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Abstract 
By means of computer algebra methods, a mathematical model of the thermal 
processes inside continuous casting moulds can be drawn from the law of energy 
conservation. The model, named MouldScreen®, analyzes the operating parameters 
of a given mould and displays the calculated results of all relevant informations, e.g. 
strand shell thickness, heat flux density, liquid and solid flux film thickness via 
mouse-click to a computer screen. The model also provides a new classification of 
the thermal conditions in the meniscus area in form of ternary parameter diagrams. 
The connections between the different mould parameters, in the form of 
mathematical equations, lead through normalization transfor-mations to so-called 
normalization parameters. The dimensionless ratios of these normalization 
parameters are not dependent on casting speed and they provide a new method of 
process characterization in particular at the mould level. The constantly rising 
demands on product quality and operating safety in continuous casting can now be 
fulfiled by a deeper understanding and thorough analysis of the different physical 
conditions at the meniscus. 
Key words: Continuous casting; Mould flux film; Meniscus area; Ternary meniscus-
parameter diagrams; MouldScreen®. 

 

AVALIAÇÃO DE CONDIÇÕES OPERACIONAIS DA FUNDIÇÃO CONTÍNUA POR 
MEIO DE PARÂMETROS ADIMENSIONAIS TERNÁRIOS DA REGIÃO DO MENISCO 

Resumo 
Através de métodos de álgebra computacional e tomando como ponto de partida a lei de 
conservação da energia, foi derivado um modelo matemático dos processos térmicos que 
ocorrem dentro de um molde de fundição contínua. O modelo, chamado MouldScreen®, 
analisa os paramêtros de operação de um dado molde e apresenta os resultados calculados 
para todas as informações relevantes, como por exemplo, para a espessura da casca 
solidificada, para a densidade de fluxo térmico, para as espessura do filme de fluxante, seja 
esse sólido ou líquido, tudo por meio de cliques de mouse na tela do computador. O modelo 
também fornece uma nova classificação das condições térmicas na região do menisco, na 
forma de diagramas paramétricos ternários. As conexões entre os diferentes parâmetros do 
molde, na forma de equações matemáticas, conduzem, por meio de transformações de 
normalização, aos assim chamados parâmetros de normalização. As razões adimensionais 
desses parâmetros de normalização não são dependentes da velocidade de fundicão e 
fornecem um novo método para a caracterizacão do processo, particularmente ao nível do 
molde.  As crescentes demandas sobre a qualidade do produto e sobre a segurança 
operacional nos processos de fundição contínua podem agora ser satisfeitas por meio de 
um entendimento profundo e de uma análise detalhada das diferentes condições físicas 
existentes no menisco. 
Palavras-chave: Fundição contínua; Filme de fluxante do molde; Área do menisco; 
Diagramas ternários de parâmetros do menisco; MouldScreen®. 
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1 A NEW TOOL IN CONTINUOUS CASTING MODELLING 
 
