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Abstract 
The prediction of productivity represents an important resource in order to anticipate 
losses, increasing the performance of the sinter machine. In this context, a neural 
network model which relates the main operating parameters and the sintering 
productivity was developed. The kind of neural network chosen was multi-layer 
perceptron. The best configuration was obtained with one hidden layer and nine 
neurons, and the correlation coefficient obtained between predicted and actual 
productivity was 0.77. Furthermore, the neural network showed better predictive 
ability than the multiple linear regression technique. The model was applied to Sinter 
Machine#3 at Usiminas - Ipatinga Plant. 
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1 INTRODUCTION 
 
In an industrial operation, measuring results is essential for the proper management 
and economic production process. In the sintering process case, productivity, fuel 
consumption, yield, physical and metallurgical properties of sinter are the major 
indices to be measured and controlled, when the goal is to improve the operating 
results. 
Nowadays, there are numerous process variables controlled by the automation 
system, over there, the frequency of measurement is high. However, the influence of 
each variable in the process is not yet fully known and especially the 
interrelationships between them. This fact complicates the assertive role of the 
technicians, especially when sinter machine high productivity is the goal. 
Thus, a model based in neural networks was developed in this study, linking the main 
operating parameters with the Sinter Machine#3 productivity at Usiminas - Ipatinga 
Plant. Also, results generated by artificial neural network were compared with the 
ones generated by multiple linear regression technique. This was realized to verifying 
what technique provides the best result. If the former technique will provide the best 
results, this one will be used. By the way, the use of this tool is new for the sinter 
plant at Usiminas. 
 
1.1 Artificial Neural Network (ANN) 
 
According to Braga(1) artificial neural network is a form of computing non based on 
rules or programs. The operating system is composed of simple processing units, 
called neurons. The aim of neurons is to calculate mathematical functions. These 
neurons are positioned in one or more layers and they are interconnected by a 
number of connections related to weights. These weights have the aim to balancer 
the input received by each neuron. The ANN tool is an option for the solution of 
problems like classification, categorization, approximation, prediction and 
optimization. 
One type of structure is the Multi-layer Perceptron (MLP) and it is able to solve non-
linearly separable problems. Networks like Perceptron and Adaline can only solve 
linearly separable problems, because they have just one layer. The patterns to be 
sorted should be sufficiently separated from each other, in other words, the 
separation should be such that it is possible to divide the patterns by a hyperplane, 
according to Figure 1. The difference between being linearly separable or not is the 
complexity of the solution.(2) 
 

 

(a)                                                                     (b) 
Figure 1. Examples of relationship: (a) Linearly separable patterns and (b) Non-linearly separable 
patterns. 
 
The MLP structure is comprised by one input layer called input signals, one or more 
hidden layers (hidden neurons) and one output layer. This kind of network structure 
is showed in Figure 2. 
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Figure 2. MLP network structure.(3)

 
In MLP network, one hidden layer is sufficient to approximate a continuous function 
and two hidden layers can approximate any mathematical function.(4) 
The number of neurons is defined empirically. Wong(5) used the following 
formulations: (2n), (n/2), (2n+1), where ‘n’ represents the number of inputs, to 
determine the number of neurons.    
The algorithm used at ANN is a well-defined set of rules for a learning phase. Two 
types will be discussed: Levenberg-Marquardt and Scale Conjugated Gradient that 
are based on optimization models. The former uses learn rate variable and it is 
based on the determination of second derivatives of the squared error in relation the 
weights. This algorithm is considered the fastest method for training feedforward 
backpropagation networks. The latter algorithm is based on informations from the 
second derivative of the cost function.(6) 
 
1.2 Neural Network Applied to Sintering 
 
Artificial neural network may become an indispensable tool for prediction of certain 
processes characteristics. Since the network is well trained and the results are 
satisfactory, the possibility of technical and economic gains is high. 
Caporali et al.(7) used a neural network trained through a reverse propagation 
algorithm to understand the relationship between macro and micro-structural 
characteristics of mixtures of ores and sintering performance. For this purpose, data 
was collected from a pilot sintering. The used variables were described on table 1. 
 
Table 1. Selected variables 

Inputs Outputs 
amount of goethite 

crystal size average 
particles over 1 mm 

particles from 0.149 mm to 1 mm 
silica content in the iron ore mixture 

alumina content in the iron ore mixture 

productivity (t/m2.dia) 
coke-rate (kg/t sínter) 

tumbler index  
RDI. 

 

 
The process variables such as bed height, depression, binary basicity, return rates 
and burnt lime in the mixture were kept constant.  
Caporali et al.(7) concluded that the crystals average size and the amount of goethite 
in the mixture strongly influenced the output variables. 

