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Abstract 
The presence of non-propagating cracks is often correlated with the notch sensitivity 
factor q. It is possible to obtain expressions for q if the propagation behavior of small 
cracks emanating from notches is well-known. Several expressions have been 
proposed in the literature. In this work, cracks emanating from circular holes are 
studied using finite elements. For several combinations of notch dimensions, the 
smallest stress range necessary to both initiate and propagate a crack is calculated, 
resulting in expressions for Kf and therefore q. A generalization of El Haddad-
Topper-Smith’s parameter, which better correlates with experimental crack 
propagation data from the literature, is presented. 
Key words: Short cracks; Notch sensitivity; Stress gradient; Non-propagating 
cracks. 
 
AVALIAÇÃO QUANTITATIVA DA RELAÇÃO ENTRE EFEITOS DE GRADIENTE 

DE TENSÕES E SENSIBILIDADE AO ENTALHE 
 
Resumo 
A presença de trincas não propagantes é freqüentemente relacionada ao fator de 
sensibilidade ao entalhe q. É possível obter expressões para q se as taxas de 
propagação de pequenas trincas saindo de entalhes forem bem conhecidas. Várias 
expressões foram propostas na literatura. Neste trabalho, trincas iniciadas em furos 
circulares são estudadas usando elementos finitos. Para várias combinações de 
dimensões do entalhe, a menor amplitude de tensões necessárias para não só 
iniciar como propagar uma trinca é calculada, resultando em expressões para Kf e 
portanto q. Uma generalização do parâmetro de El Haddad-Topper-Smith, o qual 
melhor correlaciona dados experimentais de propagação de trinca da literatura, é 
apresentada. 
Palavras-chave: Trincas curtas; Sensibilidade ao entalhe; Gradiente de tensões; 
Trincas não propagantes. 
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1  INTRODUCTION 
 
Non-propagating cracks, usually associated with the notch sensitivity factor q, 

are present when the nominal stress range 'Vn is between 'V0/Kt and 'V0/Kf, where 
'V0 is the fatigue limit, Kt is the geometric and Kf the fatigue stress concentration 
factors of the notch. Therefore, in principle it is possible to obtain expressions for q if 
the propagation behavior of small cracks emanating from notches is known. 

Several expressions have been proposed to model the dependency between 
the threshold value 'Kth of the stress intensity range and the crack size a for very 
small cracks.(1) Most of these expressions are based on length parameters such as 
El Haddad-Topper-Smith’s a0,(2) estimated from 'Kth and 'V0, resulting in a modified 
stress intensity range 
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which is able to reproduce most of the behavior shown in the Kitagawa-Takahashi 
plot.(3) Yu et al.(4) and Atzori et al.(5) have also used a geometry factor D to generalize 
the above equation to any specimen, resulting in 
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 Alternatively, the stress intensity range can retain its original equation, while 
the threshold expression is modified by a function of the crack length a, namely 
'Kth(a), resulting in 
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where 'K0 is the threshold stress intensity factor for a long crack. Several 
expressions have been proposed to model this crack size dependence.(6-8) Peterson-
like expressions are then calibrated to q based on these crack propagation 
estimates. However, such q calibration is found to be extremely sensitive to the 
choice of 'Kth(a) estimate. 
 In the following section, a generalization of El Haddad-Topper-Smith’s 
equation is proposed to better model the crack size dependence of 'Kth. This 
expression is then applied to a single crack emanating from a circular hole, resulting 
in improved estimates of q. 
 
2  PROPAGATION OF SHORT CRACKS 
 
 A new expression for the threshold stress intensity factor of short cracks is 
proposed, based on El Haddad-Topper-Smith’s equation: 
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 In the above equation, n is typically found to be between 1.5 and 8.0. Clearly, 
Eqs. (1), (2) and (3) are obtained from Eq. (4) when n = 2.0. Also, the classical bi-
linear estimate is obtained as n tends to infinity. The adjustable parameter n allows 
the 'Kth estimates to better correlate with experimental crack propagation data 
collected from Tanaka et al.(9) and Livieri and Tovo,(10) see Fig. 1. 
 

 
Figure 1. Ratio between short and long crack propagation thresholds as a function of a/a0. 

 
 Equation (4) is now used to evaluate the behavior of short cracks emanating 
from circular holes. The stress intensity range of a single crack with length a 
emanating from a circular hole with radius r is expressed, within 1%, by Tada, Paris 
and Irwing:(11) 
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 Note that, when the crack size a tends to zero, Eq. (5) becomes 
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as expected, since the above equation combines the solution for an edge crack in a 
semi-infinite plate with the stress concentration factor of a circular hole, Kt equal to 3. 
Note also that the other limit, when a tends to infinity, results in 
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which is the solution for a crack with length a in an infinite plate, where one of its 
edges is far enough from the circular hole not to suffer its influence in the stress field 
(in fact, the equivalent crack length would be a+U, however as a tends to infinity the 
U value disappears from the equation). Therefore, it follows that for a circular hole 
f(x=0) = 3 and f(xof) = 1/1.1215�2 # 0.63. 
 From Eqs. (4-6), it follows that the crack will propagate when 
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 Using D = 1.1215 and 'Kth { 'K0 for a long crack, then the crack length 
parameter from the above equation is 
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 Equations (9) and (10) result in a crack propagation criterion based on the 
dimensionless functions f and g: 
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 Defining 
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then the crack propagates whenever 
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 Figure 2 plots f and g, assuming a material/notch combination with k = 1.5 and 
n = 6, as a function of the normalized crack length x. For a high applied 'V, the ratio 
'V0/'V becomes small, and the function g is always below f, meaning that a crack of 
any length will propagate. The lower curve in Fig. 2 shows the function g obtained 
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from a ratio 'V0/'V = 1.4, never crossing f. On the other hand, for a 'V small enough 
such that 'V0/'V t Kt = 3, then g is always above f and no crack will initiate nor 
propagate, as shown by the top curve in the figure. 

