

# COMPARISON BETWEEN THE PHASES FORMED FROM DIFFERENT RATES OF PROCESSING Y<sub>2</sub>O<sub>3</sub>-Nb<sub>2</sub>O<sub>5</sub> SYSTEM<sup>1</sup>

Nara Miranda Guimarães<sup>2</sup> Danieli Aparecida Pereira Reis<sup>2</sup> Carlos de Moura Neto<sup>2</sup> Gilberto Carvalho Coelho<sup>3</sup> Francisco Piorino Neto<sup>4</sup> João Marcos Kruszynski de Assis<sup>4</sup> Daniel Soares de Almeida<sup>4</sup>

#### Abstract

The understanding of phase diagram is a crucial issue in materials science, however, it requires hard study and long time to process and create them. There are, now a days, handbooks with these information available, although some of these system are dated from 19<sup>th</sup> century, which made doubtable the available data. The  $Y_2O_3$ -Nb<sub>2</sub>O<sub>5</sub> system is one of them, and it is also poorly understood. This work has the aim to compare the phase stability with the work done by Yashima *et al* and Lee *et al* where they select some compositions in the yttria rich side of this system and by X-ray diffraction identified which were those. In this work the same compositions were studied, seven in the total, but instead of processing at 1500°C and 1700°C for four hour like both did, the heat treatment was done at 1200°C for 60 hours. This temperature was chosen because many of the furnaces available can not reach high temperatures like 1500° and 1700°C making unpractical the experiments. After analyzing the results it was concluded that five of the compositions match the present phases in the system, only the  $Y_2O_3 - 25\%$ mol Nb<sub>2</sub>O<sub>5</sub> and  $Y_2O_3 - 30\%$ mol Nb<sub>2</sub>O<sub>5</sub> presented intermediate peaks between the main peaks with low intensity. It is possible to conclude that phase stability does not require high temperature to be stabilized.

**Keywords:** Stability phase; Y<sub>2</sub>O<sub>3</sub>-Nb<sub>2</sub>O<sub>5</sub> system; X-ray diffraction; Yttria; Niobium oxides.

# COMPARAÇÃO ENTRE AS FASES FORMADAS POR DIFERENTES TAXAS DE PROCESSAMENTO NO SISTEMA $Y_2O_3$ -Nb<sub>2</sub>O<sub>5</sub>

#### Resumo

A compreensão de um diagrama de fase é essencial na ciência dos materiais, no entanto, faz-se necessário um estudo árduo e longo para criação e desenvolvimento destes diagramas. Existem, atualmente, handbooks com algumas destas informações disponíveis, porém alguns destes sistemas datam do século 19, cujos valores são dúbeis. O sistema composto pelos óxidos  $Y_2O_3$ -Nb<sub>2</sub>O<sub>5</sub> é um destes diagramas pouco estudado e averiguado. Este trabalho objetiva comparar a estabilidade das fases com o trabalho realizado por Yashima et al and Lee et al em que foram selecionadas composições no lado rico em ítria e com identificação das fases por raios-X. Neste trabalho as mesmas composições foram estudadas, sete no total, mas ao invés de processadas a 1.500°C e 1.700°C por guatro horas, o tratamento térmico realizado foi a 1.200°C por 60 horas. Esta temperatura foi escolhida porque os fornos disponíveis não atingiam as temperaturas superiores. Após análise, concluiu-se que cinco das composições confirmaram as fases verificadas no sistema, somente as composições de  $Y_2O_3$  - 25%mol Nb<sub>2</sub>O<sub>5</sub> and  $Y_2O_3$  - 30%mol Nb<sub>2</sub>O<sub>5</sub> apresentaram picos intermediários aos picos principais com baixa intensidade. Assim, a estabilidade das fases não requer elevadas temperaturas de tratamento para sua estabilização.

**Palavras-chave:** Estabilidade de fase; Sistema Y<sub>2</sub>O<sub>3</sub>-Nb<sub>2</sub>O<sub>5</sub>; Difração de raios-X; Ítria; Nióbia.