Inputs 

Hidden layers

Outputs 
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Laitinen and Saxén(8) used operational data to predict the productivity, softening and 
melting index, fuel rate, LTB (Low Temperature Breakdown) and tumbler index. The 
input variables were: binary basicity, particle size range (0.5 mm to 1 mm of sinter 
feed), ratio hematite/magnetite and moisture of the mixture. The particle size range 
and the ratio of hematite/magnetite at the sinter feed were determined by the 
composition of the blending stack. The fuel rate prediction was inconclusive, 
however, were obtained evidence that the increase in particle size fraction lead to an 
increase in fuel rate. Similar behavior was observed with LTB. For the prediction of 
productivity, the particle size fraction 0.5 mm to 1 mm of the sinter feed was found to 
be inversely proportional to productivity. To predict the tumbler index, the basicity 
was found to be the determining factor. 
In this case, the ANN showed that the productivity had an inverse correlation with the 
fraction between 0.5 mm and 1 mm. This situation was expected, since the higher 
sinter feed particle size in this range, decreases the permeability of the bed in the 
sintering, with consequent reduction in productivity. 
In another study, Laitinen and Saxén (9) developed a model to predict the same 
indexes, but adding the return rate. He used a historical equivalent of five years 
production. The following input variables are: basicity; ratio of hematite and 
magnetite; fraction of particles in the range 0.5 mm to 1 mm, moisture of the total 
mixture, ignition temperature, mass flow of mixture fed into the strand, strand speed 
and permeability of the mixture in the strand. 
The best result of the network was the productivity which was able to describe 87% 
of the variation of the this variable, the worst result was tumbler index with 65%, fuel 
rate was 82%, the rate of return 83% and LTB with 76%. 
Kinnunen and Laitinen(10) used industrial data from sintering process of three years to 
build an RDI and productivity prediction model. The variables used to predict the 
productivity were as follows: 

 total heat; 
 ignition heat/m2; 
 percentage of coke breeze; 
 percentage of 0.2 mm to 0.7 mm in the mixture; 
 percentage of burnt lime; 
 average grain size of the mixture; 
 hearth layer height; 
 fuel rate; 
 binary basicity; 
 percentage of slag converter; 
 titanium content, MgO, potassium and FeT in the sinter; and, 
 outside air temperature. 

The variables binary basicity; room temperature (-10°C to 20°C); hearth layer height; 
alumina content, percentage of 0.2 mm to 0.7 mm in the mixture; fuel rate, and 
titanium content, were the main variables in predicting of productivity. 
 
2 MATERIALS AND METHODS 
 
The method used is shown by a flowchart in Figure 3. A system of data acquisition 
process, a statistical software capable of performing multiple linear regression and 
selection forward and backward and a software with the function neural network were 
used to implement the steps.  

ISSN 2176-3135

767



Data collection
Assembly of

groups
Treatment of data

MLR

Artificial neural
network

 
Figure 3. Flowchart of the method. 

 
2.1 Data Collection 
 
At this stage the brainstorm technique was used with the experts in the sintering 
plant from Usiminas to define all variables and controller of process that could 
influence the productivity of the Sinter Machine#3 - Ipatinga Plant.  
 
2.2 Treatment of Data 
 
In this step, the outliers were removed from the dataset one by one without any 
statistical technique, for this the technical expertise was used to define the values 
that were incompatible with the process.  
 
2.3 Assembly of Groups 
 
Some groups of variables were created aiming seek the best prediction result. The 
definition was performed using multiple linear regression, variable selection by 
backward and forward and choosing based on technical know-how of experts from 
Usiminas staff. 
 
2.4 Multiple Linear Regression (MLR) 
 
In this step the statistical technique of multiple linear regression was applied for all 
groups. Multiple linear regression was performed using a statistical software. The 
results of productivity generated by the equation were compared with the real values 
of productivity obtained from sinter industrial machine. This was made by the means 
comparison of the correlation coefficient (R2). 
 
2.5 Artificial Neural Network (ANN) Modeling 
 
In parallel with the multiple linear regression step, the neural network was realized. 
Therewith it was possible to verify the effectiveness of the neural network with 
respect to multiple linear regression. 
The construction of the neural network has been performed with the MLP type, It was 
varying the following parameters of the neural network structure: (i) number of 
neurons in the hidden layer: (n/2) to (2n+1) where ‘n’ is the number of input variables; 
(ii) number of hidden layers (1 and 2) and (iii) the training algorithms (Scale 
Conjugated Gradient - SCG and Levenberg-Marquardt - LM). The transfer function 
used was sigmoidal. The inputs and output were normalized, in order to be between -
1 and +1. This normalization was performed using the equation 1, suggested by 
Wong.(5) 
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Where: 
 Xn the normalized value –1 < Xn < 1 from XR; 
 XR the real value of the input or output; 
 VLI the lower limit of XR; 
 VLS the upper limit of XR. 

