sendo que cada fixação permitia executar quatro furos em linha.

O tempo gasto para preparar este primeiro cilindro para chapa de piso foi de l semana e preporcionou, em junho/74, a primeira laminação experimental. Com o êxito da experiência partiu-se para as tentativas de agiliza - ção do tempo de preparação dos cilindros. A melhoria encontrada foi o aproveitamento do barramento de um torno usado, fixado em uma base, no qual adaptou-se uma furadeira no carrinho. Na mesma base fixou-se dois suportes para a sustentação do cilindro montado em seus próprios mancais.

Este procedimento acarretou uma sensível redução no tempo de preparação, de uma semana para 80 horas.

Esta situação permaneceu até a entrada da nova retífica citada ante - riormente que com o dispositivo apropriado reduziu o tempo de preparação de 80 para 30 horas e permitiu a adoção de um novo tipo de chapa de piso de características substancialmente melhores, tanto em termos de laminação quanto de aprovação pelo mercado consumidor.

3 - EXPERIÊNCIAS EXECUTADAS

Este produto foi desenvolvido através de várias etapas sendo sempre a seguinte fruto de análise e conclusões da anterior até se chegar ao atual 'estágio.

Apresentamos então uma descrição suscinta das diversas experiências e

inovações introduzidas.

3.1) - 1ª Experiência - junho/74 (10 placas)

a) Cilindros

O cilindro furado era de ago, paralelo, com dureza da orden de 50 Shore colocado na F-4 superior. O seu par, de FoFo diâmetro ± 4,0 mm menor, coroamento de + 0,10 mm para larguras de 1000 a 1250 mm e + 0,15 mm para larguras abairo de ' 1000 mm.

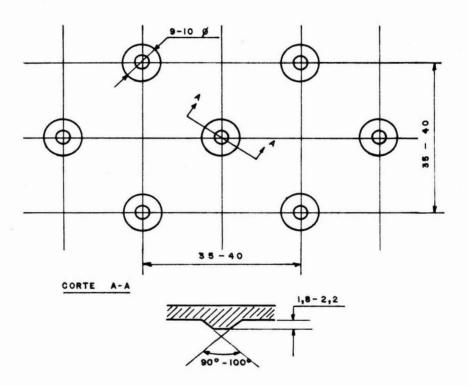


Fig. 1 - Detalhe do relevo da chapa de piso

b) Programação

A espessura da bobina deveria ser de 3,0 a 4,0 mm e a lar - gura máxima de 1250 mm, aço SAE 1008 ~ 1009.

As dimensões da placa seriam: espessura de 130 a 150 e lar gura de 750 a 1250.

A abertura da chance seria feita com 30 placas de material qualquer seguidas de 10 placas de mesma largura do material da experiência e espessura de 2,3 mm. Após a chapa de piso o material seguinte não poderia ser destinado ao TF em virtude da possibilidade de incrustração de carepa no BUR da F4.

c) Operação

A temperatura de entrada deveria ser de 1100°C. As cadei - ras deveriam ser ajustadas durante a laminação das 10 pla - cas que antecederiam às da experiência de modo a obter-se ' 5.000 A e 4,0 mm de espessura na F4. Em seguida trocariam-se es cilindros da F4, ajustande-se a F5 e F6 com 5mm a ' mais e velocidade iguais à da F4. Sistema de resfriamento' des cilindros normal. A temperatura de bobinamento deveria ser de 450°C e a abertura dos pinch-rolls 1 mm a mais que a espessura da tira.

Ajuste do Trem Acabador:

			3	4	5	6
Jelo, n	1370	720	650	130	3000	3000
Velocidade	180	280	430	650	650	650
Amperagem	1300	1800	1800	3400	-	-

d) Conclusões

A experiência transcorreu sem incidentes, apresentando bons resultados no que se refere à laminação. Porém, o aspecto das partes estampadas não ficou bom devido à baixa amperagem na F4.

