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Abstract  
Slags are of fundamental importance in the steel production, influencing deeply its 
quality; among the several properties of steelmaking slags, viscosity stands out as 
one of the most important. Viscosity is a function of slag composition andtemperature 
and is determined experimentally or using mathematical models.In this work a study 
is made todetermineviscosity by means of an Artificial Neural Network using 
Wekasoftware developed at the University of Waikato.Weka offers several algorithms 
for machine learning, including those for neural network training. Here, the Multilayer 
Perceptron model (MLP) was used andtraining was carried out by means of the error 
back-propagation algorithm. For this introductory analysis, the composition of the 
chosen slags falls within the most frequently used quaternary oxide system CaO-
MgO-SiO2-Al2O3 (also known as C-S-A-M) and the ternary C-S-A, while the 
temperature is kept constant at 1600 °C.Because of the facilities offered, the primary 
viscosity input data for selected slags was provided by means of FactSage – a 
software specialized in the field of metallurgical thermodynamics (nevertheless, 
literature or experimental data can be used as well). A refined predictive system for 
viscosity could be established by ANN with correlation coefficients between predicted 
and observed values (R2) greater than 0.99 for both systems. The model can be of 
benefit to the steel industry and may contribute to the production of quality steels. 
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1. INTRODUCTION 
 
The area of Science known as transport phenomena deals with the transfer of 
momentum, heat and mass. The flux of any of these properties is proportional to a 
distinct driving force gradient – in the first case, for Newtonian fluids, the 
proportionality constant is called viscosity. When studying slags, viscosity, together 
with thermal diffusivity, density, and interfacial tension, comprise the four most 
important thermo-physical properties. In order to have the necessary metallurgical 
operations running smoothly, molten slags and fluxes of moderate viscosities are 
needed. The viscosity of liquid oxides ismainly a function of their chemical 
composition and temperature; in steel mills, slags are used at elevated temperatures, 
yet the range – between 1250 and 1700 °C –suggests the existence of a wide 
amplitude of viscosities. Even for fixed temperature and composition, viscosity may 
still be affected by the presence of solid particles randomly dispersed in the liquid 
(this case will not be considered in this work). As for the composition, one can say 
that among the most common slag systems to be found in steelmaking thereare the 
quaternary oxide system CaO-SiO2-Al2O3-MgO (also known as C-S-A-M), together 
with its subsystem C-S-A. 
Viscosity is measured experimentally or may be determined theoretically. 
Traditionally, viscosity has been measured using a wide range of experimental 
techniques developed over the past years,depending on the type and temperature of 
the liquid phase. Due to the high temperatures used in steel production processes, 
some methods have preference. For molten slags and fluxes, the most common are: 
the capillary method, the dropping body method, and the rotating cylinder method. 
They are based, respectively, on the flow time a portion of the fluid needs to pass 
through a thin channel; on the time required for a falling sphere immersed in the 
liquid to reach the melting pot bottom, and finally in the torque required to rotate a 
cylindrical component immersed in the fluid. A detailed description of these and some 
other methods used in the determination of slag viscosities can be found in Slag 
Atlas [1]. 
After the experimental measurements, a variety of mathematical models are applied 
to the data in order to create a scheme capable of predicting viscosity from 
composition and temperature. An excellent description of the various mathematical 
models used to describe the viscosity of metallurgical oxide melts is presented by 
Kekkonen et al. in a booklet under the general title of Viscosity Models for Molten 
Slags [2]. 
While mathematical models are essentially empirical in nature, a new method has 
emerged, based on a very different approach, i.e., on the internal structure of slags. It 
is a well-known fact that the addition of basic oxides reduces the viscosity of molten 
silicates due to the breaking of the silicate network; viscosity thus reflects the internal 
structure of the molten oxide. This feature was incorporated into the commercially 
available software FactSage (developed by CRCT and GTT), whichdelivers viscosity 
directly as an output [3]. Yet another thermodynamically-related method is cited in 
the literature(based on the Gibbs activation energy for viscosity), and is incorporated 
in the software Thermoslag (developed at the Royal Institute of Technology, KTH) 
[4]. 
Accurate viscosity estimates, however, are still difficult to obtain, despite the 
advancement of the mathematical models, or the use of thermodynamic 
computational tools. Thus, some authors have proposed the use of artificial neural 
networks (ANNs) to accomplish this[5, 6, 7] and other tasks in the field of metallurgy 
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[8, 9, 10]. Neural networks applied in the prediction of viscosity do not need a 
description of the strong influence of silica, they do also circumvent the contradictory 
action of amphoteric oxides such as alumina, and avoid the determination of slag 
structures (required on thermodynamic-basedmodels). Because of this, ANNs do not 
present the limitations and assumptions of these models;consequently, they may 
provide results that can be regarded as ‘neutral’ or devoid of bias. 
In the present work, an ANN approach has been used to predict viscosities of slag 
compositions in CaO-SiO2-Al2O3and CaO-SiO2-Al2O3-MgO systems with an objective 
to establish an exploratory, though reliable, predictive system. 
 