 
Figura 2. Calculation of the fatigue stress concentration factor Kf from the plots of the functions f and 
g. 
 
 Three other cases can be noted, as follows. In the first case, the g curve with 
'V0/'V = 2 in the figure above has only one intersection point with f. This means that 
such stress levels cause a crack to initiate at the notch, however it will only 
propagate until a size a = x�U obtained from the x value at the intersection point. 
Therefore, non-propagating cracks will appear at the notch root. 
 In the second case, the g curve with 'V0/'V = 1.75 in the figure above has 
two intersection points with f. Therefore, non-propagating cracks will also appear, 
with maximum sizes obtained from the first intersection point (on the left). 
Interestingly, cracks longer than the value defined by the second intersection will re-
start propagating until fracture. Crack growth between the two intersections would 
need to be caused by a different mechanism, e.g. corrosion or creep. 
 Finally, the third case can be seen in Figure 2 considering the g curve with 
'V0/'V = 1.64. In this case, both f and g functions are tangent and meet in a single 
point. This 'V0/'V value is therefore associated with the smaller stress range 'V that 
can cause crack initiation and propagation without arrest. So, by definition, this 
specific 'V0/'V is equal to the fatigue stress concentration factor Kf. To obtain Kf, it is 
then sufficient to guarantee that both functions f and g are tangent at a single point 
with x = xmax. This xmax value is associated with the largest non-propagating flaw that 
can arise from fatigue alone. So, given n and k from the material and notch, xmax and 
Kf can be solved from the system of equations: 
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 This system can be solved numerically for each combination of k and n 
values, and the notch sensitivity factor q is then obtained from 
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3  RESULTS 
  
For several combinations of k and n, the smallest stress range necessary to both 
initiate and propagate a crack is calculated from Eq. (14), resulting in expressions for 
Kf and therefore q, see Figure 3. 
 

 
 

Figure 3. Notch sensitivity factors q as a function of the dimensionless parameters k and n. 
 
 Note from the figure that q is approximately linear with 1/k for q > 0. This 
results in the proposed estimate: 
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where q0(n) and q1(n) are functions of n, and q1(n) is typically between 0.85 and 
1.15. Note that if the estimate above results in q larger than 1, then q = 1. This will 
happen at holes with a very large radius Uupper such that 
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 Therefore, it is impossible to generate a non-propagating crack under 
constant amplitude loading in notches with a very large radius, regardless of the 
stress level. The stress gradient is so small in this case that any crack that initiates 
will cut through a long region still influenced by the stress concentration, preventing 
any possibility of crack arrest. Equation (14) will not have a solution for xmax > 0, 
because wg/wx in this case will be more negative than wf/wx at x = 0. 
 On the other hand, it is possible to obtain a value of q smaller than zero, down 
to q = �0.2 for a circular hole, see Figure 3. This can indeed happen for holes with a 
very small radius Ulower such that 
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 The physical meaning of a negative q is that it is easier to initiate and 
propagate a fatigue crack at a notchless border of the plate than at a very small hole 
inside the plate. The 'KI of a crack at the small hole will soon tend to Eq. (8) due to 
the large stress gradient, without the 1.1215 factor, while the stress intensity solution 
for an edge crack will be larger since it includes the 1.1215 factor. In addition, for 
most materials, the size of this critical radius Ulower is just a few micrometers. This 
leads to the conclusion that internal defects with equivalent radius smaller than such 
Ulower of a few micrometers are harmless, since its Kf will be smaller than 1, and the 
main propagating crack will initiate at the surface. 
 Note that several estimates, such as Peterson’s, assume that the notch 
sensitivity is only a function of U and the ultimate strength Su. Equation (16), 
however, suggests that q depends basically on U, 'V0 and 'K0, in addition to n. Even 
though there are reasonable estimates relating 'V0 and Su, there is no clear 
relationship between 'K0 and Su. This means, e.g., that two steels with same Su but 
very different 'K0 would have different behaviors that Peterson’s equation would not 
be able to reproduce. Therefore, notch sensitivity experiments should always include 
a measure of the 'K0 of the material. 
 Finally, data on 450 steels and aluminum alloys with fully measured Su, 'V0 
and 'K0 are collected from the ViDa software database.(12) The average values of 
'V0 and 'K0 are evaluated for steels with Su near the ranges 400, 800, 1200, 1600 
and 2000MPa, and aluminum alloys near 225MPa. Equation (16) is then plotted as a 
function of the notch radius U, using the above averages and assuming n = 6, see 
Figure 4. Note that Peterson’s equations, which were originally fitted to notch 
sensitivity experiments, can be reasonably predicted and reproduced using the 
proposed analytical approach. 
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Figure 4. Predicted and experimentally fitted notch sensitivity factors as a function of notch radius for 
several materials. 

 
4  CONCLUSIONS 
 

A generalization of El Haddad-Topper-Smith’s parameter was presented to 
model the crack size dependence of the threshold stress intensity range for short 
cracks. The proposed expressions were used to calculate the behavior of non-
propagating cracks. New estimates for the notch sensitivity factor were obtained and 
compared with Peterson’s results. It was found that the q estimates obtained from 
this generalization correlate well with crack initiation data. 
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