Since the release of the first computer algebra programme Reduce in 1968, 
computer algebra (CA) has established itself as a development tool in science and 
technology in many fields in which mathematical questions are dealt with. Whereas 
CA very soon became a standard tool in mathematics and physics, numerics 
remained almost without excep-tion Number One on the hit list of mathematical 
calculating methods in engineering science disciplines. The reasons lie on the one 
hand in the complexity of the tasks and the clearness of numerical results and on the 
other hand also in the dread of abstract mathematical-analytical solutions. 
The description of the physical phenomena in the inside of a continuous casting 
mould also fit into the category of complex tasks that are often dealt with by means of 
numerical methods. Alongside the aspects of fluid dynamics and heat flux from the 
inside to the outside of the mould, phase transitions and the inclusion of temperature-
dependent material properties of the steel, the casting powder or the casting flux, the 
ma-chine components and the cooling water etc. all have to be taken into 
consideration. At first sight it seems hopeless to try to reach a compre-hensive 
physical-mathematical description, because these processes are also interlinked. In 
addition there is the influence of mould oscillation and the formation of oscillation 
marks. The existing continuous casting models are therefore usually limited to partial 
aspects of continuous casting such as fluid flow, solidification, microstructure, 
segregation, non-metallic inclusions or slag infiltration, and they conflate the resulting 
partial models to a model package. 
Analytical and semi-analytical models or a combination of analytical models with 
empirical approaches are put forward for example in Cicutti and Boeri,[1,2] Paul,[3] 
DiLellio and Young,[4] Wünnenberg,[5] Chiang,[6]Jeschar and Specht,[7] Bland,[8] 
Larrecq, Saguez and Wanin,[9] Singh and Blazek,[10] Miyazawa e Muchi,[11] Mizikar,[12] 
Hillls[13] and Roth.[14] Semi-analytical simulation calculations on slag infiltration which 
are particularly interesting for this paper were carried out by Yamauchi, Emi and 
Seetharaman[15] and Mörwald, Steinrück and Rudischer.[16] One of the few models on 
the subject of continuous casting combining analyti-cal approaches, series 
expansions and empirical considerations was published by DiLellio and Young.[4] 
Their asymptotic, one-dimensional model of the thermal conditions in the mould and 
the flux film of conti-nuous steel casters reflects in the main the results of the present 
paper. The algorithms and parameter studies described in Wosch,[17,18,20,210] and 
Wosch and Hilgenhöner[19] derive solely from a model developed using CA methods. 
New tools open up new possibilities: one only has to apply them in order to arrive at 
new insights. If one limits the problem first of all to simplified geometry and constant 
material properties, then the application of stan-dard mathematical methods leads to 
useful analytical approximations. These analytical approximations then form the 
basis of further considera-tions. The inclusion of temperature-dependent material 
properties or location- and time-dependent parameters is indeed possible by means 
of differentials of approximation in iterative algorithms. In the case of the continuous 
casting mould, the integral and differential formulation of energy conservation provide 
for example the progression of isotherms in the strand shell and the location-
dependent flux film thickness between mould copper plate and strand.[19] 
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2 ANALYTICAL APPROXIMATION  
 
To solve the energy balance equation in plane geometry, there must be a restriction 
to the two main coordinates. The x-axis runs along the slab surface from the 
meniscus to the mould exit. The y-axis is directed into the slab center. The point of 
origin lies at the mould level. The material properties are regarded as constant to 
start with. After transformations, the following equation results: 
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Details of this see Wosch.[17] Under boundary conditions, this type of partial 
differential equation has the following formal solution if the temperature in the 
meniscus is constant (e.g. the same as the liquid or solid tempera-ture) and if the 
energy resulting from overheating and solidification is conducted through the strand 
shell to the cooling water: 
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In this case, the constants ai are dependent on the operating parameters of the 
mould and must be determined from the boundary conditions. Equation 2 is 
described as an analytical approximation. Temperature-dependent material 
properties can be included on the basis of the diffe-rentials of the solution in iterative 
algorithms. Details of this calculation method are given elsewhere[18] and are not to 
be dealt with here. For the liquidus- or solidus isotherm, here named s(x), one arrives 
at the following formula: 
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                                    (3) 

 

Thus the thickness of the strand shell in the casting mould grows like a square root 
function, irrespective of the value of the two parameters ps and px.   
 
3 SCALING NORMALIZATION 
 
On the basis of Equation 3 it also becomes evident that only two num-bers are 
necessary to describe the thickness of the strand shell as a function of the location in 
any slab or thin slab casting mould in the first approximation: ps and px. These two 
parameters are unified in one length and serve as natural scalings for location 
coordinates and strand shell thickness in the syntax of Equation 3. One can 
designate them henceforth as normalizing parameters. If one now identifies the 
following: 
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x s
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p p
                               (4) 

 

then all strand shell thicknesses lie on a normalized curve, which results from the 
analytical approximation: 
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 N Ns 1 x 1                                     (5) 
 

 
The functional relation conveyed by Equation 5 would hardly be worth mentioning if 
the normalization were only applicable to the strand shell thickness. However, it can 
also be transferred to all the other important location dependent parameters, such as 
for example the local heat flux density, the heat transfer resistance of the flux film, 
the water tempera-ture in the cooling water channels, the temperature field in the 
strand shell, and the integral heat flux density or the cooling water ∆T.  
In this new syntax all location dependencies are depicted by just a few types of 
analytic functions. The decisive role in characterizing the pro-cess is therefore no 
longer played by the solution of partial differential equations but by the normalizing 
parameters of the resulting functions. The local heat flux density for example can be 
described as follows: 
 