- <sup>1</sup> Technical contribution to 66<sup>h</sup> ABM Annual Congress, July, 18<sup>th</sup> to 22t<sup>h</sup>, 2011, São Paulo, SP, Brazil.
- <sup>2</sup> Instituto Tecnológico de Aeronáutica (ITA)
- <sup>3</sup> Universidade de São Paulo (USP), Escola de Engenharia de Lorena (EEL); UniFoa Centro Universitário de Volta Redonda
- <sup>4</sup> Instituto de Aeronáutica e Espaço (IAE), Departamento de Ciência e Tecnologia Aeroespacial (DCTA)





#### **1 INTRODUCTION**

### 1.1 Y<sub>2</sub>O<sub>3</sub>-Nb<sub>2</sub>O<sub>5</sub> System

The phase diagram of  $Y_2O_3$ -Nb<sub>2</sub>O<sub>5</sub> system has been poorly understood. The existing diagram is dated from 1989 (Figure 1),<sup>(1)</sup> and it was built after chemical and gravimetric analyses using X-ray diffraction and DTA.<sup>(1)</sup> The solubility limits of Nb<sub>2</sub>O<sub>5</sub> in  $Y_2O_3$  and of  $Y_2O_3$  in YNbO<sub>4</sub> have not been determined properly, indicated by the dasehd lines on Figure 1.



**Figure 1.** Phase diagram of  $Y_2O_3$ -Nb<sub>2</sub>O<sub>5</sub> system accepted on literature. (Tss – tetragonal YNbO<sub>4</sub> solid solution,  $Y_2O_3ss$  – cubic solid solution, Fss – fluorite type  $Y_6Nb_2O_{11}$  solid solution,  $\beta$  – monoclinic Nb<sub>2</sub>O<sub>5</sub>).<sup>(1)</sup>

This work has the aim to check the results published on 1998 by Yashima et al.<sup>(2)</sup> and Lee et al.,<sup>(3)</sup> where they studied this system after treatments at 1500° and 1700°C on the yttria rich side. This work aimed to apply a 1200°C temperature and check if the phase diagram accepted on literature has the desired confidence.

#### 2 EXPERIMENTAL PROCEDURE

The powders of  $Y_2O_3$  and  $Nb_2O_5$  used had high level of purity, respectively 99,6% and 98,5%. The niobium oxide came from Companhia Brasileira de Mineração e



Metalurgia – CBMM,<sup>(4)</sup> and the yttria was imported from Starck.<sup>(5)</sup> The chemical analyses provided by the powders manufacturers are presented on Tables 1 and 2.

| Table I. Chemical analysis of mobile bowder | Table 1. | Chemical | analvsis | of niobia | powder <sup>(4)</sup> |
|---------------------------------------------|----------|----------|----------|-----------|-----------------------|
|---------------------------------------------|----------|----------|----------|-----------|-----------------------|

| Chemical Element           | Amount   | <b>Chemical Element</b> | Amount  |
|----------------------------|----------|-------------------------|---------|
| Fire loss (organic traces) | 0,50%    | Na                      | 500 ppm |
| Та                         | 2000 ppm | Р                       | 100 ppm |
| Fe                         | 1000 ppm | С                       | 100 ppm |
| Si                         | 1000 ppm | S                       | 100 ppm |
| Ti                         | 1500 ppm | Pb                      | 5 ppm   |
| К                          | 1000 ppm | Sn                      | 5 ppm   |

| Table 2. Cho | emical anal | vses of | vttria | powder <sup>(5)</sup> |
|--------------|-------------|---------|--------|-----------------------|
|--------------|-------------|---------|--------|-----------------------|

| <b>Chemical Element</b> | Amount (%w) |
|-------------------------|-------------|
| AI                      | 0,02        |
| Са                      | 0,02        |
| С                       | 0,1         |
| Fe                      | 0,05        |
| Мо                      | 0,01        |
| Si                      | 0,1         |
| Zr                      | 0,1         |

The compositions studied are listed on Table 3.

| Compositions (mol %)           |                               |  |  |
|--------------------------------|-------------------------------|--|--|
| Nb <sub>2</sub> O <sub>5</sub> | Y <sub>2</sub> O <sub>3</sub> |  |  |
| 0                              | 100                           |  |  |
| 5                              | 95                            |  |  |
| 10                             | 90                            |  |  |
| 15                             | 85                            |  |  |
| 20                             | 80                            |  |  |
| 25                             | 75                            |  |  |
| 30                             | 70                            |  |  |
| 35                             | 65                            |  |  |
| 40                             | 60                            |  |  |
| 45                             | 55                            |  |  |
| 50                             | 50                            |  |  |

#### Table 3. Compositions used to prepare the samples

After weighing the powders in an analytical balance, it was used a chemical route to prepare the samples consisting on mixing the oxides in a ball mill with dense zirconia balls, homogenization on distilled water and sinter at high temperatures. It was used



1200°C for sixty (60) hours on a muffle furnace for high temperatures model EF 1800 by Maitec INTI located at EEL-USP.

