

CARACTERIZAÇÃO DA ESCÓRIA DE PRODUÇÃO DE LIGAS SILÍCIO-MANGANÊS VISANDO A RECICLAGEM ¹

Girley Ferreira Rodrigues ²
Joner Oliveira Alves ³
Denise Crocce Romano Espinosa ⁴
Jorge Alberto Soares Tenório ⁵

Resumo

O trabalho teve como objetivo a caracterização da escória silico-manganês, obtendo dados para indicar os métodos de reciclagem possíveis. A escória da produção da liga FeSiMn foi reduzida a um pó fino. O material foi caracterizado através de diversas técnicas: análise química, Difração de raios X, Microscopia Eletrônica de Varredura, e Análise Térmica Diferencial. Outro experimento realizado foi o estudo da fluidez em altas temperaturas, a escória foi fundida empregando um forno elétrico em escala laboratorial e o teste de fluidez Herty foi realizado para obter os dados. Os resultados mostram várias propriedades da escória de silício-manganês: composição química, microestrutura, comportamento térmico e fluidez. Estes dados podem ser usados para indicar os possíveis métodos de reciclagem e, portanto, reduzir o custo e o impacto da destinação final deste resíduo.

Palavras-chave: Escória; Silício; Manganês; Reciclagem.

CHARACTERIZATION OF SLAG PRODUCTION OF SILICON-MANGANESE ALLOY AIMING AT RECYCLING

Abstract

The aim of this work was to characterize the silicon-manganese slag, thereby obtaining data to indicate possible recycling methods. The slag from production of the FeSiMn alloy was reduced to a thin powder. The material was characterized using several techniques: chemical analysis, X-ray diffraction, Scanning Electronic Microscopy, and Differential thermal analysis. Other performed experiment was the study of the fluidity in high temperatures, the slag was melted using a laboratory-scale electric furnace and the Herty fluidity test was performed to obtain the data. The results show several properties of the silicon-manganese slag: chemical composition, microstructure, thermal behavior and fluidity. These data can be used to indicate the possible recycling methods, thereby reducing the cost and impact of this waste disposal.

Key-words: Slag; Silicon; Manganese; Recycling.

- 1 Contribuição técnica ao 41º Seminário de Aciaria Internacional, 23 a 26 de maio de 2010, Resende, RJ, Brasil.
- 2 Doutorando, Universidade de São Paulo / Northeastern University, Mestre em Eng. de Materiais.
- 3 Doutorando, Universidade de São Paulo, Mestre em Eng. de Materiais.
- 4 Professora livre docente, Universidade de S\u00e3o Paulo, Doutora em Eng. Metal\u00edrgica.
- 5 Professor titular, Universidade de São Paulo, Doutor em Eng. Metalúrgica.

1 INTRODUÇÃO

A reciclagem e a reutilização de resíduos é considerada uma viabilidade econômica para a destinação de resíduos. Com isso a possibilidade da produção de produtos utilizando-se resíduos pode se apresentar como uma maneira de diminuir a quantidade de resíduos descartados no ambiente e também prolongar o uso das reservas de matérias-primas naturais. Pois o descarte de resíduos no meio ambiente pode causar danos e comprometer o meio ambiente.⁽¹⁾

No contexto de reciclagem e reutilização de resíduos industriais este trabalho visou obter bases sobre o conhecimento para a possibilidade de reutilização do rejeito industrial como matéria-prima para ser reintroduzida no meio produtivo, desta forma diminuindo a quantidade de resíduo descartado no meio ambiente e também diminuindo a extração de matéria-prima natural. O aproveitamento, total ou parcial, de rejeitos constitui uma vantagem que coloca o fabricante em uma posição fortemente competitiva no mercado, devido não apenas à questão econômica, como também à oportunidade de veiculação deste princípio como marketing ecológico. O manganês é um elemento que é adicionado no processo de fabricação dos aços na forma de ligas de ferro-manganês, conferindo aos aços propriedades específicas. As principais ferro ligas de manganês são classificadas em três categorias de acordo com o seu teor de carbono: (4)

- Ferro Manganês Alto Carbono, representado por FeMnAC (6-7% de carbono);
- Ferro Manganês Médio Carbono representado por FeMnMC (1-2% de carbono); E
- Ferro Manganês Baixo Carbono representado por FeMnBC (0,1-0,5% de carbono).