N
N N

1 1
q

1 s 1 x
 

 
                               (6) 

 

The heat transfer resistance in the flux film, here denoted by GP in allusi-on to the 
word ‘Gießpulver’ (German for casting powder), also becomes quite manageable in 
the normalized syntax: 
 

N N N
N

1
GP 1 s 1 x

q
                           (7) 

 

It is particularly interesting in this context that the normalized integral heat flux 
density IQN is identical to the normalized temperature difference of the cooling water, 
∆TN: 
 

N NIQ T                             (8) 
 

Altogether, using computer algebra methods it has been possible to identify eight 
independent normalizing transformations and the corres-ponding normalization 
parameters, which can be subdivided into four groups on the basis of the physical 
units of the parameters.  
 
     Table 1. Normalization parameters of the analytical approximation 

 Unit Range Explanation 
px m 0,01 to 0,5 x-axis 
pS m 0,001 to 0,01 y-axis 
pq W/m² 4 ·106 to  3·107 Local Heat Fux 
pIQ W/m² 2·105 to  2·106 Integral Heat Flux 
pW K 1 to 15 Water Temperature 
pT K 800 to 1200 Strand Shell Temperature 
pK m²K/W 3·10-7 to  9·10-6 Heat Transfer Resistance 
pGP m²K/W 2·10-5 to  5·10-4 Heat Transfer Resistance of Fux Film 

 
In Table 1 the eight parameters are summarized in symbols with their ranges. The 
most important point is that the normalization transforma-tions cause a separation of 
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the location-dependent quantities into two components: a mathematical function valid 
for all casting moulds and an individual value for every operating condition. The 
thermal condition of any continuous slab casting mould is thus no longer specified by 
the individual function progression e.g. of the local heat flux density, but by a single 
figure characterizing the local heat flux density plus its physical unit. 
 
 
4 DIMENSIONLESS MENISCUS PARAMETERS 
 
In addition to the strand shell thickness, the heat flux density, the heat transfer into 
the cooling water and the thickness of the flux film between copper plate and strand, 
the MouldScreen® programme[19] also calculates the normalization parameters 
mentioned in Table 1. They are deter-mined in the framework of an automatic data 
evaluation from the input parameters of the model. There are now computation 
results for many thousands of operating conditions in very diverse slab and thin slab 
plants, and these form a basis for statistical investigations. From these statistical 
investigations it follows that the three of the four dimensionless ratios given in 
Equation 9 form Gauß distributions around certain values identical for all casting 
moulds. 
 

x w K
1 2 3

s T GP

p p p
V , V , V

p p p
                                (9) 

 

The three quantities V1 , V2 and V3 describe the thermal conditions in the mould level 
and form the basis of further observations. The fourth ratio (pq/pIQ) includes the 
mould length and describes the thermal conditions at the casting mould exit. To give 
a comparative representation of the sta-tistical distributions of the Vi, these are 
transformed into the value range between 0 and 1 (Equation 10). Figure 1 shows the 
resulting fre-quency distributions. 
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        (10) 

 

 
It can be demonstrated that the frequency distributions shown in Figure 1 are in fact 
Gauß distributions. The values of ni thus form random distri-butions around 
characteristic mean values (m1 = 0.07923; m2 = 0.78123; m3 = 0.13954). In this 
context it is particularly interesting that these mean values are not dependent on the 
casting speed. The casting speed range evaluated lies between 0.24 m/min and 6.6 
m/min. It therefore covers slab and thin slab casters. 
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Figure 1. Frequency distributions of normalizing parameters ni. 

 
5 TERNARY DIAGRAMS 
 
A new method for classification of the operating conditions of continuous casting 
moulds now follows from the above statistical observations. This means that one can 
describe the thermal conditions in the mould level of any continuous casting machine 
by three non-dimensional numbers. They are known as ternary meniscus 
parameters. A ternary plot of the normalizing parameters ni for about 1000 slab and 
thin slab data is given in Figure 2. Outstandig is the asymmetrical location of the 
points of state in the upper corner of this diagram.  
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Figure 2. Ternary Diagram of the original normalizing parameters ni. 