The bulks were milled and the powders obtained were taken to X-ray analysis in Shimadzu difratometer model XRD6000 radiation CuK $\alpha$  with graphite monocromator at EEL-USP; the angular interval was 10-80° with 0,05° as step; the counting time was 1 second. The diffraction pattern was analyzed using Powder Cell software version 2.4 from 2000 as well FullProf Suite Program (1.00), version of february 2007, that has its calculation based on Rietveld method;<sup>(6)</sup> and the phases identified by comparison. The phases identification was done using the patterns information obtained from PDFWin database<sup>(7)</sup> and also from handbook.<sup>(8)</sup>

#### 3 RESULTS

The work published by Yashima et al.<sup>(2)</sup> and by Lee et al.<sup>(3)</sup> resulted on a phase assemblage, reproduced on Table 4, which is shown the phases for each of the composition studied depending on the temperature and the time used for sintering.

| Composition (mol %)            |                               | Resulting Phases |              |  |
|--------------------------------|-------------------------------|------------------|--------------|--|
| Nb <sub>2</sub> O <sub>5</sub> | Y <sub>2</sub> O <sub>3</sub> | 1700°C, 4 h      | 1500°C, 48 h |  |
| 0                              | 100                           | С                | С            |  |
| 5                              | 95                            | C+F              | C+F          |  |
| 10                             | 90                            | C+F              | C+F          |  |
| 15                             | 85                            | C+F              | C+F          |  |
| 20                             | 80                            | F                | C+F          |  |
| 25                             | 75                            | F                | F            |  |
| 30                             | 70                            | F+M              | F+M          |  |
| 35                             | 65                            | F+M              | F+M          |  |
| 40                             | 60                            | F+M              | F+M          |  |
| 45                             | 55                            | F+M              | F+M          |  |
| 50                             | 50                            | М                | М            |  |

 Table 4. Results obtained by Lee et al after X-ray identification<sup>(2,3)</sup>

Where "C" represents the C-type  $Y_2O_3$  cubic phase (space group Ia3, number 206, Pearson symbol cl80),<sup>(8,9)</sup> "F" represents a fluorite cubic phase (space group space group Fm3m, number 225, Pearson symbol cF12),<sup>(8,9)</sup> and "M" the monoclinic YNbO<sub>4</sub> phase, which is a tetragonal form at the temperatures analyzed (space group C12/c1, number 15, Pearson symbol mC28).<sup>(8,9)</sup>The results obtained are shown on Table 5.

| Table 5. Results obtained experimentally |                               |                  |  |  |  |
|------------------------------------------|-------------------------------|------------------|--|--|--|
| Composition (mol %)                      |                               | Resulting Phases |  |  |  |
| Nb <sub>2</sub> O <sub>5</sub>           | Y <sub>2</sub> O <sub>3</sub> | 1200°C, 60 h     |  |  |  |
| 0                                        | 100                           | С                |  |  |  |
| 5                                        | 95                            | C + F            |  |  |  |
| 10                                       | 90                            | C + F            |  |  |  |
| 15                                       | 85                            | C + F            |  |  |  |
| 20                                       | 80                            | C + F            |  |  |  |
| 25                                       | 75                            | C + F            |  |  |  |
| 30                                       | 70                            | F + M            |  |  |  |
| 35                                       | 65                            | F + M            |  |  |  |
| 40                                       | 60                            | F + M            |  |  |  |
| 45                                       | 55                            | F + M            |  |  |  |
| 50                                       | 50                            | М                |  |  |  |

 Table 5.
 Results obtained experimentally





The letters represent the same phases used on Table 4. There was no significant traces of tetragonal phase presence, which makes believe that it is a congruent phase that appears only with a specific amount, otherwise there will not be possible to identify itself. Except on 25% mol, the fluorite phase appears with cubic one, whichy was not verified on Table 4. The monoclinic phase identified corresponds to  $\beta$  phase at Figure 1.

# 4 DISCUSSION

According to Figure 1, the phases correspondents to the compositions studied are identified on Table 6.

| Composition (mol %)            |          | Resulting                        |
|--------------------------------|----------|----------------------------------|
| Nb <sub>2</sub> O <sub>5</sub> | $Y_2O_3$ | Phases                           |
| 0                              | 100      | $Y_2O_3ss$                       |
| 5                              | 95       | $Y_2O_3$ ss                      |
| 10                             | 90       | Y <sub>2</sub> O <sub>3</sub> ss |
| 15                             | 85       | $Y_2O_3$ ss + Fss                |
| 20                             | 80       | $Y_2O_3$ ss + Fss                |
| 25                             | 75       | Fss                              |
| 30                             | 70       | Fss                              |
| 35                             | 65       | Fss + Tss                        |
| 40                             | 60       | Fss + Tss                        |
| 45                             | 55       | Fss + Tss                        |
| 50                             | 50       | Tss                              |

| Tabla 6   | Dhases  | identified | from | litoraturo | diagram  | on Eiguro | 1 |
|-----------|---------|------------|------|------------|----------|-----------|---|
| i able 0. | FIIdSES | luentineu  | nom  | illerature | ulayi am | on Figure |   |

