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Abstract 
The tempering process aims to get the microstructures that lead to service 
mechanical properties and to promote the relaxation of the residual stresses 
generated during quenching. The goal of this work is to predict the effect of 
tempering time and tempering temperature on hardness by means of neural 
networks (NN). Five types of steels, SAE 4140, SAE 4340, SAE 5160, SAE 6150 and 
SAE 52100, were tempered in different conditions. The inputs of the NN were the 
chemical composition, the tempering time and tempering temperature, while 
hardness was the output. The selected temperatures were 100, 150, 200, 250, 300, 
400, 500, 600 and 700ºC. The time on each temperature was 10s, 90s, 900s, 3600s, 
9000s and 86400s. It was tested many architectures, until find the best one that fitted 
the data. To evaluate this NN there were calculated the correlation coefficient          
(R value) and the performance function value. The NN selected was that one with 
lower performance function and the value of R nearest to 1.  
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MODELAGEM DAS CURVAS DE REVENIMENTO DE AÇOS LIGA POR MEIO DE 

REDES NEURAIS 
 
Resumo 
O processo de revenimento visa alcançar microestruturas que resultem em 
propriedades mecânicas utilizáveis e promover o alívio das tensões residuais 
originadas durante a têmpera. O objetivo deste trabalho é predizer o efeito do tempo 
e da temperatura de revenimento na dureza por redes neurais (RN). Cinco tipos de 
aço, SAE 4140, SAE 4340, SAE 5160, SAE 6150 e SAE 52100, foram revenidos em 
diferentes condições. As entradas da rede foram a composição química, o tempo e a 
temperatura de revenimento, enquanto a saída foi a dureza. As temperaturas 
selecionadas foram 100, 150, 200, 250, 300, 400, 500, 600 e 700ºC. O tempo em 
cada temperatura foi de 10s, 90s, 900s, 3600s, 9000s e 86400s. Foram testadas 
diversas arquiteturas até encontrar a que melhor ajustava os dados. Para avaliar a 
rede foram calculados o coeficiente de correlação (valor R) e o valor para a função 
de desempenho. A RN escolhida foi aquela com menor valor para função de 
desempenho e valor de R próximo a 1. 
Palavras-chave: Revenimento; Modelagem; Dureza; Redes neurais. 
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1  INTRODUCTION            
 

During tempering of quenched steels, changes on microstructure are produced 
over a wide range, resulting in corresponding changes in mechanical properties. The 
tempering process is dependent of the relation time-temperature. An inappropriate 
selection of these process parameters affects temper embrittlement, non-optimal 
stress relief, hardness, tensile strength, yield strength and transformation of retained 
austenite.  

This relation has been already reported by Hollomon and Jaffe in 1945,[1] when 
they noticed that the same hardness could be reached by different time-temperature 
histories. In this work they have obtained a relation between hardness (H) and a 
tempering parameter, as follows on Eq.(1): 

 
      f (H)=f [ T ( c + log t)]        (1) 
 

where c is a constant, T is the absolute temperature and t is the time.  
As they had worked only with plain carbon steels, many authors had suggested 

that this model do not fit well all types of steel, a review of the development of the 
tempering parameters development has been reported by Canale, et al.[2] Grange 
and Baughman[3] suggested c=18 for all carbon steels. Nehrenberg[4] used c=20, and 
developed tempering curves for a series of stainless steels. An example of the use of 
neural networks to the same proposal was made by Filetin et al.[5] who worked with 
tool steels. The aim of this work is to calculate hardness for five alloyed steels, 
tempered in different conditions of time and temperature by means of neural 
networks. 

Heat treatment of materials is a fundamental metallurgical process, which 
involves very complex and nonlinear phenomena. In this way, physical models are 
difficult or impossible to obtain. In such cases neural networks seems to be a 
powerful tool. Neural networks can be defined as a general method of regression 
analysis in which a flexible non-linear function is fitted to experimental data.[6] 

 
2 MATERIALS AND METHODS 
 
2.1 Experimental Procedure 
 

The samples were austenitized at 850ºC, and quenched in a mineral oil. Three 
specimens were tempered at each specified time and temperature, and cooled in air. 
The selected temperatures were 100, 150, 200, 250, 300, 400, 500, 600 and 700ºC. 

During tempering process the furnace temperature varied ±10ºC. The time on each 
temperature was 10s, 90s, 900s, 3600s, 9000s and 86400s. It was generated about 
225 different conditions. Table 1 shows the chemical composition of five types of 
steel used in this work. 

