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Abstract 
Non-proportional (NP) multiaxial fatigue life predictions require the calculation of 
equivalent stress ranges associated with the history path. A traditional way to find 
such ranges is to use spherical, ellipsoidal or prismatic hull methods, which search 
for enclosures of the entire history path in stress diagrams. In this work, all existing 
hull methods are presented and compared using results from more than 3,000,000 
Monte Carlo simulations of random and especially chosen path topologies in two to 
five-dimensional stress diagrams. New models are also proposed, based on Deper-
rois’ idea of longest chords. It is found that the proposed models are very similar to 
the Maximum Prismatic Hull model, but with a much simpler and efficient algorithm to 
compute equivalent stresses. It is also shown that the Minimum Circumscribed Ellip-
soid, Minimum Volume Ellipsoid, and Minimum Ball (MB) methods may result in very 
poor predictions of the stress amplitudes. The only recommended method based on 
ellipsoids is the Minimum F-norm Ellipsoid (MFE) which, together with the Maximum 
Prismatic Hull model and its variations, are very efficient to predict equivalent ampli-
tudes in NP histories. Experimental results for 15 different multiaxial histories are al-
so used to evaluate the discussed methods. 
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COMPARAÇÃO ENTRE PREDIÇÕES DE TENSÃO EQUIVALENTE BASEADAS 
EM ENVOLTÓRIAS ESFÉRICAS, ELIPSOIDAIS E PRISMÁTICAS 

Resumo 
Predições de vida à fadiga sob cargas multiaxiais não-proporcionais (NP) requerem 
o cálculo das amplitudes equivalentes de tensão associadas ao caminho da história. 
Uma forma de encontrar essas amplitudes consiste de usar métodos baseados em 
envoltórias esféricas, elípticas ou prismáticas, que procuram por envoltórias que 
contêm em seu interior toda a história de tensão. Neste trabalho, todos os métodos 
existentes baseados em envoltórias convexas são apresentados e comparados, u-
sando resultados de mais de 3.000.000 de simulações de Monte Carlo em caminhos 
aleatórios ou especialmente escolhidos em diagramas de duas a cinco dimensões. 
Novos modelos são propostos, baseados na idéia de Deperrois das cordas mais 
longas. Conclui-se que os métodos propostos são muito similares ao método da Má-
xima Envoltória Prismática, mas com um algoritmo muito mais simples e eficiente pa-
ra computar tensões equivalentes. Mostra-se também que os métodos da Mínima 
Envoltória Elipsoidal, Elipsóide de Mínimo Volume, e Mínima Esfera podem resultar 
em predições ruins das amplitudes de tensão. O único método recomendado basea-
do em elipsóides é o Elipsóide de Mínima Norma-F que, junto com o modelo da Má-
xima Envoltória Prismática e suas variações, são muito eficientes para predizer am-
plitudes equivalentes em histórias NP. Resultados experimentais para 15 histórias 
multiaxiais diferentes são usados para avaliar os métodos apresentados. 
Palavras-chave: Fadiga multiaxial; Tensão equivalente; Envoltória convexa. 
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1  INTRODUCTION  
 
Long-life multiaxial fatigue damage models are based on stress ranges such as the 
octahedral shear stress range Mises, the shear range  projected onto a candi-
date plane with direction , or the maximum shear range max. It is not difficult to de-
fine these ranges for constant amplitude loadings, where only two stress states need 
to be considered, one associated with the peak and the other with the valley.(1-3) 
However, for multiaxial variable amplitude (VA) loadings, in special when the history 
is non-proportional (NP), it is not clear how these ranges should be defined and iden-
tified. The loading path, represented e.g. in a Mises diagram, could have a generic 
curved shape spanning infinitely many stress states, without a clear peak or valley. 
The following sections deal with how to quantify the stress ranges used by the vari-
ous multiaxial damage models, associated with variable amplitude (VA) non-
proportional (NP) histories that are periodic in time.  
Consider that the periodic history is formed by repeatedly following a given loading 
path domain D, where Dcontains all points from the stress variations along one pe-
riod of the history. For Case A cracks (Figure 1), after projecting D onto a candidate 
plane perpendicular to the specimen surface (i.e. with  = 90o from Figure 1), the 
maximum shear stress variation max is basically the difference between the maxi-
mum and minimum values along D of the shear stress A that acts parallel both to the 
surface and to the critical plane. The approach is similar for strain-based methods. 
 