Where " $Y_2O_3$  ss" is the cubic solid solution of yttria, with cubic structure; "Fss" is the fluorite-type  $Y_6Nb_2O_{11}$  solid solution; and "Tss" is the tetragonal YNbO<sub>4</sub> solid solution. Comparing the results on table 6 with those presented on Table 4, it's possible to verify differences after 70% mol of  $Y_2O_3$ . The works of *Yashima* et al.<sup>(2)</sup> and Lee et al.<sup>(3)</sup> identified the distinguished cubic types on compositions of 85, 90 and 95% mol of yttria, which is not obtained from the diagram.

Now, analyzing the results on Table 6 with the ones obtained experimentally, it is possible to see that at 50% there is presence of monoclinic phase, unverified on the literature. The tetragonal phase also starts to be identified at 70% mol of yttria, and its presence starts to be more significant at higher percentages of niobia, data absent on experimental study. From Yashima et al.<sup>(2)</sup> and Lee et al.<sup>(3)</sup> work and this, there are only one composition

From Yashima et al.<sup>(2)</sup> and Lee et al.<sup>(3)</sup> work and this, there are only one composition that show phases differently, 25% mol of  $Y_2O_3$ . Looking at Figure 1, it's possible to see that this point correspond to a monophase field, fluorite one. A possible variance could have had change the results, and weighting the exactly amount of oxides are impossible, we can get a high precision value but not the exact one.

It's clear though that the diagram accepted for  $Y_2O_3$ -Nb<sub>2</sub>O<sub>5</sub> system needs improvement and with these three works and further ones, it will be possible to build a better and more representative phase diagram for these oxides.

# 5 CONCLUSION

It was concluded that after analyzing the phase diagram accepted in the literature for  $Y_2O_3$ -Nb<sub>2</sub>O<sub>5</sub> system, it got clear that some parts of it need to be redefined, specially





those which separate phase boundaries. The advantage of new techniques like X-ray diffraction, and software for characterization made possible to explore and detect points unknown before.

#### Acknowledges

The authors would like to thank the support of FAPESP and the help from EEL-USP and AMR-DCTA laboratories crew.

# REFERÊNCIAS

- 1 BABICH, T.G.; ZAGORODNYUK, A.V.; TETERIN, G.A.; SADKOVSKAYA, L.V.; ZHIRNOVA, A.P. Y<sub>2</sub>O<sub>3</sub>-Nb<sub>2</sub>O<sub>5</sub>. Sov. Progr. Chem., 55 [2] 21-24, 1989.
- 2 YASHIMA, M.; LEE, J.-H.; KAKIHANA, M.; YOSHIMURA, M. Raman spectral characterization of existing phases in the Y<sub>2</sub>O<sub>3</sub>-Nb<sub>2</sub>O<sub>5</sub> system. J. Phys. Chem. Solids, v. 58, n. 10, pp. 1593-1597, 1997.
- 3 LEE, J.-H.; YASHIMA, M.; KAKIHANA, M.; YOSHIMURA, M. Phase diagram and oxygen-ion conductivity in the Y<sub>2</sub>O<sub>3</sub>-Nb<sub>2</sub>O<sub>5</sub> system. J. Am. Ceram. Soc., 81 [4] 894-900, 1998.
- 4 Companhia Brasileira de Mineração e Metalurgia CBMM. Available at: http://www.cbmm.com.br/portug/index.html
- 5 H. C. Starck. Powders for advances ceramics. Number PD-4007, issue 3-01.12.2009. Available at: http://www.hcstarck.com/hcsadmin/file/8a8181e22558a8e1012558fc03e11745.de.0/PD-4007\_3.pdf
- 6 GOBBO, L.A. Aplicação da difração de raios-X e método de rietveld no estudo de cimento portland. Tese de doutorado, USP, 2009.
- 7 JPDF card. International centre for diffraction data. Newton Square, PA, JPDF, 1981.
- 8 VILLARS, P. Pearson's handbook desk edition. Crystalographyc Data for Intermetallic Phases. ASM International, v. 2, 1997.
- 9 Naval Research Laboratory Center for Computational Materials Science. Available at: http://cst-www.nrl.navy.mil/lattice/prototype.html