3.2) - 2ª Experiência - junho/74 (18 placas)

a) Cilindros

A única alteração na preparação dos cilindros foi passar o ângulo do furo de 90° para 100°, visando melhorar o aspecto dos relevos.

b) Programação

Foram programadas 18 placas para chapa de piso com carbono' menor ou igual a 15, não havendo necessidade de programar ' placas para ajuste do trom. As dimensões de produto esta - vam assim distribuidas:

10 placas para 6,35 x 1035

2 placas para 7,94 x 1000

2 placas para 9,53 x 985

4 places para 9,50 x 950

Este material deveria ser programado na chance que antece - desse a uma parada programada para manutenção ou a uma programação para chapas grossas.

c) Cperajão

Durante a laminação das últimas placas que antecederam às de pise precureu-se aproximar as regulagens das 4 cadeiras do que foi obtido na la experiência, levando-se em considera - ão que a espessura visada era 6,35.

Armontou-so a tolerância das guardas da F5 e F6 de +80 para +100 e o resfriamento da F4 permaneceu normal com pressão de C Mg/cm2.

Ajustou-se a F5 e F6 com 800 e 900 FPM, respectivamente, e selsyns ignais a 5000.

Ajuste do Trem Acabador:

	1	2	3	4	
Selsyn	1930	1160	920	450	
Velocidade	200	290	380	600	6,35
Amperagem	2000	1600	1000	4400	
Selsyn	2140	1360	1120	650	
Velocidade	230	300	390	600	7,94
Amperagem	1800	1400	1000	4000	
Selsyn	2530	1740	1500	800	
Velocidade	140	230	270	460	9,50
Amperagem	1000	1000	1000	4200	

d) Conclusões

A experiência transcorreu sem problemas. As partes estam padas melhoraram o aspecto quando a amperagem na F4 atingiu
4400 A porém o resultado ainda não foi satisfatório, provavelmente devido ao excesso de água do resfriamento da F4 que
impedia a perfeita estampagem do relevo na tira. Em vista'
disso propôs-se a utilização do cilindro furado na posição'
inferior além do reduzir a água do resfriamento da F4.

3.3) - 3ª Experiência

a) Cilindros

Para esta fase a alteração foi a utilização do cilindro furado na posição inferior visando melhorar o aspecto do relevo e evitar o acúmulo de água sobre a tira. O cilindro continuava sendo de aço com diâmetro 3,5 a 5 mm maior que o seu par.

b) Programação

Foi adotada a mesma sistemática das experiências anteriores.

c) Cperação

Ajustou-se o trem acabador de modo a obter-se uma amperagem' na F4 em torno de 4400A. Durante a laminação foi-se reduzin do a água de resfriemento até a eliminação total quando obteve-se a melhor estampagem do relevo e a melhor forma da tira

d) Conclusões

Com as alterações efetuadas obteve-se a melhor forma de tira até então produzidac. Esta melhoria foi em decorrência da eliminação da água de resfriamento e da colocação do cilin - dre na posição inferior e que possibilitou a redução da car-

Porém, durante o corte das bobinas na linha de acabamento de tiras a quente, surgiu um fato que forçaria a volta do cilindro furado para a posição superior. Este fato foi o alto indico de ruido durante o corte provocado pela passagem do alto releve sobre as mesas.

In vista disso, programou-se outra experiência.

رَينَ) - 4º كَتِوادَاوُورَادَ

a) Cilindro

A imier alteração efetuada foi a volta do cilindro furado para a posição superior na F4.

1) Programação

Mesma sistemática das experiências anteriores.

c) Operação

Alterou-se o resfriamento da F4 do seguinte modo:

Fechou-se completamente a água do resfriamento de entrada e a de saída ficou normal. Isto porque a água de entrada esta va prejudicando a estampagem do relevo devido a pressão do 'vapor que se formava durante a laminação entre os furos do cilindro e a tira.

d) Conclusões

Com esta fase chegou-se à padronização da operação de lamina ção de chapa de piso seguindo os seguintes critérios:

- C cilindro furado, de aço, trabalharia na posição superior com o diâmetro de 3,5 a 5 mm maior que o seu par;
- Rosfriamente de entrada da F4 completamente fechado;
- Chances para chapa de piso seriam programadas no final da roll-chance dos cilindros de encosto do trem acabador;
- Ajuste do trem de modo a se obter 4400 A na F4;
- Coloccu-se resfriamento no BUR superior da F4.