 
Figure 1: Case A and Case B cracks. 

 
But, for Case B cracks (Figure 1), the effective max is not easy to define, since a 
generic NP loading path D results in NP variations of both shear stresses B and B2 
that act parallel to the critical plane. Both B and B2 influence the growth of Case B 
shear cracks along the critical plane, therefore B2 should not be neglected. To calcu-
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late the maximum strain range max at the critical plane considering B2, it is neces-
sary to draw the path Dof the stress history along a B  B2 diagram, as shown in 
Figure 2. 

 
Figure 2: Stress history path D in the B  B2 diagram, enclosed in convex hulls based on circles 
(balls), ellipses and rectangular prisms. 
 
For a complex-shaped history such as the one shown in the figure, it is not easy to 
decide how to obtain the effective max. The so-called convex hull methods [4-8] try 
to find circles, ellipses or rectangles that contain the entire path (in the 2D case). In a 
nutshell, in the 2D case, the Minimum Ball (MB) method(4) searches for the circle with 
minimum radius that contains D; the minimum ellipse methods(5-7) search for an el-
lipse with semi-axes a and b that contains D with minimum area ab or minimum 
norm (a2 + b2)1/2; and the maximum prismatic hull methods(6,8) search among the 
smallest rectangles that contain D the one with maximum area or maximum diagonal 
(it’s a max-min search problem). The value of max in Figure 2 would either be as-
sumed as the value of the circle diameter, or twice the ellipse norm, or the rectangle 
diagonal. 
The convex hull methods can also be applied to traction-torsion histories, if a x  
xy3 diagram is considered. The effective range in this case is the Mises stress 
range Mises, defined in the next section. 
Such convex hull methods can be extended to histories involving more than two 
stress components. E.g., if the history path is plotted in a 3D diagram representing    
3 stress components, the convex hull methods will search for spheres, ellipsoids or 
rectangular prisms. For higher dimension diagrams, the search is for hyperspheres, 
hyperellipsoids, and rectangular hyperprisms. However, this practice can lead to sig-
nificant errors, since each convex hull will reflect an effective range calculated on dif-
ferent planes at different points in time. The recommended approach for general 6D 
histories involving all stress components is then to project them onto Case A and 
Case B candidate planes, resulting in each case in searches for effective ranges in 
2D diagrams   3 or B  B2. 
The convex hull methods are described in detail in the following sections. Their 
framework is based on deviatoric stress diagrams and Mises stress parameters, 
which are discussed next. 
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2 MISES STRESS PARAMETERS 
 
The methods to obtain effective (or equivalent) stress ranges usually make use of 
stress parameters based on the Mises yield function. For linear elastic histories, both 
Mises effective stress Mises and Mises (or octahedral) shear stress Mises can be used 
as auxiliary parameters, where 
 

2 2 2 2 2 2
Mises Mises x y y z x z xy yz xz

3 1 ( ) ( ) ( ) 6( )
2 2

                           (1) 

 
Since the Mises stress Mises (as well as the octahedral shear stress Mises) equation 
is always positive, a Mises stress range Mises (also known as relative Mises stress 
RMises) should be used to correctly evaluate the variation of Mises due to a change 
(x, y, z, xy, xz, yz) in the stress components along some loading path : 
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Note that the Mises stress range correlates with the octahedral shear range parame-
ter Mises through Mises = Mises  3/2. 
Note that the octahedral shear range Mises is measured on the octahedral planes, it 
is not equal to twice the shear amplitude a acting on the considered plane. But this 
shear amplitude could be easily obtained by 
 

a Mises Mises
6 3

4 6
                  (3) 