2.METHODOLOGY 
 
Weka [11] is an artificial intelligence program developed at the University of Waikato, 
New Zealand; because of its performance and availability, it has been chosen for this 
work. Weka is a collection of machine learning algorithms for data mining tasks; the 
algorithms can be either directly applied to a dataset or called with a Java code; it 
contains tools for data pre-processing, classification, regression, clustering, 
association rules, and visualization, andit is also well-suited for developing new 
machine learning schemes. 
Before applying the software it is necessary to fulfill (basically)three steps: i) data 
collection; ii) data normalization; and, iii) ANN configuration. 
 
i) Data collection 
Two datasets were used in this research,both of them constructed by means of the 
software package FactSage (and its database for ‘melts’; the slag structure is 
calculated from the thermodynamic description of the melt using the Modified 
Quasichemical Model). The first is designed to describeslagsfrom the ternary system 
C-S-A and the secondslags from the quaternary system C-A-S-M. 
This choice of input data preparation offers the advantage of rapidly constructing 
viscosity datasets that are ‘evenly spaced’in composition– this would be much more 
difficult to dowith literature sources such as Slag Atlas [1]. In this case, composition 
values would be more erratic (i.e. non-regularly spaced), since isoviscositylines in 
diagrams rarely coincide with composition grid nodes. Conversely, the reading of the 
composition would entail some inaccuracy, because diagrams are usually ‘drawings’, 
tend to be small in size, and show onlymain grid lines (if any). 
However,eventual deviations between experimental and ‘software viscosities’will not 
impair the applied method – although they are undesirable. 
Input data for the determination of slag viscosity by neural networks refer to slag 
compositions in terms of the four simple oxides: silica, alumina, calcia and 
magnesiaplus viscosity (given in the International System units: Pascal second, or 
Pa·s). The chosen systemsparticularly reflect the melt shop practice, reduced in this 
work to the three (C-S-A) or four (C-S-A-M) oxides that most suitablyrepresent them. 
All viscosity data supplied as input refer to the temperature of 1600 °C; it is important 
to mention that data is restricted to those compositions that give rise to a single-
phase liquid slags – at that temperature. Viscosities of slags containing solid phases 
in suspension should be corrected by means of equations such as the Einstein-
Roscoe model, which takes into account the volume fraction of the solids. To avoid 
unnecessary route deviations, these bordercompositions were meticulously 
discarded andset as boundariesfor the actually usable composition field. 
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b) Data normalization 
The data provided have values outside the usable range -1 and 1, so there is a need 
for normalization. One can use Weka’s available normalization algorithm, or do this 
through the Multilayer Perceptron algorithm itself. In order to better visualize the 
results output, the normalization algorithm option was chosen, since it normalizes the 
data only for internal use, that is, the data is initially normalized, then used by the 
neural network, and at the end is reconverted, so that both reading and analysis are 
facilitated. 
 
c) ANN configuration 
Wekahas to be configured to perform the training of the multilayer perceptron (MLP) 
network. In order to configure any neural network, a series of non-trivial decisions 
must be made, so that the ANN presents satisfactory results. Among those of main 
importance are: network topology, learning algorithm (in this case the choice fell on 
the back-propagation algorithm), and activation function. Configuration includes the 
definition of the following parameters: number of hidden layers; learning rate; 
momentum; training time; and training set. 
There are several methodologies to perform these tasks; often the choices are made 
empirically, so that the configuration of the neural network comes to be considered 
by many as an ‘art’. Experience is required from the designers in order to 
getadequate results from the artificial neural network. 
The MLP network can be trained by the back-propagation algorithm to perform any 
mapping between the input and the output values. The back-propagation algorithm 
searches for weight values that minimize the total error of the network over the set of 
training examples (training set). The choice of the number of layers in the Weka 
back-propagation algorithm can be done in two ways: manual or automatic; for 
simplicity, the automatic mode was selected. Three main parameters were adjusted 
during configuration: learning rate, momentum and training time. For configuration 
purposes, Weka standards were initially used, with a learning rate of 0.3, a 
momentum of 0.2, and a training time of 500. Adjustments consisted of fine tuning, 
performed empirically, accordingly to the output value R2. The amount of data used 
for learning was: 55 and 76 input vectors (composition and viscosity) for C-S-A and 
C-S-A-M systems, respectively. Since this amount of available data is relatively 
small, a 10-fold cross validation (CV) was used.This means that Weka picks up 90% 
of the sample randomly and uses it to train, while 10% is used for validation. This 
procedure is performed a total of 10 times, creating a set of training and validation 
data.The advantage of this method is that all observations are used for both training 
and validation, and each observation is used for validation exactly once.No other 
manual adjustments have been made. 
 