São produzidas também ligas de ferro silício manganês (FeSiMn) que apresenta teores que variam de 12% a 25% de silício. Um processo de fabricação das ligas de ferro-manganês está esquematizado na Figura 1 onde é possível ver as várias etapas. Observa-se que os minérios vão dar origem a diferentes ligas de acordo com o teor de manganês, nota-se também que a escória da produção da liga FeMnAC, também chamada de escória rica é utilizada como matéria-prima na produção da liga FeSiMn.⁽⁵⁾

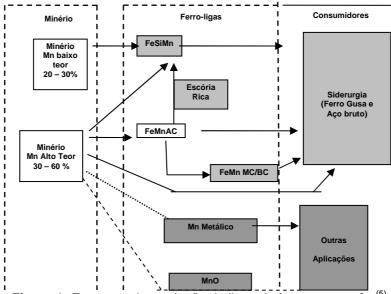


Figura 1: Esquema da produção de ligas de ferro-manganês. (5)

A escória da produção de FeSiMn geralmente é descartada e na Tabela 1 é mostrado um exemplo da faixa de composição dos elementos majoritários na forma de óxidos desta escória. (6)

Tabela 1. Composição química majoritária da escória de FeSiMn⁽⁶⁾

Elementos	CaO	MgO	SiO ₂	Al ₂ O ₃	MnO
Massa (%)	35	2-8	31	4-10	8-12

Nota-se da Tabela 1 que a escória da produção da liga de FeSiMn é formada principalmente por CaO (35%), SiO_2 (31%) e também por outros óxidos MnO (8-12%), AI_2O_3 (4-10%) e MgO (2-8%).

A possibilidade do uso da escória da produção de FeSiMn para a produção de aços com baixo teor de manganês se mostrou possível. (7) A composição química da escória utilizada na produção de aço com baixo teor de manganês é mostrada na Tabela 2. (7)

Tabela 2. Composição química majoritária da escória de FeSiMn⁽⁷⁾

Elementos	CaO	MgO	SiO ₂	Al ₂ O ₃	P_2O_5	MnO	С	S
Massa (%)	12-16	2,5-3,5	45-50	6-10	0,4-0,5	22-28	4-5	0,6-1,2

Conforme nota-se na Tabela 2 a escória é formada principalmente por SiO_2 (45-50%), MnO(22-28), CaO (12-16%), Al₂O₃ (6-10%), MgO (2,5-3,5%) e apresentando também outros elementos como C, S e P_2O_5 .

No estudo realizado sobre a avaliação ambiental da escória de ferro-manganês que foi utilizada como revestimentos de pavimentos na cidade de Salvador no estado da Bahia, e foi concluído que os resíduos não podem ser classificados como inerte conforme a NBR 10004.⁽⁸⁾

2. MATERIAIS E MÉTODOS

Os procedimentos experimentais relacionados a este trabalho foram realizados no departamento de Engenharia Metalúrgica e de Materiais da Escola Politécnica da Universidade de São Paulo (USP).

Foi utilizada escória oriunda da produção da liga FeSiMn de uma empresa produtora de ligas de ferro manganês. A Figura 2 mostra a imagem dos resíduos industriais empregados neste trabalho.

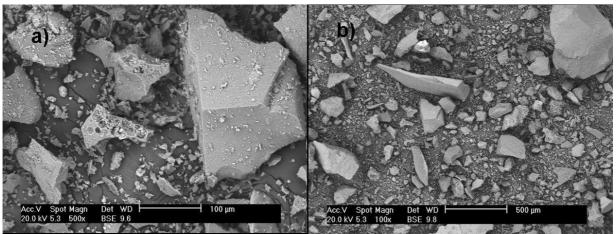
Figura 2: Imagem da escória de ferro silício manganês

Observa-se que a escória de ferro silício manganês possui uma cor cinza escura e partículas com vários tamanhos e geometrias.

A escória de ferro silício manganês apresenta partículas com distribuição de tamanho variada e com tamanhos que não era possível colocá-la no forno, sendo necessário realizar a cominuição da escória. O processo de cominuição da escória foi realizado utilizando-se um Britador de Mandíbulas modelo BM 2010 marca Furlan, em seguida o material foi peneirado em uma peneira do tipo ABN 5/16" com abertura de 7,93 mm da marca Granutest, utilizou-se o material que passou pela malha da peneira.