 
3 REDUCED ORDER STRESS SPACES 
 
When dealing with incremental plasticity, it is convenient to represent the stresses in 
a 9-dimensional (9D) space. In particular, when representing the deviatoric stress 
tensor in 9D, its norm |S | becomes directly proportional to the Mises stress and oc-
tahedral (or Mises) shear stress. But, to find effective ranges in VA-NP histories, it is 
a good idea to work in a space with reduced dimensions, saving computational effort 
without modifying the results. The reduction from 9D to 6D deviatoric stresses is 
simply a matter of eliminating the yx, zx and zy components from the deviatoric 
stress tensor, which are redundant because yx  xy,zx  xz, andzy  yz. 
Since the deviatoric stresses Sx, Sy and Sz are linear-dependent, because Sx + Sy + 
Sz = 0, it is possible to further reduce the deviatoric stress dimension from 6D to 5D. 
There are infinite ways to do this, for example replacing the stresses Sx, Sy and Sz by 
new variables S1  ax1Sx + ay1Sy + az1Sz and S2  ax2Sx + ay2Sy + az2Sz, where the 
user-defined coefficients ax1, ay1, az1, ax2, ay2 and az2 are any values that make the 
vectors [ax1  ay1  az1]

T, [ax2  ay2  az2]
T, and  [1  1  1]T become linear independent. A not-

able example of such transformation is the one with [ax1  ay1  az1]
T = [3/2  0  0]T and 

[ax2  ay2  az2]
T = [0  0.5  0.5]T, resulting in a reduced-order deviatoric stress tensor S '  

represented in a 5D transformed Euclidean stress-space E5, where 
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The above defined 5D deviatoric stress S '  has three very interesting properties: 

1) The norm of the 5D vector S '  from the E5 transformed deviatoric stress-space is 
equal to the Mises equivalent stress Mises. 
2) The Euclidean distance in the 5D E5 stress-space between any 2 points AS ' = 

[S1A S2A S3A S4A S5A]T and BS ' = [S1B S2B S3B S4B S5B]T, respectively associated with 

the 9D deviatoric stresses AS  and BS , is equal to the Mises stress range Mises be-
tween these stress states. 
3) The locus of the points which have the same Mises with respect to a point S '  in 

the E5 deviatoric stress-space is the surface of a hypersphere with center in S '  and 
radius Mises. This is a simple corollary from the second property. 
Note that, for unnotched specimens under histories combining uniaxial tension x 
and torsion xy, the 5D deviatoric stress S '  can be represented in the classical dia-
gram x  xy3 using the 2D projection [S1  S3]

T,  since in this case S1 = x, S3 = 
xy3, and S2 = S4 = S5 = 0. 
After defining all involved stress parameters, the convex hull methods are discussed. 
These methods are based on convex hulls enclosing the history path in the above 
defined stress sub-spaces. There are 3 usual types of convex hulls: balls, ellipsoids 
and rectangular prisms. The Minimum Ball method is presented next. 
 
4 MINIMUM BALL METHOD 
 
Dang Van and Papadoulos(4) realized that the search for an effective stress range 
must take place on the deviatoric stress space. For periodic elastic histories, the me-
soscopic stresses and strains in the critically oriented grain should stabilize by the 
process of elastic shakedown, generating a local residual stress [ij]res at such critical 
grain. Dang Van assumed that the subsequent mesoscopic () stress history at such 
grain, after the stabilization, is related to the macroscopic (M) history through 
 

ij ij M ij res[ ( t )] [ ( t )] dev[ ]                  (5) 

 
where dev[ij]res is the deviatoric part of the residual stresses tensor stabilized in that 
grain.  
The calculation of the mesoscopic stresses in Dang Van’s model can be interpreted 
as a hardening problem, caused by elastic shakedown. When the periodic macros-
copic history is represented in the deviatoric space, Dang Van assumes that the sta-
bilized residual stress is the vector from the center of the minimum ball that circum-
scribes the history to the origin of the diagram. The word “ball” is used here to de-
scribe a circle, sphere or hypersphere, respectively for 2D, 3D or higher dimension 
histories. 
The same result holds if the reduced stress E5 space is used, or a sub-space from it. 
E.g., for the 2D macroscopic deviatoric stress diagram Si  Sj (or a deviatoric strain 
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diagram ei  ej, with 1  i < j  5) in Figure 3 on the left, the residual deviatoric stress 

resS  (or strain rese ) is the 2D vector from the center of the circumscribed circle to the 

origin. It follows that the mesoscopic deviatoric history [Si]  [Sj] can be obtained by 
simply translating the origin of the macroscopic diagram to the center of the circle, 
see Figure 3 on the right. 
 