3. RESULTS AND DISCUSSION 
 
Onceall stagesare accomplished, the artificial neural network is able to be applied 
andto predict the viscosity values, at 1600 °C, as a function of the input data (in this 
case, the slag composition).The ANN evaluation can bedone using appropriate 
error measures to interpret the results.Wekasoftware provides a general adequacy 
evaluation table of the ANN for the job (correlation coefficients plus errors). A 
graphical analysis of the results mayalso be easily made by observing the diagrams 
of the predicted viscosities by the artificial neural network plotted as a function of the 
input viscosity values (provided by FactSage software),regardless of composition. 
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These diagrams,together with the several numerical outputs(squared-R plus absolute 
and relative errors)will be presented and analyzed in the sequence for each of the 
two focused slag systems. 
 
3.1 C-S-A system 
 
The predicted viscosities plotted as a function of the input viscosity data,in the C-S-A 
systemcan be seen in Figure 1. Most of the input points lie in the lowerrange, up to 
approximately 3 Pa·s – which are reasonable adequate values, expected for 
metallurgical slags; from the figure, the relationship between predicted and input 
values is apparentlysuperior. 
The correlation coefficient, R2, obtained from the comparison between predicted and 
input values was, for this system, 0.9998,which means that the neural network has 
learned from input data and is able to predict the viscosity of anyslag compositionin 
the allowed range inthe C-S-A system, at a temperature of 1600 °C,with a high 
degree of accuracy. The relatively low errors confirm the good quality of this 
prediction. The general adequacy of the ANN model is presented in Table 1. 

 
 

Figure 1. Predicted viscosity values as a function of the input values, C-S-A system 
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Table 1. Correlation coeficient R2 and errors, C-S-A system 
Parameter Value 
Correlation coeficient  0.9998 
Mean absolute error  0.0295 
Root mean squared error  0.0452 
Relative absolute error  2.1292 [%] 
Root relative squared error  2.1096 [%] 
Total number of instances  55 

 
3.2 C-S-A-M system 
 
Also the predicted viscositiesin the C-S-A-M system, plotted as a function of the input 
viscosity data, can be seen in Figure 2. Here, the relationship between the predicted 
and input values is again noticeably good, especially for values smaller than 1.2 
[Pa·s]. 
The correlation coefficient R2 obtained from the comparison between predicted and 
inputvalues was, for this system, 0.9972. As for the previous system, again, theANN 
predictedsuccessfullythe viscosity valuesfor any (allowed) composition in the C-S-A-
M system at a temperature of 1600 °C. The errors are also relatively low, which 
confirms the good quality of the prediction. The general adequacy of the ANN model 
to predict viscosities in the C-A-S-M slag system is presented in Table 2. 
 

 
 

Figure 2. Predicted viscosity values as a function of the input values, C-S-A-M system 
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Table 2. Correlation coeficient R2 and errors, C-S-A-M system 
Parameter Value 
Correlation coeficient 0.9972 
Mean absolute error  0.0154 
Root mean squared error  0.0268 
Relative absolute error  5.8881 [%] 
Root relative squared error  7.4308 [%] 
Total number of instances  76 

 
 
3. CONCLUSIONS 
 
From the results it can be concluded that, for metallurgical slagsbelongingeither to 
the C-S-A or to the C-S-A-M systems, in the fully liquid condition, and at the single 
temperature of 1600 °C,viscositydetermination usingan artificial neural network 
proved to be a powerful tool, despite of its low use, showing a strong linear 
relationship between predicted and observed values. 
Results obtained with input data from the C-S-A ternary system are slightly better (R2 
= 0.9998) than those from the quaternary system C-S-A-M (R2 = 0.9972) – possibly 
due to the smaller number of composition variables and thesmaller amplitude of the 
related data. Even so, the quaternary system had its viscosities nicely predicted – 
especially in the lower range of values – within the errors, considered to be low. 
Summarizing,a refined predictive system for viscosity could be established by an 
ANN model; a largerversionwould be of benefit to the steel industry and thus may 
contribute for the production of qualitysteels. 
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