4 - SITUAÇÃO ATUAL

Desde as primeiras experiências realizadas sentiu-se a necessidade de alterar o formato de releve devido à forma da tira estar sendo prejudicada ' pela distribuição de carga no trem. Esta distribuição de carga era necessária para a perfeita estampagem de releve na tira em virtude da pressão do va per formado entre o cilindro e a tira prejudicar e completo proenchimento do furo. Porém esta necessidade não poderia ser satisfeita na época devido a inexistência de equipamentos que possibilitassem a preparação de um cilindro com entalhes que evitassem a retenção de água durante a estampagem do relevo na tira.

Com a aquisição da retifica para a nova laminação de chapas grossas tormou-se possível a preparação de cilindros com entalhes adequados ao escoa mento da áqua no momento de estampagem do relevo.

Passou-se a adotar então o seguinte desenho: (Usando-se fresas com 125 e 165 mm de diâmetro)

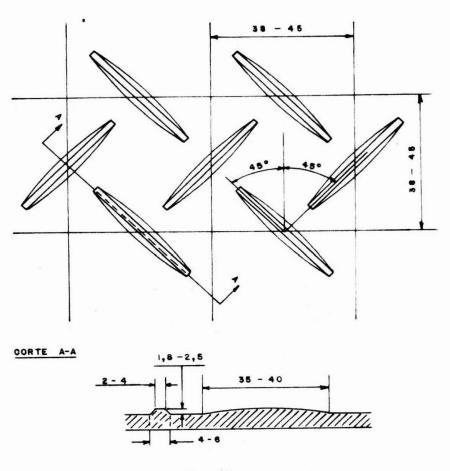


Fig. 2

Após a laminação experimental da primeira chance com o novo formato com cluiu-se o seguinte:

- C aspecto do relevo na tira ficou excelente;
- A forma do material laminado melhorou substancialmente;
- Permitiu-se distribuir melhor a carga de laminação sem comprometer o aspecto do relevo melhorando ainda mais a planicidade da tira;
- Permitiu-se aumentar a roll-chance dos cilindros usando o resfris mento normal em virtude da pouca influência que este fator exerce ' na estampagem do novo relevo.

5 - PROGRAMAÇÃO DA LAMINAÇÃO DE CHAPA DE PISO

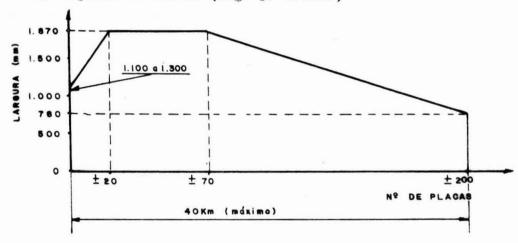
a) Dimensões da tira

Espessura: 3,0 ≤ e ≤ 10,5 mm

Largura: 760 ≤ L ≤ 1870 mm

b) Quilometragem máxima:

40 Km


c) Número máximo de placas de mesma largura:

50 placas

- d) Restrições referentes à placa:

 Peso máximo de placa/unidade de largura = 9,8 t/m

 Carbono equivalente = 0,33%
- e) Esquema da chance (Fig. 3. abaixo)

6 - PADRONIZAÇÃO DE PRODUTO

Adotou-se a nomenclatura de "USIPISC" e as dimensões foram padroniza - das conforme quadro abaixo:

	DIME	nsões.	
PRODUTO	ESPESSURA	LAR MÍNIMA	G U R A MÁXIMA
USIPISO -	3,0 - E - 4,0	760	1200
	4,0 - E = 5,0		1300
	5,0 - E = 6,0		1500
	6.0 - E = 7.0		1600
	7.0 - E = 9.60		1870
	9,60 - E = 10,50		1230

7 - CONSUMO DE CILINDROS

Os cilindres de trabalho con entalhes, para a laminação de chapas de piso, recomendados por fabricantes, são os de aço usados nas primeiras cadei rao de um laminador de tiras a quente, com durezas na faixa de 45 a 55 Sho - re C.

A composição química típica desses cilindros varia conforme o quadro 'alaixo:

С	Si	Mn	Ni	Cr	Мо
1,2 ~ 1,8	0,3~0,5	0,7~1,0	0,2~0,4	0,9~1,2	0,3~0,5

Os defeitos mais comuns são as trincas e esfoliamentos (spalling), ocasionados pela alta carga de laminação requerida para preenchimento completo dos entalhes e as trincas nas bordas dos entalhes provocados pela alta pressão de vapor formado.

