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Abstract 
The aim of the present work is to classify co-registered pixels of stacks of polarized light 
images of iron ore into their respective crystalline grains or pores, thus producing grain 
segmented images that can be analyzed by their size, shape and orientation distributions, as 
well as their porosity and the size and morphology of the pores. Polished sections of samples 
of hematite-rich ore are digitally imaged in a rotating polarizer microscope at varying plane-
polarization angles. An image stack is produced for every field of view, where each image 
corresponds to a polarizer position. Any point in the sample is registered to the same pixel 
coordinates at all images in the stack. The resulting set of intensities for each pixel is directly 
related to the orientation of the crystal sampled at the corresponding position. Multivariate 
analysis of the sets of intensities leads to the classification of the pixels into their respective 
crystalline grains. Individual hematite grains of iron ore, as well as their pores, are 
segmented and quantified. Imaged fields of view are analyzed in terms of the area fractions 
of grain classes and the results are compared to those obtained by visual point counting 
methods. 
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SEGMENTAÇÃO DE GRÃOS EM MINÉRIOS RICOS EM HEMATITA POR ANÁLISE 
MULTIVARIADA DE PILHAS DE IMAGENS DE LUZ POLARIZED 

Resumo 
O objetivo do presente trabalho é classificar, nos seus respectivos grãos cristalinos ou 
poros, pixels co-registrados de pilhas de imagens de minério de ferro adquiridas com luz 
polarizada, produzindo desse modo imagens segmentadas em grãos que podem ser 
analizados quanto às suas distribuições de tamanho, forma e orientação, do mesmo modo 
que sua porosidade e o tamanho e a morfologia dos poros. Seções polidas de amostras de 
minério rico em hematita são fotografadas digitalmente em um microscópio com polarizador 
giratório em ângulos variáveis de polarização plana. Uma pilha de imagens é produzida para 
cada campo observado, onde cada imagem corresponde a uma posição do polarizador. 
Qualquer ponto na amostra é registrado em um pixel de mesmas coordenadas em todas as 
imagens da pilha. O conjunto resultante de intensidades de cada pixel está diretamente 
relacionado à orientação do cristal amostrado na posição correspondente. A análise 
multivariada dos conjuntos de intensidades leva à classificação dos pixels nos seus 
respectivos grãos cristalinos. Grãos individuais hematita no minério de ferro, bem como os 
seus poros, são segmentados e quantificados. Os campos de observação fotografados são 
analisados em termos das frações de área das classes de grãos e os resultados são 
comparados àqueles obtidos por métodos de contagem de pontos. 
Palavras-chave: Microscopia; Segmentação de imagens; Grãos; Minério de ferro 
 
1 Contribuição técnica ao VIII Seminário Brasileiro de Minério de Ferro, 18 a 21 de setembro de 2007, 

Salvador - BA, Brasil. 
2 Doutor em Física, Prof. Associado, Universidade Federal de Santa Maria (UFSM), Centro de Ciências 

Naturais e Exatas, Depto. Física, jatborgesdacosta@gmail.com 
3 Estudante de Mestrado, UFSM, Programa de Pós-Graduação em Engenharia de Produção 
4 Doutora em Geociências, Universidade Federal do Rio Grande do Sul (UFRGS), Instituto de Geociências, 

lucytakehara@gmail.com 
5  Dept. Eletrônica e Computação  Doutor em Informática, Prof. Adjunto, UFSM, Centro de Tecnologia,
6 Doutor em Física, Professor Associado, UFRGS, Instituto de Física 