 
If one multiplies the dimensionless ratios Vi with uniform factors ßi: 
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                                             (11) 

 

and redefines the corresponding normalizing parameters, a set of new formulae for 
symmetrical quantities p1, p2 and p3 result:: 
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The parameter p1 is determined largely by the steel properties, p2 is given by the 
mould design and cooling, and p3 consists of the flux film properties. In symbolical 
syntax this is described in the notations in Equation 13. 
 

1

2

3

p (Steel Properties)

p (Mould Design and Cooling)

p (Casting Powder Properties)

f
f
f







                    (13) 

 

By entering these pi  in a similar ternary diagram like Figure 2 one gets Figure 3 
which exhibits a symmetry with respect to the vertical centre line. The graph includes 
the ternary meniscus parameters of approximately 3000 data sets, both from slab 
and from thin slab casters. 
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Figure 3. Ternary diagram of the three non-dimensional meniscus parameters p1, p2 and p3 , approx. 
3000 caster data sets. 
 
As the points of state in the ternary meniscus parameter diagram follow the vertical 
symmetry axis the highest concentration of points is reached at the centre with p1 = 
p2 = p3 = 1/3. The statistical scattering around the symmetrical axis in Figure 3 is 
quite small. This indicates that there is a mathematical correlation between p1, p2 and 
p3: 
 

3 1

2 1

p p

p 1 2p



                                            (14) 

 

 
This means that in reality only one single parameter is required to characterize the 
thermal conditions in the meniscus. In Figure 4 this single parameter is denoted by 
the symbol w. Its range of values lies between zero and infinity. In the centre of the 
ternary diagram it has the value of w = 1. Figure 4 shows a cluster of points around 
the region of 0.9 < w < 1.1. This cluster of points in the centre of the ternary diagram 
also includes operating conditions in both slab and thin slab casters. 
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Figure 4. Selection of 1000 central range points of the ternary non-dimensional meniscus parameter 
diagram including slab and thin slab data. 
 
Whether optimum casting conditions exist in the centre of the ternary meniscus 
parameter diagram is the subject of present research. To find this out, it is necessary 
to form a relation between the location of the state points in the ternary diagram and 
the quality characteristics of the product or the terms of save casting. Abnormal 
operating conditions betray themselves by their location in the ternary diagram. This 
concept is demonstrated in Figure 5, where the state points of a sticker event in the 
ternary meniscus parameter diagram are given. 
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Figure 5. State points of a sticker event in the ternary diagram. 
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6 CONCLUSIONS 
 
By means of computer algebra methods, a mathematical model in the form of 
analytical approximations can be drawn from the law of energy conservation. The 
correlations between different physical parameters, in the form of mathematical 
equations, lead through normalization trans-formations to normalization parameters. 
This causes a separation of the location-dependent quantities into two components: 
A few mathematical functions valid for all casting moulds and a set of normalizing 
parameters for the individual operating conditions. The dimensionless ratios of these 
normalization parameters are not dependent on casting speed and they provide a 
new method of process characterization in the region of the mould level, in the form 
of ternary diagrams. This abstract view of conti-nuous casting by analysis of analytic 
functions and individual normaliza-tion parameters provide a deeper understanding 
of the different process conditions. 
 
Acknowledgement 
 
The authors would like to express their gratitude to Univ. Prof. Dr.-Ing. D. Senk 
(Institude of Ferrous Metallurgy, RWTH Aachen, Germany) for his excellent support 
to the project. 
 
REFERENCES 
 
1 Cicutti C., Boeri R.: A Simple Estimation Method for Shell Thickness at the Mold Exit in 

the Continuous Casting of Steel, ISIJ International, Vol. 41 (2001), No. 3, 311-313. 
2 Cicutti C., Boeri R.: Development of an analytical model to predict the microstructure of 

continuously cast steel slabs, steel research, 71 (2000), No. 8, p. 288-294. 
3 Paul U.: Mathematische Modelle zur Analyse und Klassifikation von Prozeßzuständen in 

der Kokille von Brammenstranggießanlagen, Dissertation, Gerhard-Mercator-Universität-
Gesamthochschule-Duisburg, 2000. 