 
Figure 3: Minimum Ball (MB) and Minimum Circumscribed Ellipse (MCE) for a macroscopic path, and 
the resulting mesoscopic history. 
 
The values of the mesoscopic Tresca stress (t) and mesoscopic hydrostatic stress 
h(t) (which is equal to the macroscopic hydrostatic stress) are calculated for each 
point in the mesoscopic history path D. Dang Van then predicts infinite life if and only 
if all points satisfy the inequality  
 

(t) + DVh(t)  DV               (6) 
 
In summary, Dang Van is a type of Minimum Ball (MB) method where each stress 
state along the history path is compared to a limiting stress level to predict infinite life. 
However, it is not useful to calculate finite fatigue lives, since it does not deal with 
stress (or strain) ranges, only with individual stress states. 
But the same MB circumscribed to the macroscopic history can be used to estimate 
an effective Mises stress range Mises. The diameter d of such MB in the trans-
formed deviatoric stress-space E5 (or in a 2D, 3D or 4D sub-space of such space) is 
the magnitude of the variation S' , which is equal to Mises. Therefore, the effective 
shear range max, Mises range Mises, and octahedral shear range Mises can all be 
estimated from d using the MB method by 
 

Mises Mises max a MB3 / 2 3 ( 2 ) 3 | S'| d L                       (7) 

 
where L is the longest chord in the history (the maximum Euclidean distance in the 
transformed space between any two points along the history path, measured in 
stress units) and MB is a dimensionless parameter defined as the ratio between the 
Mises stress range and L. 
In the 2D case, if any two points from the history define the diameter of a circle that 
contains the entire path, then their distance L is equal to the diameter d, therefore 
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MB = 1.0. A notable 2D case is for a path forming an equilateral triangle, where MB = 
2/3  1.155. For any other 2D path, it is found that 1.0  MB  1.155. 
 
5 MINIMUM ELLIPSOID METHODS 
 
The Minimum Ball (MB) method is not efficient to represent the behavior of NP histo-
ries. For instance, it would predict the same Mises ranges for a NP 90o out-of-phase 
circular path and a proportional path defined by a diameter of this circle, both result-
ing in MB = 1.0. But a higher value of MB would certainly be expected for the NP his-
tory. 
To solve this problem, Freitas, Li and Santos,(5) proposed the Minimum Circum-
scribed Ellipsoid (MCE) method. It searches for an ellipse (or ellipsoid or hyperellip-
soid, for higher dimensions) that circumscribes the entire history, with its longest 
semi-axis a1 equal to the radius of the minimum ball, and with the smallest possible 
values for the remaining semi-axes ai (i > 1). The Mises ranges are defined by 
 

= 
dim

2
Mises i

i 1

2 a 2 F


                  (8) 

