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Abstract 
Intuitive decoupled notions of Sendzimir mill shape control actuator behavior do not 
properly depict the highly coupled, non-linear response characteristics.  If applied to 
closed-loop shape controls, these improper notions lead to poor shape control 
performance and rapid infringement on actuator control limits.  Accurate, fully 
coupled, non-linear internal models of the true actuator spatial sensitivity functions 
must be applied to multivariable shape controls for stable behavior to be realized.  
The mill’s shape control actuation capabilities envelope must be considered when 
assessing the mill’s ability to accommodate various classes of inbound shape 
distortions and stress distribution targets.  This paper examines methods used to 
obtain accurate representations of the actual sensitivity functions and their mapping 
into the spatial context of the multivariable controls.  First principle models and 
simulation studies are correlated with on-line shape control reactions to develop fully 
coupled control models that are directly applicable to singular value decomposition 
techniques.  Real-world field studies of these modeling efforts are presented.  The 
resulting models are embedded in singular value decomposition frameworks to 
create usable closed-loop controls.   
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1 INTRODUCTION 
 
Sendzimir mills (20-high cluster arrangements) have complex, highly coupled, non-
linear strip shape1 actuation characteristics.  A common actuation configuration is 
shown in Figure 1 and includes As-U-Roll (AUR) top crown eccentrics (B&C) and the 
tapered lateral 1st intermediate rolls.   

 
Figure 1. Illustration of the Sendzimir mill and its shape control actuators, along with the general form 
and structure of its characterization and modeling.   
 
The Sendzimir mill adjusts the strip’s shape by coordinating this set of actuators to 
provide localized corrective changes in the transverse pressure distribution (across 
the roll gap) that modify the localized strip elongations, thereby altering the stress 
patterns of the rolled strip.  In changing the transverse pressure distribution, the roll 
cluster mechanically reacts and deforms, influencing other regions of the roll bite.  
Each actuator induces a unique stress adjustment pattern on the strip’s transverse 
stress distribution that can be characterized as a continuous spatial sensitivity 
function.  From the ensuing roll cluster deformations, the geometry of the pattern is 
not localized to the vicinity of the actuator, but spans the strip width.  This creates a 
highly coupled and potentially compromising interaction with the activities of the other 
actuators.  The extent of the spatial frequencies of the sensitivity function is limited by 
the mechanical interactions within the roll cluster (e.g., roll bending, flattening, 
multiple contact points, etc.).  To further complicate matters, these patterns change 
with strip width, yield stress, tension, incoming thickness, etc.   
 

                                                 
1  The terms “shape” and “flatness” are often used in an arbitrary or interchangeable manner, and there are no 

universally accepted definitions.  For the purposes of this discussion, the following terms will adhere: 
Shape – The transverse distribution of differential elongation induced stress within the material with respect 
to the material’s average / nominal applied stress.  This terminology implies a tensioned condition and is 
inherently bipolar, accounting for regions looser / longer and tighter / shorter than the nominal strip condition. 
Flatness – The geometric departure of the strip from a reference plane.  These distortions are associated 
with internal differential elongation based stress patterns that exceed the material’s buckling threshold, and 
obtain a lower potential stress equilibrium by manifesting out of the reference plane.   
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Multivariable control techniques are uniquely suited for accommodating this form of 
non-linear, highly coupled situation.[1-5]  The variability of the actuators’ spatial 
sensitivity functions requires the controller to be either very dexterous or 
exceptionally robust.  Robust methods[4,5] based on internal model principles 
encompass both requirements, in that, they are inherently robust while also 
employing an internal model (based on the spatial sensitivity functions) that can be 
adjusted to the situation at hand.   
The key is to obtain an accurate model that spans not only the actuators’ spatial 
sensitivity characteristics, but also properly describes variations in strip width, yield 
stress, tension, incoming thickness, etc.  Beyond this, the model must be amenable 
to the form and format required by the chosen multivariable control technique.  Figure 
1 provides some insight into the nature of the mill’s characterizing descriptions 
stemming from the true continuous spatial functions of strip stress and actuator 
sensitivity, to the discrete sampling grid of the available measurements.   
An important factor in model development is realizing that the spatial frequency 
content of each actuator’s sensitivity function is dominated by lower order 
components.  The mechanical interactions within the roll cluster do not transmit 
localized high frequency spatial content to the roll bite.  This allows each actuator to 
be modeled by either piece-wise continuous vectoral descriptions or a collection of 
low order polynomials.   
The remainder of this paper discusses the combination of modeling, simulation and 
system identification methods used to obtain qualified models of shape control 
actuation behavior that are properly organized and suited for multivariable control 
techniques.  The mill’s SCCE is determined using a constrained Monte-Carlo 
simulation method.   
 