4 DiLellio J.A., Young G.W.: An Asymptotic Model of the Mold Region in a Continuous 
Steel Caster,  Metallurgical Transactions B, Vol. 26B, December 1995, p.1225-1241. 

5 Wünnenberg K.: Möglichkeiten und Grenzen der Wärmeübertragung in 
Stranggießkokillen, Stahl & Eisen, 120 (2000), Nr. 7, S. 29-35. 

6 Chiang L.K.: Mould heat transfer and solidification phenomena in the continuous casting 
of steel slabs, 13th PTD Conf. Proc. 1995, p. 293-315. 

7 Jeschar R., Specht E.: Berechnung des Erstarrungsvorgangs und  der 
Wärmeübertragung beim Strangguß, [in:] Schwerdtfeger K. [Hrsg.],  Metallurgie des 
Stranggießens, Verlag Stahleisen mbH,  Düsseldorf, 1992, S. 91-124. 

8 Bland D.R.; Flux and the Continuous Casting of Steel, IMA Journal of Applied 
Mathematics (1984), 32, p. 89-112. 

9 Larrecq M., Saguez C., Wanin W.: modèle mathématique de la solidification en coulée 
continue, tenant compte de la convection à l’interface solide-liquide, La Revue de 
Métallurgie – Juin (1978), p. 337-352. 

10 Singh S.N., Blazek K.E.: Heat-transfer profiles in continuous-casting mold as a function of 
various casting parameters, Proc. 59th National Open Hearth and Basic Oxygen Steel 
Conference, St. Louis, Mo. p. 264-283. 

11 Miyazawa K.-I., Muchi I.: Mathematical Model for Determining Solidification Profiles of 
Slab in the Vertical Type and the Circular-arc Type Continuous Casting Machines, 
Transactions ISIJ, 15, p. 37-44. 

12 Mizikar E.A.: Mathematical Heat Transfer Model for Solidification of Continuously Cast 
Steel Slabs, Transactions of the Metallurgical Society of AIME, Vol. 239, November 1967, 
p. 1747-1753. 

22



  

13 Hills, A.W.D.: An integral profile method for the analysis of heat flow in the continuous 
casting of metals, Symp. Chem. Engng. in the Metallurgical Industries, 1963, p. 128-140. 

14 Roth W., Aluminium 25, 1943, S. 283-291. 
15 Yamauchi A., Emi T., Seetharaman S.: A mathematical model for prediction of thickness 

of mould flux film in continuous casting mould, ISIJ International, Vol.42 (2002), No. 10, 
p. 1084-1093. 

16 Mörwald K., Steinrück H., Rudischer C.: Theoretical Studies to Adjust Proper Mold 
Oscillation Parameters, 2000 AISE Annual Convention & Mini-Expo, Proc., Chicago, 
USA, 10. – 13. Sept. 2000, (2000), p. 1-8. 

17 Wosch, E. A. T.: Prozeßübergreifende Modellbildung als Beispiel integrativer Lösungen 
beim Stranggießen von Stahl; 21. Aachener Stahlkolloquium, 14./15. September 2006. 

18 Wosch, E. A. T.: Charakterisierung  thermischer Betriebszustände von Stranggießkokillen 
unter Berücksichtigung des Gießschlackeverhaltens,  24. Aachener Stahlkolloquium, 
17./18. September 2009.  

19 Wosch, E. A. T; Hilgenhöner E. H.: New Approaches in Mould Slag Film Prediction and 
Visualisation; ABM Brasil - 41st Steelmaking Seminar – International, 23./26. May 2010, 
Resende -RJ-, Brasil.  

20 Wosch, E. A. T.: Basics of Computer Algebraic Investigations of the Thermally 
Interconnected Systems Ladle, Tundish, Mould; 

21 STEEL GRIPS 9, R&D, (2011), p. 34-40. 
22 Wosch, E. A. T.: Application of Computer Algebraic Investigations of the Thermally 

Interconnected Systems Ladle, Tundish, Mould; 
23 STEEL GRIPS 9, Automation, (2011), p. 23-30. 
 

23