where dim is the dimension of the history path, 2  dim  5, and F is defined as the 
Frobenius norm of the ellipsoid, which is equal to the square root of the sum of the 
squares of the ellipsoid semi-axes. Here, the Frobenius norm is essentially an Eucli-
dean distance (or Euclidean norm) between the origin and a point with coordinates 
(a1, a2, …, adim), since the axes of the reduced stress space are orthonormal. In the 
case of tensors, the Euclidean norm is commonly called the Frobenius norm, usually 
abbreviated as F-norm. 
The ratio MCE between the Mises ranges calculated by the MCE method and the 
longest chord L reproduces experimental data better than MB generated by the MB 
method. In the 2D case, a NP circular path would result in MCE = 2 instead of the 
proportional value 1.0, which is much more reasonable than the Minimum Ball predic-
tion. It is also found that any 2D path results in 1.0  MCE  2, with the maximum 
value occurring e.g. for circular and square paths. 
The downside of the MCE method is the requirement that the longest semi-axis must 
be equal to the radius of the Minimum Ball. For a rectangular path, this requirement 
results in a circle as the minimum circumscribed ellipse, with MCE = 2  1.414. But 
this would be true even for very elongated rectangles with very low aspect ratios be-
tween their side lengths. The MCE would thus predict MCE = 2 for an almost propor-
tional rectangular path, instead of the expected value of 1.0. 
A possible alternative to the MCE method is to search for the Minimum Volume Ellip-
soid (MVE), also known as the Löwner-John Ellipsoid. In the 2D case, it is basically 
the search for an enclosing ellipse with minimum area. Such MVE method solves the 
issue with rectangular paths, however it tends to find ellipses with lower aspect ratios 
than expected. In addition, the search for such ellipsoid or hyperellipsoid can be 
computationally intensive for 3D or higher dimension histories. 
Another alternative to the MCE method is the search for the Minimum F-norm Ellipso-
id (MFE.(6) Instead of searching for the minimum volume (or area), the MFE looks for 
the ellipse, ellipsoid, or hyperellipsoid with minimum value of its F-norm F, defined in 
Eq. (8). Zouain. Mamiya and Coules(7) present an efficient (although computationally 
intensive) method to numerically find such MFE. 
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The ratios between the Mises stress or strain ranges 2F, calculated from the MCE, 
MVE and MFE methods, and the longest chord L are defined, respectively, as MCE, 
MVE andMFE. All these ratios must be greater than or equal to 1.0. In the 2D case, a 
notable path is the one with the shape of an equilateral triangle with sides L (which 
are also its longest chords), where the resulting hull is a circle with diameter d = 
2L/3 and F-norm F = d2, resulting in MCE = MVE = MFE = 2F/L = 22/3  1.633. 
For any other 2D path, it is found that 1.0  MCE  1.633 and 1.0  MFE  1.633, 
however MVE can reach values beyond 2.0 when a very elongated enclosing ellipse 
is the solution with minimum area, an indication that the MVE method can be very 
conservative. 
 
6 MAXIMUM PRISMATIC HULL METHODS 
 
Another class of convex hull methods tries to find a rectangular prism with sides 2a1, 
..., 2adim that encloses a load history path, where dim is the dimension of the consi-
dered space. There are essentially 4 methods to fit rectangular prisms to the history 
path. 
The first is the Maximum Prismatic Hull (MPH). This method searches for the smal-
lest rectangular prism that encloses the history (the minimum prism), for each possi-
ble orientation of the prism. Among them, the one with highest F-norm is chosen. The 
F-norm and resulting Mises ranges are the same defined in Eq. (8), except that here 
ai are the semi-lengths (half the length) of the sides of the rectangular prism. The 
MPH was originally proposed by Gonçalves, Araujo and Mamiya(6) for sinusoidal time 