The neural network assembling was consisted by two phases: training and validation. 
For this, the data was divided so that 60% for training and 40% for validation. 
The data were randomly divided to prevent any possible addict. The following 
parameters of stopping were: target error (0.0001), number of epochs (1000) or the 
Early Stopping criterion. The training phase was finished when one of these 
parameters has been reached. 
The results of productivity generated by the validation step were compared with the 
real values of sinter machine productivity, using the technique paired analysis of 
differences between real and predicted values. The normality of distribution was 
evaluated by measuring skewness and kurtosis. For cases of normal distribution, the 
hypothesis tests: t-test and sign test were used to construct the confidence interval of 
standard deviation, but for the cases where the null hypothesis were rejected, the 
average error was used, according to equation 2. 

 
x

value  predicted-  value  real
error   Average 

     (2) 
X is the number of paired samples. 
 
3 RESULTS AND DISCUSSION 

 
3.1 Assembly of Groups 
 
Data from 24 variables and/or controllers of a historic from 2010 were used. They 
were collected every 4 hours, comprising a database of 1,868 lines. The total number 
of data was 44,832. The selected variables and their minimum and maximum values 
are presented in Table 2.  
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                         Table 2. Selected variables 
Inputs Minimum Maximum 

Slag volume (%) 17.66 24.88 
Moisture (%) 3.5 7.5 

Carbon Rate (kg/t.sinter) 34.6 68.7 
Burnt lime (%) 1.0 4.5 

BTP 22 24 
Charge density (t/m3) 1.57 2.16 

Temperature of the box 23 (ºC) 110 428 
Return hot sinter (%) 6 26 

% > 4.76 mm of CB* and ATR* 0.4 16.2 
% < 0.25 mm of CB* and ATR* 8.2 47.5 

Return cold sinter (%) 2 18 
Basicity binary (CaO/SiO2)** 1.52 2.98 

Temperature of ignition furnace (ºC) 828 1223 
FeO sinter (%) 2.27 9.49 

Ignition Intensity (Nm3/m2) 1.7 5.3 
Roll feeder speed (RPM) 200 1064 

Temperature of exhaust gas (ºC) 75 172 
Suction (KPa) -8.62 -17.65 

Tumbler Index (%) 56.74 66.96 
Hearth layer (kg/t.sinter) 55 220 

Hopper Level (%) 29 82 
Shatter Index (%) 86 94 

Strand speed (m/min) 1.34 3.06 
Bed height (m) 0.53 0.55 

Output Minimum Maximum 
Productivity (t/m2.day) 32.08 45.08 

  *CB = Coke breeze; ATR = Anthracite; **CaO/SiO2 

 
Each variable is explained below: 

 Slag volume; SV = (% CaO + % MgO + % SiO2 + % FeO - % Al2O3); 
 Moisture percentage of the total mixture; 
 Carbon rate is the specific consumption; 
 Burnt lime is its proportion in the mixing part; 
 Temperature of the box 23 (penultimate wind box sinter machine); 
 Charge density is the amount of mixture per volume of pallet of the sinter 

machine; 
 Return hot sinter is the hot sinter screened;  
 % > 4.76 mm of CB and ATR is the concentration of fine particles of coke 

breeze and anthracite greater than 4.76 mm; 
 % < 0.25 mm of CB and ATR is the concentration of fine particles of coke 

breeze and anthracite smaller than 0.25 mm; 
 Return cold sinter is the proportion of sinter less than 5 mm, generated in the 

sieving of blast furnaces in the mixture of partial; 
 Binary basicity is the ratio of CaO e SiO2; 
 Temperature of ignition furnace of sinter machine; 
 FeO in sinter is the percentage of this compound; 
 Ignition Intensity is the consumption of gas passing area of the machine, that 

means, the gas consumption for 4 hours divided by the belt speed multiplying 
by the length of the ignition; 

 Roll feeder speed is the speed of the motor feed roller; 
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 Temperature of exhaust gas is the temperature measured at the entrance of 
primary electrostatic precipitator; 

 Suction is the negative pressure exercised by gases passing through the 
mixture;  

 Tumbler index is the index of physical resistance; 
 Hearth layer is the sinter between 10 mm to 20 mm and it is used as a 

protection of grate bars; 
 Hopper level is the level of the total mixture in the bin; 
 Shatter index is another index of physical resistance; 
 Strand speed of sinter machine; 
 BTP is the end point of burning, indicating in which case the sinter machine is 

the highest temperature desired thermal profile and, 
 Bed height is the height of the mixture in sinter machine. 