Os resultados obtidos para os cilindros com mais de duas utilizações ' são representados no quadro seguinte:

CILIN DROS	Ø INICIAL	Ø FINAL	RETÍ - FICA	UTILI-	TONELA- GEM LA- MINADA	T /VEZ	T/mm	OBSERVAÇÕES
1	661,65	654,50	7 ,1 5	4	222,75	55,68	31,15	Usado nas experiências ini- ciais a partir de 29/06/74
2	675 , 25	660,13	15,12	5	2.865,75	573 ,1 5	189,53	
3	678,61	656,29	22,32	4	2.498,69	624,67	111,94	Houve perdade + ômm na pri- meira utiliza- ção - Trinca.
4	677 , 95	663,30	14,65	6	2.487,92	414,65	169,82	3
5	692 , 46	670,46	22,00	5	2.427,89	485 , 57	110,35	Teste com no- vo formato iniciado em 23/07/76.
6	668,17	660,97		3	1.825,65	608,55	_	Ainda não foi retificado a- pos 3º utili- zação.
7	671,43	662,82	8,61	2	1.200,01	601,00	139,60	Cilindro cen- trifugado.
8	679,05	667,46	11,59	3	1.383,9	461 , 31	119,40	
9	669,40	661,53	7,87	3	1.227,43	409,13	155,96	Utilizado duas vezes sem re- tificar.

Conforme pode ser observado no quadro, os cilindros 2, 4 e 9 obtiveram os melhores resultados. Isto foi consequência da não eliminação total dos '

entalhes usados que foram refeitos na mesma posição. Mesmo no caso do cilime dro nº 3 os entalhes foram repetidos na mesma posição e o resultado seria outro, não fosse a perda por trinca.

Para os cilindros 5, 6, 7 e 8 os entalhes foram totalmente eliminados após cada utilização. O cilindro 7 foi incluido no quadro com apenas duas utilizações porque é de aço centrifugado.

8 - ASPECTOS QUALITATIVOS

O quadro abaixo mostra os rendimentos de inspeção e corte obtidos em chapa de piso, tanto para bobina a quente quanto para chapa fina a quente nos meses de abril a agosto de 1978.

**************************************	RENDIMENTO	DE INSPEÇÃO	RENDIMENTO	PRINCIPAIS RECUSAS		
MESES	BQ	CIF6	DE CORTE CFQ	BQ	CFQ	
ABRIL	98,3%	99,5 %	97,7 %	BL= 1,2%	-	
MAIC	96,8 %	96,0 %	92,9 %	XE= 0,95% EB= 0,60%	CI= 0,9% EV= 0,7%	
JUNHO	97,4%	-	_	DC= 2,3%	-	
JULHO	79,1 %	79,0 %	93,0 %	MC= 13,5% FE= 2,8%	MC= 12, % FE= 2,1%	
AGÔSTO	95,7 %	97,0%	93,4 %	FE= 1,4% BL= 1,0%	CI= 1,6%	

BL = Bolsa

EV = Encurvamento

FE = Falta de espessura

EB = Espiralamento

XE = Excesso de espessura

DO = Dobra lateral

MC = Marca de cilindros

Os baixos rendimentos de inspeção verificados no mês de julho re-

ferem-se à recusa por marca de cilindre em material destinado à exportação. Este defeito, originado na laminação, não foi detetado imediatamente em virtude da espessura da tira, 9,53mm, somente permitir a inspeção na saída da bobinadeira, na volta externa.

9 - CONSIDERAÇÕES FINAIS

- Em junho de 1977 partiu-se para a produção de chapas de piso no Lami minador de Chapas Grossas de 120". Isto foi possivel porque o accessório da retifica de 160 t permite usinar cilindros de grandes diâmetros.

Já foram laminadas 1.221 t, com o mesmo desenho da Fig. 2, em espessuras variando de 35 a 70 mm e larguras de 1000 a 2.500 mm, para consumo na 'própria Usina.

Esta laminação é realizada desbastando a placa no laminador duo reversível e dando o passe final no quadruo reversível, com redução variando de ' 30 a 40%, obtendo-se ótimos resultados.

-Pelos resultados alcançados, tanto em termos de experiência operacio - nal quanto de qualidade, pode-se concluir que a USIMINAS está apta a ofere - cer ao mercado interno e externo un produto que satisfaça todas as suas exigências.