histories, and later extended by Mamiya et al. in [8] for a general NP loading. 
Another prismatic hull method is the Maximum Volume Prismatic Hull (MVPH), which 
searches among the minimum prisms the one with maximum volume. Although the 
search is for a maximum volume, the F-norm is also used to compute the Mises 
range. In the 2D case, the MVPH method is essentially the search, among the mini-
mum rectangles that enclose the entire path, of the one with maximum area (it’s a 
max-min problem). 
A third method is proposed here, called the Maximum Prismatic Hull with Longest 
Chords (MPHLC). It is basically an improvement of Deperrois’ method.(2) In the     
Deperrois method, the longest chord L5 between any two points of the path in the 
projected 5D deviatoric stress-space E5 is determined. Then, the path is projected 
onto a 4D stress-subspace E4 orthogonal to L5, and the new longest chord L4 is 
computed in this subspace. The path is then projected onto a stress-subspace E3 
orthogonal to both L5 and L4, and the new longest chord L3 is computed in this sub-
space. Analogously, the longest chord L2 is found in the stress-subspace E2 ortho-
gonal to L5, L4 and L3. Finally, the longest chord L1 is found in the stress-subspace 
E1 orthogonal to L5, L4, L3 and L2.  
The combination of the MPH and Deperrois’ methods thus leads to the MPHLC me-
thod, performed in 4 steps: 
1) define the longest side 2a1 of the rectangular prism in the direction of the longest 
chord L of the history; 
2) project the history into the sub-space orthogonal to the directions of all sides of the 
prisms that have already been defined (for a history with dimension dim, if m sides 
have already been chosen, then such sub-space will have dimm dimensions); 
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3) define the next side 2ai of the rectangular prism in the direction of the longest 
chord measured in the projected sub-space, and repeat step 2 until all sides are 
found; 
4) if multiple solutions for the rectangular prism are found, the one with maximum F-
norm is chosen. 
The advantage of the MPHLC method over the MPH or MVPH is that it does not re-
quire a numerical search for the prismatic hull orientation. Its orientation is determi-
nistically defined by the longest chords. In special for 3D or higher dimension histo-
ries, the MPHLC method can lead to a huge decrease in computational effort. For in-
stance, the orientation of a 5D hyperprism is given by 10 angles, therefore the search 
for the orientation associated with maximum F-norm (or maximum volume) involves a 
search in a 10-dimensional space, which can be very costly. In addition, the next sec-
tions will show that the MPHLC predictions give almost the same results as the MPH 
and MVPH methods. 
A variation of the MPHLC is also proposed, called the Maximum Prismatic Hull with 
Container Chords (MPHCC). It is similar to the MPHLC, but all chords that contain 
the orthogonal projection of the entire history onto them (called here “container 
chords”) are considered as candidate directions for the sides of the rectangular 
prism. Note that every longest chord LC is a “container chord” CC, but not every CC 
is a LC. From the probable multiple solutions for the resulting rectangular prisms, the 
one with maximum F-norm is chosen. 
The ratios between the Mises stress or strain ranges 2F, calculated from the MPH, 
MVPH, MPHLC and MPHCC methods, and the longest chord L are defined, respec-
tively, as MPH, MVPH,MPHLC andMPHCC. All these four ratios are, in average, very 
close to each other, therefore any of the four variations of the prismatic hull methods 
could be used interchangeably. For a history path with dimension dim, it is found that 
1  MPHLC  MPHCC  MPH  dim, therefore the MPHCC results in Mises ratios 
slightly closer to the MPH predictions than the MPHLC. In addition, it is also found 
that 1  MVPH  MPH  dim. 
In the next section, all convex hull methods presented in this paper are evaluated 
and compared. 
 