2  CHARACTERIZING SENDZIMIR SHAPE CONTROL ACTUATION BEHAVIOR 
 
As noted previously, each Sendzimir mill shape control actuator imparts a unique 
transverse stress adjustment distribution that can be characterized by a continuous 
spatial sensitivity function.  Figure 2 illustrates the spatial sensitivity functions of the 
first four (4) AUR crown eccentric actuators of a seven (7) crown ZR23-26CN on 
600mm wide strip2.  It should be clear from Figure 2 that the actuated roll cluster 
deformation induced changes in the strip shape are not localized to the vicinity of the 
actuator, but span the strip’s width.  This creates a highly coupled and potentially 
compromising interaction with the activities of the other actuators.   

                                                 
2  The consideration of only the first four (4) AUR crown eccentrics is based on an assumption of symmetry about 

4C , where 
1C ,

2C ,
3C  share folded symmetry with 

7C ,
6C ,

5C , respectively. 
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Figure 2. Illustration of the seven (7) crown ZR23-26CN Sendzimir mill’s vertical roll cluster, crown 
actuation and resulting shape change responses for: a) Crown 1, b) Crown 2, c) Crown 3 and d) 
Crown 4. Analytic details of these figure components are provided in the following sections.  
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3 MULTIVARIABLE CONTROL MODEL FORM AND FORMAT 
 
The foundations of many multivariable shape control methods, applicable to 
Sendzimir mill configurations,[1-3] are based on decompositions of the potentially 
complex transverse strip stress and actuation patterns (described by an internal 
model derived from the spatial sensitivity functions) into fundamental polynomic 
components (e.g., 1st, 2nd,… order curvatures).  The components are typically derived 
from orthogonal polynomials that lead to defining a polynomial basis from which 
operations are carried out on these fundamental characteristics (abstracted from the 
mill and strip).  Strip shape and actuation sensitivities are therefore decomposed into 
vectors of weighted polynomial order contributions.  The determination of the 
appropriate control actions are carried out in this lower order fundamental curvature 
space, then transformed into the mill actuation basis for direct application to the mill.   
The key is to organize the internal model and its development to not only fit the 
accepted control format, but to also provide a direct means to vary the model to 
accommodate changes in strip width, yield stress, tension, incoming thickness, etc.   
 
3.1  Actuated Shape Representation 
 
The exit strip shape (defined previously) is represented by the continuous analytic 
function, � �S y , across the strip width, W, along the mill’s transverse axis, 

> @�y -W/2, +W/2 .  The exit strip shape is composed of the entry strip shape, � �0S y , 

and the changes imparted by the mill’s shape adjusting actuation, � �ǻS y .   

� � � � � �0S y  = S y  + ǻS y  (1) 

Our modeling efforts will consider piece-wise continuous approximations, � �ˆǻS yD , of 

� �ǻS y , evaluated at a set of uniformly distributed discrete points that span the 

normalized strip width over the interval > @-1,+1 : 

^ ` ^ `L L0 1 N-1 0 1 Q-1
M M M M S S S Sy  = y ,y , ,y     and    y  = y ,y , ,y    with  Q > N (2) 

where N is the number of mill shape actuators and Q is the number of active 
shapemeter measurement zones spanning the given strip width.  Uniform distribution 
of these sets is provided by: 

Lk k-1
Į Į

2y  = y  +     for k = 1,2, ,ȕ-2
ȕ

 (3) 

having boundary conditions: 
0 ȕ-1
Į Įy  = -1    and    y  = +1 (4) 

where � � � �Į,ȕ  = M,N  or � �S,Q , respectively.  The resulting sampled data / piece-
wise approximation of the actuated changes in strip shape is therefore given by: 