The chosen groups are shown in Table 3. Group 1 is composed of variables chosen 
by the staff of Sinter Ipatinga Plant - Usiminas. Group 2 is composed of variables 
selected by MLR, forward and backward techniques in all variables. Group 3 is the 
result of the use of MLR, forward and backward selection in all variables, without the 
strand speed. Group 4 is formed by Group 3 plus shatter index and FeO in place of 
the variable volume of slag and ignition intensity. And finally, the Group 5 is 
comprised by group 4 without FeO plus strand speed, temperature of the box 23, and 
slag volume. The changes done at groups 4 e 5 were due to verify the influence 
those variables on results. 
It is possible to note from the table 3 that the following variables: temperature of the 
box 23; % > 4.76 mm of CB and ATR; % < 0.25 mm of CB and ATR; FeO in the 
sinter; temperature of exhaust gas; tumbler index; hopper level, and shatter index 
were not selected by the technique forward and backward. These kind of variables 
(except the level of the hopper), perhaps, would be more related to the yield of the 
sinter, since they are indicators of the thermal condition of the process. Another 
explanation is that the data did not vary enough to influence the sintering machine 
productivity, thus the technique selection of forward and backward withdrew from the 
groups. 
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                Table 3. Description of groups formed 

 
Groups 

1 2 3 4 5 
Slag volume (%) X X X  X 

Moisture (%) X X X X X 
Carbon Rate (kg/t.sinter) X X X X X 

Burnt lime (%) X X X X X 
BTP X X X X X 

Charge density (t/m3)  X X X X 
Temperature of the box 23 (ºC)     X 

Return hot sinter (%) X X X X X 
% > 4.76 mm of CB* and ATR      
% < 0.25 mm of CB* and ATR*      

Return cold sinter (%)   X X X 
Basicity binary (CaO/SiO2)**   X X X 

Temperature of ignition furnace 
(ºC) 

 X X X X 

FeO sinter (%)    X  
Ignition Intensity (Nm3/m2)  X X   
Roll feeder speed (RPM)  X X X X 

Temperature of exhaust gas (ºC)      
Suction (KPa) X X X X X 

Tumbler Index (%)      
Hearth layer (kg/t.sinter)  X X X X 

Hopper Level (%)      
Shatter Index (%) X   X X 

Strand speed (m/min)  X   X 
Bed height (m)  X X X X 

 
3.2 Results with Multiple Linear Regression (MLR) 
 
At Figure 4 it is showed the correlation coefficients and average errors obtained by 
multiple regression. The average error was calculated according to equation 1. 
Group 1 showed the lowest correlation, meaning that the sintering process is 
governed by the interaction of several variables, not only the variables in that group. 
Furthermore, observing the Group 2, it can be noted that the level of correlation 
improved significantly, mainly due to addition of the variable strand speed.  
The change of variables had little effect on the Group 4, compared to Group 3, as 
correlation coefficient showed in Figure 4 (d). The Group 2 and Group 5 showed 
good correlation with productivity. 
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(a) (b) 

(c) (d) 
 

 

(e)  
Figure 4. Relationship between predicted and real productivity Groups 1 to 5: (a) Group 1, mean 
error: 1.49 t/m2.day; (b) Group 2, mean error: 0.93 t/m2.day; (c) Group 3, mean error: 1.42 t/m2.day; 
(d) Group 4, mean error: 1.39 t/m2.day; (e) Group 5, mean error: 0.94 t/m2.day.  
 
3.3 Results with Artificial Neural Network 
 
The results of the correlation obtained with the comparison between productivity 
predicted by the neural network and real productivity of groups are shown in table 4. 
The Group 5 showed the best result using the neural network with one hidden layer, 
9 hidden neurons and algorithm type Levenberg-Marquardt (LM).  
It can be inferred from the table 4 that the algorithm and the number of hidden layers 
have a weak influence on the predictive ability of artificial neural network, 
nevertheless these variations must be tested and other possibilities not contemplated 
in this study to evaluate the best configuration of ANN. 
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   Table 4. Results using artificial neural networks 
 

neural network 
hypothesis 

test 
p-value 

evaluation of the normality 

algorithm 
hidden 
layers 

number 
of 

neurons 

R2

(predicted 
vs. real) 

t-
test 

sign-
test 

skewness kurtosis 
mean 
error 

Group 1 
L.M. 