7 COMPARISON AMONG THE CONVEX HULL METHODS 
 
Figure 4 shows the convex hulls obtained from all presented methods for a rectangu-
lar history path in a reduced 2D sub-space, and their ratios  between the Mises 
ranges and longest chord L. Note that, in this example, L is the diagonal of the rec-
tangular path. 
Experimental results suggest that the expected ratio  in this example is about 1.3. 
However, the MB method predicts MB = 1.0, which is very non-conservative. The MB 
assumes that such rectangular path would have the same Mises range L as a 
straight path along one of its diagonals, which is not reasonable. The MCE method, 
on the other hand, overestimates , obtaining MCE = 2  1.414. The MCE method 
finds the same circle from the MB to enclose such history, even though the aspect ra-
tio of this rectangular path is very different from 1.0, suggesting instead the use of an 
elongated elliptic hull.  
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Figure 4: Values of the  Mises stress (or strain) range ratio for the MB, MCE, MVE, MFE, MPH, 
MPHLC, MPHCC, MVPH, MinPH, MinVPH and MOI methods for a rectangular 2D history path. 
 
The MVE method also tends to overestimate , obtaining in this example MVE = 
1.413. In the search for the minimum area (or volume, for higher dimension dia-
grams), the MVE method ends up finding overly elongated ellipses (b << a), which 
have a small area ab due to the very low value of b but an unrealistically high F-
norm (a2+b2)1/2 due to the high value obtained for a. Thus, MVE overestimates the ra-
tio , since it is calculated from this unrealistic F-norm, and not from the area (or vo-
lume). 
Among the ellipsoid hull methods, the MFE gives the best predictions, resulting in 
MFE = 1.295, with an enclosing ellipse with a much more reasonable aspect ratio 
than the ones from the MCE and MVE methods, see Figure 4. 
Both MPH and MVPH methods obtain in this example MPH = MVPH = 1.295, which 
exactly agrees with the MFE prediction. Note however that the MPH and MFE me-
thods are not equivalent, since they result in slightly different  values between them 
for other history paths, as shown in Castro et al.(9) 
The MPHLC and MPHCC result in MPHLC = MPHCC = 1.207, a value about 7% lower 
than the MPH prediction. The fact that MPHLC  MPH and MPHCC  MPH is not a sur-
prise, since the MPH searches for the maximum F-norm checking rectangles (in the 
2D case) in all directions, while the MPHLC and MPHCC only search for rectangles 
in the directions of the longest and/or container chords. If these directions of longest 
or container chords coincide with the ones associated with a maximum F-norm rec-
tangle (which is quite often true), then the MPHLC or MPHCC predictions will coin-
cide with MPH, otherwise they will result in  ratios slightly lower than the upper 
bound MPH. 
Figure 4 also shows the prismatic hulls MinPH and MinVPH with minimum (instead of 
maximum) F-norm and volume (or area, in 2D), respectively. In this example, these 
rectangular hulls would coincide with the original rectangular path, wrongfully predict-
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ing  = 1. This counter-example shows why no prismatic hull method with minimum 
F-norm or volume has been proposed. 
In summary, the MB method tends to underestimate the Mises stress or strain range 
ratio , while the MCE and MVE overestimate it. The MPHLC and MPHCC slightly 
underestimate , while the MFE, MPH and MVPH give very similar (although, in gen-
eral, different) predictions. 
But the above considerations are based on a single example. To really compare all 
convex hull methods, it is necessary to study all possible history path topologies in 
2D, 3D, 4D and 5D deviatoric stress or strain spaces. Monte Carlo simulations are 
performed for 3106 random 2D history paths, in addition to a few selected paths to 
try to cover all possible path topologies. All convex hull methods are applied to each 
of these simulated paths, to evaluate and compare the  predictions. The following 
discussions focus on 2D paths, however similar conclusions are found for 3D, 4D 
and 5D histories. 
The simulations show that the MPHCC tends to underestimate  when compared to 
the MPH, as expected. For 2D paths, in average, MPHCC is about 98% of MPH, with a 
standard deviation of only 2%. Also, MPHCC never underestimates MPH by more than 
10%. In addition, the MPHLC and MPHCC usually give almost identical results, with 
MPHLC being in average about 99.85% of MPHCC, with a standard deviation of only 
0.9% for these 3106 simulations. In addition, the MPH and MVPH have a very good 
agreement, except for low values of . It is found that MVPH  MPH and, in average, 
MVPH is about 98.6% of MPH, with a standard deviation of only 1.8%. 
The MPH and MFE methods are coherent, however they can lead to very different  
predictions. It is found that MFE  MPH and, in average, MPH is about 92.9% of MFE, 
with a standard deviation of 4.3%.  
The MVE method can severely (and wrongfully) overestimate , in special for low 
values of MPH, associated with almost proportional paths. As discussed before, al-
most proportional paths can lead to overly elongated ellipses in the MVE method, 
which can have a small area but an unrealistically large F-norm, leading to MVE val-
ues larger than 2.0 in some extreme cases. 
Also, it is found that MCE overestimates , in special for low values of MFE, asso-
ciated with almost proportional paths. For instance, for an almost proportional history 
defined by a rectangular path with very low aspect ratio, the expected  would be 
close to 1.0 (which is the expected value of  for proportional histories), however the 
MCE method would circumscribe a circle (instead of an elongated ellipse) to such 
elongated rectangular path, wrongfully predicting MCE = 2, revealing the inadequa-
cy of the MCE method. 
Finally, the MB method can severely (and wrongfully) underestimate , except for al-
most proportional load histories (where MB  MFE  1.0).  
 
8 CONCLUSIONS 
 
In this work, all convex hull methods from the literature were reviewed and com-
pared, and new methods were proposed. The conclusions from the comparisons are: 
1. the prismatic hull methods MPHLC and MPHCC are very similar to the MPH and 
MVPH methods, but with a much simpler search algorithm for 3D to 5D histories; 
2. the only recommended ellipsoid hull is the Minimum F-norm Ellipsoid (MFE), 
which results in similar (but not equal)  predictions when compared to the prismatic 
hull methods; and 
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3. the Minimum Circumscribed Ellipsoid (MCE), Minimum Volume Ellipsoid (MVE), 
and Minimum Ball (MB) methods may result in very poor predictions of the stress or 
strain amplitudes. 
In summary, the Minimum F-norm Ellipsoid and all four Maximum Prismatic Hull 
(MPH) models are efficient to predict equivalent amplitudes in NP histories, even 
though they do not perform well in cross or star-shaped paths, as it will be shown 
from experimental results in Part II of this paper. 
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