� � � � � � � � � �ª º
¬ ¼L

T0 1 ȕ-1
Į Į Į Į

ˆ ˆ ˆ ˆǻS y  ~ ǻS y  = ǻS y ,ǻS y , ,ǻS y  (5) 

The spatial sensitivity functions (required in model development) are derived from a 
combination of both modeled and on-line shapemeter measured depictions of 

� �S
ˆǻS y  transformed by polynomial fitting to the reduced spatial frequency (and 

model ready) � �M
ˆǻS y . 

 

860



3.2  Mill Actuator Representation 
 
The mill’s shape actuators are composed of CN  AUR crown eccentrics ( CN 7 in the 
case study of Figure 2) and two (2) 1st IMR tapered lateral rolls, whose operating 
states are represented by the CN = N + 2  elements of the vector, NA� ¡ : 

ª º ª º ª º
« » « » « »
« » « » « »
« » « » « »
« » « » « »
« » « » « »
« » « » « »
« » « » « »
« » « » « »¬ ¼¬ ¼ ¬ ¼

@M M M

C C

st
0 T

1 1

2 2

N N C
st

N-1 B

a L Top / Front 1  IMR
a C AUR Crown #1
a C AUR Crown #2A =  =   

a C AUR Crown #N
Bottom / Rear 1  IMRa L

 (6) 

The range of the elements of A , are normalized over the interval > @-1,+1 . 
 
3.3  Mill Internal Model Representation 
 
The mill’s internal model (for closed-loop control applications) is represented by an 
NxN square static matrix, � ¡ NxN

MĜ , that transforms the mill shape actuator activity, 

A , to � �M
ˆǻS y , the approximated mill induced exit strip shape reactions, � �ǻS y , by: 

� � � � � � � �0 M M
ˆ ˆǻS y  = S y  - S y ǻS y  = G A:  

� �
� �

� �

� � � � � � � �

ª º
ª º « »
« » « »ª º
« » « »« »
« » « »« »
« » « »« »
« » « »¬ ¼
« » « »¬ ¼

« »¬ ¼

L MM C

C

T
0
M 1
1

2M
0 M 1 M N M N-1 M

N-1 N
M

B

L
ˆǻS y C
ˆ CǻS y

=  =  G y   G y     G y   G y

CˆǻS y
L

 (7) 

where MĜ  is valid about a given operating point with the assumption that the strip is 
centered along the mill’s transverse rolling axis.  From Eq(7), MĜ  is organized as a 
collection of column vectors: 

� � ª º¬ ¼L L
T0 1 k N-1

 i M i i i iG y  = g g g g  (8) 

where � � i MG y  is the approximation of the spatial sensitivity function that maps the 

activity of the ith actuator, ia , to changes in the strip shape, � �M
ˆǻS y , over My , having 

elements:   
� � � � � �

k k
M M

k
Mk

i
W Wi i iy = y y = y
2 2

ˆǻS y S y ǻS y
g  =    

ǻa a ǻa
w
w

: :  (9) 

To preserve the zero mean definition of shape [1] and to be non-interactive with the 
gauge control system, the elements of MĜ  must adhere to: 

� �¦ ¦
N-1 N-1

k k
i i

i=0 k=0
g  = 0   k    and    g  = 0   i  (10) 
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3.4   Closed-Loop Control Organization 
 
It is important to coordinate the model development with the multivariable control 
application’s intents and needs.[1-5]  In the most simplistic case, the control law design 
involves direct model inversion, 1

MĜ � .  Unfortunately, MĜ  is not necessarily of full 
rank and therefore alternative methods must be employed. 
The smooth spatial curvatures of the sensitivity functions allows lower order 
parameterization of the shape profiles by means of polynomial transformations [6], 
which also has the benefit of reducing the resulting controller’s complexity (i.e., fewer 
control loops to close).  The approach taken here, is to form the parameterization on 
a set of orthogonal polynomials, � � � � � �^ `1 2 VP(y) = P y ,P y , ,P yL , that develop a set of 
orthonormal basis functions associated with the fundamental curvature components, 