1 - - - - - - - 
2 - - - - - - - 

S.C.G. 
1 18 32.80 0.85 0.79 1.44 4.87 1.41 
2 - - - - - - - 

Group 2 
L.M. 

1 8 73.70 0.34 0.87 7.19 17.25 0.82 
2 8 76.34 0.33 0.71 2.53 13.59 0.81 

S.C.G. 
1 8 75.00 0.51 0.88 3.54 10.01 0.82 
2 8 76.07 0.36 0.50 2.11 6.37 0.82 

Group 3 
L.M. 

1 8 48.59 0.27 0.32 -2.05 11.98 1.15 
2 8 53.53 0.90 0.96 0.63 7.98 1.10 

S.C.G. 
1 16 49.59 0.74 0.41 -2.22 4.97 1.19 
2 21 46.94 0.64 0.75 -0.04 2.96 1.22 

Group 4 
L.M. 

1 10 48.75 0.51 0.40 0.76 3.66 1.22 
2 8 48.76 0.51 0.43 -0.76 3.66 1.22 

S.C.G. 
1 8 43.07 0.83 0.40 -0.10 3.64 1.26 
2 8 44.02 0.27 0.50 0.05 2.32 1.30 

Group 5 
L.M. 

1 9 77.47 0.77 0.79 2.78 4.11 0.80
2 9 72.26 0.55 0.38 3.54 8.10 0.84 

S.C.G. 
1 9 72.80 0.75 0.23 2.52 7.83 0.86 
2 9 73.82 0.48 0.69 4.27 8.39 0.82 

 
The RNA of Group 5 was chosen for industrial application. It is known that such 
variables as: % over than 1 mm and less than 0.104 mm of iron ore and of the stack 
blended, flow and % O2 influences the productivity, however due to problems during 
acquisition of data it was not possible to add them in database. If they were in the 
group, probably the results would be better. Laitinen(9) obtained better result than this 
work due to the kind of variables chosen. 
It’s important to say that the group 2 showed good results, however industrial 
variables as shatter index and return cold sinter was not present in this group, so the 
group 5 was chosen.  
In table 5 it can be seen by the distribution of frequency of the error range between 
predicted and real productivity that 71.08 % of the errors were below 1 t/m2.day. 
 
 Table 5. Distribution of the frequency ranges of the errors 

error range (t/m2.day) relative frequency (%) cumulative relative frequency (%) 
0.00 0.25 24.05 24.05 
0.25 0.50 18.92 42.97 
0.50 0.75 13.78 56.76 
0.75 1.00 14.32 71.08 
1.00 1.25 8.92 80.00 
1.25 1.50 5.14 85.14 
1.50 1.75 4.05 89.19 
1.75 2.00 4.05 93.24 
2.00 2.25 2.16 95.41 

> 2.25 4.59 100.00 

 
3.4 Comparison of Multiple Linear Regression and Artificial Neural Network  
 
The results of multiple regression and neural network are compared in table 6. It can 
be noted that the artificial neural network performed better than the model by multiple 
regression, in agreement with results obtained by Oliveira and Modenesi.(11) The 
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artificial neural network, as well as the brain, has the ability to learn through error 
made between predicted and real, being better than the multiple regression to predict 
outcomes, but in this paper the artificial neural network works like a "black box" so it 
is not possible, know the real influence of each variable in the output. 
 
 Table 6. Comparison between results of multiple regression and neural network 

group 
multiple linear regression neural network 

R2 
mean error 
(t/m2.dia) 

R2 
mean error 
(t/m2.dia) 

1 0.3081 1.49 0.3280 1.41 
2 0.6843 0.93 0.7634 0.81 
3 0.4221 1.42 0.5353 1.10 
4 0.4013 1.39 0.4876 1.22 
5 0.6768 0.94 0.7747 0.80 

 
4 CONCLUSION 
 
The artificial neural network was used as a tool for predicting the productivity of the 
Usiminas Sinter Machine#3 (Ipatinga Plant) from variables and controlling of the 
sintering process. 
The configuration of the artificial neural network that led to the best result was: 
Levenberg-Marquardt, with one hidden layer, 9 neurons. This network achieved 
77.47% of the correlation with the real productivity. The differences between the 
average error was 0.80 t/m2.day and 71.08% of these errors were less than 
1 t/m2.day. 
The results indicated that neural network can provide better correlations than the 
multiple linear regression. 
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