INTRODUCTION 
 
Adequate prediction of the behavior of particulate ore material in industrial processes 
requires the characterization of the particle populations in terms of their chemical 
composition, texture, morphology and liberation. In recent years many authors have 
suggested that textural features are of critical importance.[1] The meaning of texture 
in ore particle characterization is twofold: it is broadly understood as the spatial 
distribution of both different minerals and different grains or crystals of the same 
mineral in a particle. Many authors prefer the word fabric for the first kind of 
distribution and explicitly refer to texture when the orientation in crystalline 
assemblages is described.[2] Regarding to the first meaning, King and Schneider[3] 
have demonstrated that the mineralogical ore texture has a decisive influence on the 
liberation distribution. The size, shape and spatial distribution of crystals and pores, 
on the other hand, influence the reducibility of sinters.[4]

The development of useful image analysis software for routine quantitative textural 
analysis of ore particles demands an automatic (or at least semi-automatic) 
identification, on a pixel by pixel basis, of the mineral species as well as pores and 
grains. In other words the objects of interest (grains and pores) must be segmented, 
i.e., all the pixels in the image must be classified into their respective crystalline 
grains or pores. The assignment of each pixel to only one grain or pore defines the 
set of pixels forming every object of interest in the image and allows morphological 
measurements to be made. However, in spite of the many available imaging 
instruments and image analysis methods, this task has long remained as the most 
difficult to be automated. Orientation imaging by automatic indexing of electron 
backcscatter diffraction patterns after phase identification by EDX is the most 
promising strategy when the properly equipped SEM is available. However, these are 
expensive and time consuming techniques, particularly when a large number of 
samples is to be analyzed.  
Pirard[5] have recently introduced multispectral imaging of ore minerals in optical 
microscope and performed supervised image analysis by multivariate pixel 
classification techniques that have long been used in remote sensing. It is clearly 
shown that multispectral images obtained with a set of narrow bandwidth (10 nm) 
interference filters lead to larger separation of the mineral phases in the color space. 
This result can in principle be extended to other ores by the appropriate choice of the 
interference filters, i.e., by choosing filters that produce the largest contrast between 
all pairs of minerals. Pirard also comments on extending the principles involved in 
multispectral image analysis to multiradial images for handling optical anisotropy. 
The potential of using the composite data from a set of images of the same sample 
acquired with changing polarization direction of the polarizing filters to enhance the 
ease and accuracy with which grains can be identified has been previously pointed 
out by Fueten,[6] who developed a computer-controlled rotating polarizer stage for the 
petrographic microscope. In more recent work, Pirard and co-workers[7] have stacked 
multispectral and mutiradial images to identify iron oxides and perform particle 
texture analysis. The mapping of individual hematite crystals was obtained by adding 
a bireflectance intensity criterion to the segmentation process. 
Regarding the image analysis methods, pixel classification has been usually 
performed with active assistance of the user, who sets parameters like thresholding 
grey levels, or selects representative regions of the objects of interest. These 
methods can be efficiently automated if the image acquisition conditions can be fixed 
and the imaged objects have the same features in all images, which is hardly the 