A caracterização química do material foi realizada em um espectrômetro de fluorescência de raios X por dispersão de comprimento de onda, Philips PW2404, e por uma microssonda EDAX para análise espectrométrica de raios X com detector de elementos leves acoplada ao Microscópio Eletrônico de Varredura do tipo Philips XL - 30.

Para a análise microestrutural foi utilizado um Microscópio Eletrônico de Varredura Philips XL - 30, sendo que as amostras foram recobertas com filme de ouro.


O equipamento utilizado para o estudo do comportamento térmico da escória através de Análise Térmica Diferencial foi um Netzsch, modelo 409 C. Ambos os cadinhos utilizados, porta amostra e de referência, foram de alumina, sendo o ensaio realizado em atmosfera de ar com taxa de aquecimento de 15°C/min até a temperatura de 1.480°C.

Foram realizadas medidas de Fluidez Herty utilizando-se um viscosímetro de Herty. Os ensaios foram realizados a três temperaturas (1.400°C, 1.450°C e 1.500°C), e em todas as corridas a altura entre a calha do forno e o topo do viscosímetro estava em torno de 130 mm e a velocidade de alimentação do viscosímetro foram aproximadas para a mesma velocidade em todas as corridas. A medida de fluidez Herty é considerada a distância medida em centímetros que o fluído percorre o canal de seção circular do viscosímetro de Herty.

3. RESULTADOS E DISCUSSÕES

3.1 Análise Microestrutural

A escória oriunda da produção da liga de ferro silício manganês apresenta-se na forma de rocha com tamanhos e geometrias variados, tendo fragmentos com dimensões de micrômetros até centímetros. A Figura 3 mostra duas imagens obtidas por microscopia eletrônica de varredura da parte da escória que possui menor granulometria.

Figura 3. Imagens de Microscopia Eletrônica de Varredura da escória de ferro silício manganês: a) aumento de 500x; b) aumento de 100x.

As dimensões das partículas que formam a escória variam de micrômetros a centímetros e possuem geometria variada.

3.2. Análises Químicas

A Figura 4 apresenta os resultados da análise química da escória realizada por microssonda eletrônica de energia dispersiva.

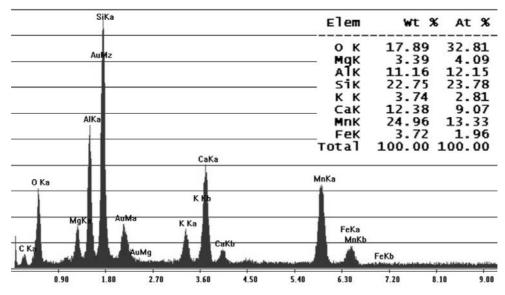


Figura 4. Análise química do resíduo do corte mármore obtida por microssonda eletrônica.

Realizando-se uma análise dos dados do gráfico da Figura 4 pode-se notar que a escória apresenta em maior quantidade os elementos Mn (24,96%), o elemento Si (22,75%), o elemento O (17,89), o elemento Ca (12,38%) e o elemento Al (11,16) aparecendo em menor quantidade outros elementos como o K (3,74%), o Fe (3,72%) e o Mg (3,39%).

A análise química realizada por fluorescência de raios X é mostrada na Tabela 3 na forma de óxidos em porcentagem de massa.

Tabela 3. Composição química da escória de ferro silício manganês

Elementos	% em massa
CaO	20,79
MgO	6,19
SiO ₂	43,13
Al ₂ O ₃	14,79
MnO	12,00
Outros	3,10

Observando-se a

Tabela 3 nota-se que a escória é composta por 43,13% de sílica (SiO₂), 20,79% de CaO, 14,79% de alumina (Al₂O₃), 12% de óxido de manganês (MnO) e 6,19% de óxido de magnésio MgO, e apresentando outros elementos que somam 3,1%. A escória de ferro silício manganês é rica em sílica, óxido de cálcio e alumina estes óxidos fazem parte da composição química de materiais vítreos. A escória apresenta também grande quantidade de óxido de manganês.

3.3 Análise Térmica Diferencial (DTA)

O resultado da Análise Térmica Diferencial é mostrado no gráfico da Figura 5. Notase que a curva apresenta um pico endotérmico que caracteriza a fusão da escória, a temperatura em que se inicia a fusão da escória é de aproximadamente 1.070℃.