 
Table 1. Chemical composition of steels 

Steel %C %Mn %P %S %Si %Ni %Cr %Mo 

SAE 4140 0.41 0.88 0.016 0.018 0.23 - 1.02 0.22 

SAE 4340 0.39 0.75 0.019 0.016 0.26 1.74 0.79 0.26 

SAE 5160 0.62 0.88 0.012 0.018 0.22 - 0.79 - 

SAE 6150 0.51 0.81 0.021 0.014 0.28 - 0.98 - 

SAE 52100 1.02 0.40 0.017 0.014 0.23 - 1.42 - 
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Five hardness measurements were collected using a LECO RT-240 durometer, 
with a load of 150kgf. Figures 1 to 5 show the results obtained for SAE 4140,        
SAE 4340, SAE 5160, SAE 6150 and SAE 52100 steels, respectively.  
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Figure 1. Measured hardness for SAE 4140 steel tempered in different conditions. 
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Figure 2. Measured hardness for SAE 4340 steel tempered in different conditions. 
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Figure 3. Measured hardness for SAE 5160 steel tempered in different conditions. 
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SAE 6150
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Figure 4. Measured hardness for SAE 6150 steel tempered in different conditions. 
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Figure 5. Measured hardness for SAE 52100 steel tempered in different conditions. 

 
2.2 Neural Networks  

 
A feed forward network was built with chemical composition, tempering 

temperature and time on temperature as inputs and hardness as output. The 
activation function was set as a tangent hyperbolic function as shown in Eq. (2) in the 
hidden layers, while a linear function was used for the output layer as shown            
in Eq. (3): 

 

( )∑ += ijiji xwh θtanh          (2) 

 

     ∑ += iji hwy θ          (3) 

 
where xj are the inputs and wij are the weights, which define the neural network. The 
biases θi are treated internally as weights associated with a constant input set to 
unity.  
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To train the neural network was used the MATLAB function trainbr, which 
consists in a modified Levenberg-Marquart training algorithm. Bayesian 
regularization minimizes a linear combination of squared errors and weights. It also 
modifies the linear combination so that at the end of training the resulting network 
has good generalization qualities.[7] 

Many network architectures were tested until to find the best configuration. It was 
verified that a neural network with three hidden layers with four neurons, was that 
one that promoted the best fit for the output layer. The neural network had 10 inputs 
and just the hardness as output. The performance was measured according to the 
sum of squared errors (SSE), given by Eq. (4): 
 

    ∑
=

−=
n

i
iii yywSSE

1

2)ˆ(      (4) 

 
The correlation coefficient is a measure of the correlation (linear dependence) 

between two variables x and y, giving a value between +1 and −1 inclusive. It is 
widely used in the sciences as a measure of the strength of linear dependence 
between two variables. It was developed by Karl Pearson and can be calculated by 
Eq. (5): 
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where x is the mean value of x series and y is the mean value of y series. 

The data set was obtained experimentally as shown on section 2.1, and 
completed with the database used by Grange and Baughman.[3] This set was divided 
between a training set and a test set. The training set was composed of                 
511 conditions and the test set of 57 samples picked out randomly from training set. 
The range, mean and standard deviation of input data are listed on Table 2. 

 
               Table2. Input data 

Input variables Min. Max. Mean Standard deviation 

Temperature [ºC] 99 703 382.7 196.3 

Time [s] 10 86400 20075 33684 

%C 0.39 1.02 0.597 0.232 

%Mn 0.4 0.88 0.739 0.180 

%P 0.012 0.021 0.017 0.003 

%S 0.014 0.018 0.016 0.002 

%Si 0.22 0.28 0.244 0.023 

%Ni 0 1.74 0.361 0.707 

%Cr 0.79 1.42 0.99 0.235 

%Mo 0 0.26 0.0914 0.118 

 
3 RESULTS AND DISCUSSION 

 

After the training section the final error obtained by the modified performance 
function, given by Eq. (4), was equal to 10 HV. Figures 6 and 7 shows the measured 
and calculated hardness obtained for training and test data set respectively. To 
evaluate this neural network there were calculated the correlation coefficient            
(R value), a straight line and the equation obtained for the best linear fit for the data. 
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For the training set the value of R was 0.99 and 0.974 for the test set. These values 
indicate that the selected NN had a good generalization. 

Figure 8 brings a comparison of part of calculated and measured data used to test 
the network. These data correspond to that obtained from section 2.1. It is also 
possible to observe the effect of time and tempering temperature on hardness. 
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Figure 6. Predicted hardness by the neural network versus experimental values for training data set. 
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Figure 7. Predicted hardness by the neural network versus experimental values for test data set. 
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Figure 8. Comparison of measured and calculated data and the effect of time and tempering 
temperature on hardness. 

 
 5 CONCLUSION 
 

As can be verified neural networks are a powerful tool to predict mechanical 
properties of steels. This work was an attempt to model five types of steel, and 
results obtained in here encourage more investigations in this area. It could be 
inserted to this NN other steels enlarging its predictive capacity. The great potential 

4738



of using neural networks is the economic benefits that it can provide for the industry, 
because it can reduce the necessity of expensive experimental investigation of steels 
on its mechanical properties. 
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