case in ore mineralogy where optical properties like bireflectance and pleochroism do 
not allow a one to one correspondence between color or brightnes and mineralogy or 
grain orientation. In order to automate the identification of objects having variable 
appearance, an adaptive method must be applied. Even though performed without 
assistance of the user, being thus called unsupervised, these methods must be 
selected considering the characteristics of the problem at hand and thus require 
some a priori knowledge about the imaged objects and the imaging conditions. 
Among the unsupervised pixel classification methods, those employing the mean 
shift algorithm[8-12] seem to have strong potential for application in quantitative 
microscopy.[13] Mean shift is a tool for finding modes in a multivariate data set first 
described in Fukunaga e Hostetler,[8] and more recently discussed in Cheng et al.[9] It 
is application independent, can handle arbitrary feature spaces; doesn’t assume any 
prior shape on modes or data clusters; doesn’t require the previous knowledge of the 
number of clusters, is robust under sampling errors and thus suitable for real data 
analysis. .It is also simple and straightforward to implement, being based on the 
iterative shifting of a fixed size hypersphere to the average of the encompassed data 
points in the feature space. Of course it also has some shortcomings. One parameter 
(the radius of the searching hypersphere) must be set by the user, and this is not 
trivial. Inappropriate choice of this parameter can cause modes to be merged, or 
generate additional false modes. When applied to grain segmentation the first case 
implies that different grains are connected and in the later, that one grain is 
partitioned, or oversegmented. Use of adaptive hypersphere radius has been 
proposed as a general solution, but an experienced user can set this parameter once 
for a given image batch.  
Even in optimal conditions the resulting pixel classification will always display some 
assignment errors due to sample preparation imperfections, optical aberrations and 
image acquisition artifacts. Misclassification is efficiently resolved by introducing a 
post-processing step where spatial information is added by morphological operations.  
The aim of the present work is to take advantage of the complementary information 
from a set of images of the same sample acquired with changing polarization 
direction of the polarizing filters in order to automate the segmentation of hematite 
grains and pores of an hematite-rich iron ore by applying a mean shift based pixel 
classification algorithm. The segmented objects are the elements of the ore particle 
structure or texture. From the grain segmented images it is straightforward to 
evaluate the lamellar or granular character of the hematite grains, the porosity of the 
mineral assemblage, the size and shape distributions of grains and pores.  
 
METHODS 
 
The hematite rich iron ore concentrate from Quadrilátero Ferrífero (MG, Brazil) 
studied in the present work represents an ore with high deformation and 
metamorphic grade. The particle size is within the range from 0.50 to 1.00 mm. 
For optical image analysis the sample is mounted in an epoxy resin block, which is 
polished in one side and digitally imaged under a Leica DM150 reflected light optical 
microscope with a rotating polarizer by a Sony Exwave HAD™ color video camera 
using the Leica IM50 program. Visual inspection reveals that the sample is a 
hematite-rich iron ore composed basically of hematite mineral and pores. This 
hematite is a secondary mineral generated by high metamorphism and deformation, 
which yield coarse well-crystallized hematite crystals with regular contacts and triple 
junction boundaries. The crystals are mainly granular with subordinated lamellar 



grains giving an incipient foliation to the ore. This simple texture is well suited for 
testing image analysis procedures.  
From representative regions of the sample, a series of images are acquired from the 
same scene when rotating the incident light polar, using polarization steps of 2.5° All 
images are acquired under a 10x objective lens and digital sampling of 1300x1030 
pixels, with a resulting resolution of 1478 pixels/mm, as determined by imaging a 
stage micrometer. In order to build reflectance maps of narrower spectral band, only 
one color component of the color image is considered. Since the video camera uses 
a Bayer filter, the green channel is chosen due to its higher resolution. Background 
correction is performed in all images to compensate for non-uniform illumination 
across the image. For this purpose, a white reference image is acquired of a highly 
uniform surface without any inclusions or scratches using the same objective lens 
and illumination as the image to be corrected. The images of the same scene are 
stacked together with multiradial information, as described next.  
The polarized light intensities θI , reflected from any point in the sample, as imaged 
in the green channel of the video camera, at all polarizer positions , are co-
registered to the same pixel coordinates  in all images of the stack. The 
resulting set of intensities 
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is directly related to the orientation of the crystal at the corresponding positions. 
These intensities are the features of the corresponding pixels.  
Let us now represent each pixel by a feature vector  in a feature 
space which dimensions are the intensities 
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pores are homogeneous objects, their pixels have similar intensities at every 
polarizer orientation and therefore their feature vectors tend to cluster in the feature 
space, forming high density regions, or modes. Each grain or pore is then 
represented by a cluster in the feature space. Feature space analysis (clustering) is 
the procedure of finding these clusters.  
Comaniciu and Meer[10] have developed a color image segmentation technique 
based on the mean shift property. It can be directly applied to multispectral and 
multiradial image analysis by extending the number of dimensions of the “color” 
space.  
The content of a continuous feature space can be modeled as a sample from a 
multivariate, multimodal probability distribution  of finding a feature vector 
between  and 
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distribution of finding a pixel with a given set of intensities. Define the hypersphere 
 of radius centered on  and containing data points in the feature space. It 