� � i
ĳ$ t , of the measured strip shape, the shape target and mill actuator influences, 

where ĳ = S, T, M , respectively and i = 1,2, ,VL . 
From the constraints of Eq(10) we can see that 0th order behavior is excluded.  
Based on experimental and simulation results along with certain physical 
considerations, up to a 4th order polynomic behavior will be employed (V = 4).  Using 
Chebyshev orthogonal polynomials, P(y)  is given by: 

 
Figure 3. Chebyshev orthogonal polynomials used in fundamental curvature component 
parameterization. 
 
As an example, consider the parameterization of the time evolution of mill induced 
strip shape changes, � �k

M
ˆǻS y ,t , given by: 

� � � � � �
4

 i
M S i M

i=1

ˆǻS y ,t   $ t  P y¦:  (12a) 

� � � � � �

� � � � � � � �
� � � � � � � �

� � � � � � � �

� �
� �
� �
� �

ª º ª º« » « »« » « »« » « »« » « »« » « »¬ ¼« »¬ ¼

:
M M M M

0 0 0 0
11 M 2 M 3 M 4 M
S

1 1 1 1 2
1 M 2 M 3 M 4 M S

M M S 3
S
4

N-1 N-1 N-1 N-1 S
1 M 2 M 3 M 4 M

P y P y P y P y $ t
P y P y P y P y $ tˆǻS y ,t   P y  $ t  = 

$ t
$ tP y P y P y P y

(12b) 

with the extension to higher spatial frequency shapemeter measurements by � �SP y .  
The terminology is reduced by: 

� � � �M 0 SP = P y     and    P  = P y  (13) 
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It follows that � � � �T T

0 0 VP P = P P  = I  for orthogonal polynomials, therefore the 
polynomial decomposition of the fundamental curvature components is given by: 

� � � � � � � � � � � �
-1T T T

S M M
ˆ ˆ$ t  = P P P ǻS y ,t  = P ǻS y ,tª º

« »¬ ¼
 (14) 

Using this parameterizing / decomposing transformation, it is possible to formulate 
the control problem in terms of the fundamental curvature components.  Here, the 
problem is posed as one of causing the curvature components of the measured exit 
strip shape, � �S$ t , to equal the curvatures of the shape target reference, � �T$ t , in 

terms of the curvatures of the modeled mill, MĜ , $Ĝ , which corresponds to the 
curvatures of the shape error, � �E$ t , being driven to zero.  The controller 
arrangement is given by: 

� �
� �

� �
� � � � � �

1
S

T

S 0 S S S S
4
S

$ t
Shapemeter

$ t  =  = P S y ,t       S y ,t    
Measurements

$ t

ª º
« » o« »
« »¬ ¼

M @  (15a) 

� � � � � �
T

T 0 T S$ t  = P S y ,t  (15b) 

� � � � � �E T S$ t  = $ t  - $ t  (15c) 

� �T

$ M
ˆ ˆG  = P G  P  (15d) 

where VxV
$Ĝ � ¡  is a full rank VxV matrix that transforms the curvature components 

of the mill actuators spatial sensitivity functions, � �A$ t , to the curvatures of the 

induced strip shape changes � �ǻS$ t .  $Ĝ  is basically a spatial filter that reduces 
complexities of the actual mill to its most fundamental curvature components.  The 

full rank of $Ĝ  allows the controller to be based on � � 1

$Ĝ
�

 and thereby overcomes 

the potential rank limitations of MĜ .  The controller shown in Figure 4 and is given by: 

� � 1

C $
ˆG  = P G

�
 (16) 

� � � � � � � � � � � �
1

A C E A $ E
ˆA t  = P $ t  = G $ t         $ t  = G $ t

�
o  (17) 

The most important outcome of this controller organization is that the required 
modeling of the mill actuator’s spatial sensitivity functions (for developing MĜ ) is 
directly tied to the order of curvature employed in P  and 0P  (i.e., V = 4).  This will 

guide the manner in which MĜ  derived.   
 