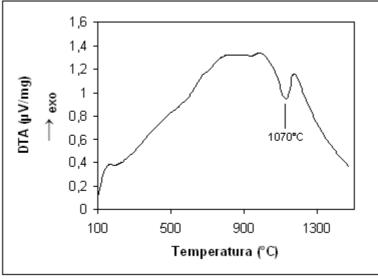


Figura 5. Análise Térmica Diferencial da escória.

Pelos resultados da Análise Térmica Diferencial conclui-se que para a fusão da escória são necessárias temperaturas acima de 1.000℃. Temperaturas da ordem de 1000℃ podem ser alcançadas em forno elétrico a arco, que foi utilizado para a fusão da escória para a medida da fluidez Herty.

3.4 Fluidez Herty

A medida da viscosidade dos materiais fundidos em função da temperatura constitui operação delicada, sendo a medida da fluidez Herty uma maneira prática de se

medir a fluidez. A Tabela 4 apresenta os resultados da fluidez Herty da escória a três temperaturas diferentes $(1.400^{\circ}C, 1.450^{\circ}C)$ e $1.500^{\circ}C$.

Tabela 4. Fluidez Herty a três temperaturas

Temperatura de vazamento	Fluidez Herty (mm)
1.400°C	80
1.450°C	120
1.500°C	170

A fluidez da escória aumenta de acordo com o aumento da temperatura, uma faixa de fluidez de 80 mm a 170 mm foi registrada.

5 CONCLUSÕES

Os resultados encontrados neste trabalho mostram que a escória apresenta partículas com dimensões e geometrias variadas, sendo que as dimensões variam desde micrômetros até centímetros e que dependendo do seu uso é necessário realizar a cominuição da escória para servir como matéria-prima para ser incorporada em algum meio produtivo. A composição química indica que a escória principalmente por óxidos que são usados na fabricação de materiais vítreos indicando que a escória poderá substituir as matérias-primas convencionais utilizadas no processo de fabricação de materiais vítreos. Sendo assim, pode-se afirmar que existe a viabilidade do reaproveitamento da escória, transformando-a em sub-produtos, gerando uma economia para o setor de materiais vítreos e fornecendo um destino adequado para a escória.

Agradecimentos

Os autores agradecem a CAPES, Universidade Federal de Ouro Preto e Universidade de São Paulo.

REFERÊNCIAS

- 1 TERRY LAY, G.F.; ROCKWELL, M. C.; WILTSHIRE, J. C.; KETATA, C.; Characteristics of silicate glasses derived from vitrification of manganese crust tailings. Ceramics International (2009).
- 2 ALVES, J.O., ESPINOSA, D.C.R., TENORIO, J.A.S. Recycling of steelmaking slag aiming at the production of thermo-acoustic insulation. TMS 2009 138th Annual Meeting & Exhibition, 2009, San Francisco USA, p. 921-925.
- 3 ALVES, J.O., ESPINOSA, D.C.R., TENORIO, J.A.S. Reciclagem da escória de aciaria e do resíduo de corte do granito visando a produção de lã de vidro. 40º Seminário Internacional de Aciaria ABM, 2009, São Paulo-SP, p. 36-42.
- 4 FARIA, G. L.; Estudo da Intensidade de Creptação de Minérios Granulados de Manganês do Brasil. Dissertação de Mestrado, 125 p., Rede Temática em Engenharia de Materiais (UFOP/CETEC/UEMG), Ouro Preto, Brasil, 2008.
- 5 VALE. Estrutura da industria de manganês. Disponível em: http://www.vale.com/vale/cgi/cgilua.exe/sys/start.htm?sid=41. Acesso em 06 de janeiro de 2010.
- 6 HOLAPPA, L.; XIAO, Y. Slags in ferroalloys production-review of present knowledge. VII International Conference on Molten Slags Fluxes and Salts, The South African Institute of Mining and Metallurgy, 2004.

- 7 NÓBREGA, L. M; ROSA, N. M. G. S; CAMPOS, L. E.P; SOARES, J. B; Avaliação Ambiental de Escória de Ferro liga Aplicada em Revestimentos de Pavimentos em Salvador 36ª Reunião Anual de Pavimentação 36.ª RAPv Curitiba/PR Brasil 24 a 26 de agosto de 2005.
- 8 PELINO, M.; CANTALINI, C.; VEGLIO, F.; Crystallization of glasses obtained by recycling goethite industrial wastes to produce glass-ceramic materials. Journal of Materials Science 29 (1994) 2087-2094.