can be shown [11] that the sample mean shift is 
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This means that the mean shift vector points towards the direction of a local estimate 
of the normalized gradient. Therefore, the direction of the maximum increase in the 
density can be obtained by computing the sample mean shift. From the above 
equation, a procedure can be implemented by recursively moving the center of the 



hypersphere by the mean shift vector and then recalculating the mean shift. The 
track of the consecutive mean shift vectors is a path leading to a local density 
maximum, i.e., to a mode of the density.[11] Every starting point of this mode seeking 
procedure is associated with the respective final mode. In addition, by associating the 
points with the modes, the structure of the data (number of clusters and their shapes) 
is revealed. In the image segmentation problem, every pixel is assigned to a grain or 
pore which are then identified and measured.  
 
RESULTS 
 
Four images from a typical multiradial image stack are shown in Figure 1.  
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Figure 1 – Polarized light images acquired from the same region of the hematite-rich iron ore samples 
at four different rotating polar angles. (10x objective lens = 0,88mm imaged field width) 
 
The pores exhibit many artifacts for almost all polarization angles. These are 
identified as modes by the mean shift procedure. This problem is circumvented by 
first segmenting the pores and then using the resulting binary image as a mask to 
eliminate the artifacts in the other images. Segmentation of the pores can be 
accurately performed by applying the simple Otsu criterion to the image acquired with 
the polarizer at =15θ o. Figure 2(a) shows the pores mask image. 
Multiradial information is best viewed using false color. Thus, Figure 2(b)  presents a 
false color composition (RGB) of images from the set of Figure 1 (7.5o, 0o, 12,5o), 
after pores segmentation. 
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Figure 2 – (a) Pores mask image as obtained by simple threshold of the image acquired with the 
polarizer at =15θ o. (b) False color composition (RGB) of images from the set of Figure 1 (7.5o, 0o, 
12,5o) after filtering  
 
The feature space spanned by the polarized light intensities reflected by the sample 
can be partly represented in the three dimensional RGB color space. Figure 3 shows 
the clusters in the false color space associated to the grains of the region in the 
insert. The figure was generated by the software COLOR SPACE 1.1 (P. Colantoni, 
2005, http://www.couleur.org). 
 

 
Figure 3 – Clusters in the feature space corresponding do the grains and pores of a region (insert) of 
the image in Figure 2(b). (Image generated by the software COLOR SPACE 1.1 – P. Colantoni (2005) 
– http://www.couleur.org) 
 
After applying the mean shift procedure to the image of Figure 2(b), and assigning 
every pixel to a cluster in the false color space, the image results segmented into its 
grains and pores. The segmented crystals are then classified according to their 
aspect ratio into granular and lamellar. The area fractions of grains and pores 
obtained from the mean shift segmented image are compared to the results of image 
quantification using the traditional modal counting in Table 1.  



Table 1- Comparison of the area fractions of grains and pores obtained from the mean shift 
segmented image and by image quantification using the traditional modal counting. 

Minerals Counting Mean 
shift

Granular Hematite 30,00 29,47
Lamelar Hematite 37,22 35,39
Pores 32,64 35,14
Total 99,86 100,00

 
CONCLUSIONS 
 
In the present work we analyze the multivariate data obtained by multiradial imaging 
of an hematite-rich iron ore using a mean shift based pixel algorithm in order to 
classify the pixels into their respective hematite grains ore pores. From the grain 
segmented images we evaluate the porosity of the mineral assemblage and the 
lamellar or granular character of the hematite grains. Our results show good 
agreement with those obtained by image quantification using the traditional modal 
counting. The mean shift algorithm seems to be a good alternative to automate the 
identification of homogeneous objects having variable appearance. 
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