3.5  Model Adaption  
 
It is necessary for the internal model to accommodate changes in strip width, yield 
stress, tension, incoming thickness, etc., which can have a dramatic effect on the 
nature of the spatial sensitivity functions, � �i MG y .  Figure 5 shows how these 
changes can impact the spatial responses. 
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Figure 4. Block diagram illustration of the overall closed-loop control system configuration. 

 

 
(a) (b) 

 
(c) (d) 

Figure 5. Illustration of the variations in Crown #3’s spatial sensitivity as functions of : a) Strip Width, 
b) Yield Strength, c) Exit Thickness, d) Entry Tension.  
 
To accommodate changes in the spatial sensitivity functions, � �i MG y , the elements 
of Eq(8, 9) are extended by the multi-dimensional surface functions: 

� �k
M S X Ek

i
i

ˆǻS y ,ǻW,ǻY ,ǻG ,ǻT
g  = 

ǻa
 (18) 
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where � �k
M S X E

ˆǻS y ,ǻW,ǻY ,ǻG ,ǻT  is a multivariable polynomial surface mapping of 

the variations at each, k
My  (derived from the variations shown in Figure 5).  At a 

minimum, the k
ig ’s of all � � i MG y ’s in MĜ  are computed prior to the initiation of a 

given pass, however, this can be applied to dynamically adaptive arrangements.  
 
4  RESPONSE DECOMPOSITION AND MODELING DEVELOPMENT 
 
There are many ways to formulate the internal model, MĜ , including the use of first-
principals advanced analytic simulation models of Sendzimir mill behavior,[7,8] system 
identification techniques, and roll bite deformation tests.[9]  The approach taken has 
been to first employ advanced analytic simulations models[7,8] to define the 
“expected” spatial sensitivity characteristics, � �E

i SG y .  These simulated 
characteristics are then refined by comparison with the results of on-line (direct 
shapemeter based) system identification techniques (using probative ia ’s) that 

describe the particular mill’s actual spatial sensitivity function, � �S
i SG y .  The result of 

this refinement is a piecewise continuous representation, � �i SG y , that is of higher 

spatial frequency than � �i MG y  needed to construct the model, MĜ .  A power series 

polynomial, � �iP̂ y  (see Figure 2), is the Least Squares Fit (LSF) of � �i SG y , from 

which � �i MG y  is obtained by evaluation: 

� � � � � �
M

k k
i M i i i My=y

ˆ ˆG y  = P y   g  = P y�  (19) 

where the order of the � �iP̂ y ’s need not exceed that of P , 0P  (i.e., V = 4).  Figure 6 
illustrates this process of model development. 

 
Figure 6. Block diagram of the internal model development process. 

 
5  CONCLUSION AND COMMENTARY 
 
A method used to obtain accurate representations of the actual sensitivity functions 
and their mapping into the spatial context of the multivariable controls has been 
presented.  First principle models and simulation studies are correlated with on-line 
shape control reactions to develop fully coupled control models having the transverse 
spatial resolution of the shapemeter.  High spatial frequency vectoral descriptions of 
the actual actuator’s spatial sensitivity functions are directly obtained the model 

865



results.  Least Squares Fitting of the vectors produce higher order polynomials 
describing the sensitivity functions independent of spatial frequency.  Evaluation of 
these polynomials at the spatial grid of the actuators provides vectoral elements that 
map the actuation space to shape adjustment space.  Combining these elements 
along vectoral lines establishes a matrix representation of this spatial transformation, 
and is directly applicable to multivariable control design and implementation 
techniques.  
The focus of current developmental work involves using these techniques in 
combination with Monte Carlo simulation methods, to develop descriptions of the 
mill’s Shape Correction Capabilities Envelope (SCCE).  The SCCE defines the extent 
of shape correction that the mill can provide at a given situation and instance.  The 
SCCE allows one to determine (in advance) whether the current mill set-up can attain 
a selected target in the presence of an understood incoming material stress 
distribution.  On-line SCCE predictions for target selection and roll cluster set-up are 
currently under test, and providing interesting insight into the mills behavior patterns 
and avenues of performance improvement and optimization.   
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