COMPORTAMENTO MECÂNICO DE UMA LIGA NITI COM EFEITO DE MEMÓRIA DE FORMA¹

Eduardo Massao Sashihara² Odair Dona Rigo³ Antônio Augusto Couto⁴ Paulo Roberto Mei⁵ Jorge Otubo⁶

Resumo

Este trabalho consiste de uma descrição geral das propriedades mecânicas, temperaturas de transformação e características microestruturais de uma liga Ni-50,2Ti(%at.) com Efeito de Memória de Forma (EMF). As curvas de tensão-deformação à temperatura ambiente (amostra no estado martensítico) apresentaram um platô de tensão compreendido entre 150 e 190MPa após a deformação elástica da martensita. Uma recuperação média total (R_E + R_{EMF}) de 80% foi observada, para uma amplitude de deformação variando de 2 a 8%. Apesar do aumento aparente da deformação residual ($D_{\rm R}$), a deformação plástica foi a mesma. A influência da temperatura na resistência mecânica também foi verificada com a amostra no estado austenítico ensaiada a 120°C. Observou-se por microscopia óptica que o material apresentou bandas de martensita deformada antes da solubilização, e uma estrutura bastante homogênea com contornos de grão após a solubilização. Por microscopia eletrônica de varredura verificou-se que, mesmo no estado não solubilizado, a amostra apresenta fratura dúctil com presença de "dimples" e, após solubilização a 900°C/30min, apresenta uma deformação plástica razoável com alongamento total em torno de 25%. Palavras-chave: Efeito de memória de forma; NiTi; Superelasticidade; Transformação martensítica.

MECHANICAL BEHAVIOUR OF A NITI SHAPE MEMORY ALLOY

Abstract

This work consists of a general description of the mechanical properties, transformation temperatures and microstructural characteristics of a Ni-50,2Ti(%at.) alloy with Shape Memory Effect (SME). The stress-strain curve at room temperature (sample at martensitic state) presented a stress plateau between 150 and 190MPa after initial elastic deformation of the martensite. The average total recovery ($R_E + R_{EMF}$) of 80% was verified for amplitude of the deformation varying from 2 to 8%. In spite of apparent increase of the residual deformation (D_R), the plastic deformation was the same. The temperature influence on mechanical resistance was also verified with the sample tested at 120°C in austenitic state. By optical microscopy, deformed martensite plates were observed before solution treatment and a homogeneous microstructure after solution treatment at 900°C/30min. By SEM, it was observed a ductile fracture surface showing dimples even for the samples before solution heat treatment and that after heat treatment at 900°C/30min, the sample presented reasonable plastic deformation with total elongation of about 25% up to rupture.

Key words: Shape memory effect; NiTi; Superelasticity; Martensitic transformation.

¹ Contribuição técnica apresentada na 61º Congresso Anual da ABM, de 24 a 27 de julho de 2006, Rio de Janeiro – RJ

² Mestrando em Engenharia Mecânica-Aeronáutica, ITA, São José dos Campos, SP.

³ Mestrando em Engenharia Mecânica, DEMA/ FEM/ UNICAMP, Campinas, SP.

⁴ Pesquisador do Centro de Ciência e Tecnologia de Materiais, IPEN/ CNEN-SP. Professor Adjunto da Escola de Engenharia, Depto. de Engenharia de Materiais, MACKENZIE, São Paulo, SP.

⁵ Membro da ABM, Professor Titular da DEMA/ FEM/ UNICAMP, Campinas, SP.

⁶ Membro da ABM, Professor Adjunto da Divisão de Engenharia Mecânica-Aeronáutica, ITA, São José dos Campos, SP.

INTRODUÇÃO

O termo Efeito de Memória de Forma (EMF) é aplicado para uma classe de materiais que podem ser deformados plasticamente em uma temperatura relativamente mais baixa tal que, quando expostos a uma temperatura maior, retornam à forma de antes da deformação. A origem do EMF está relacionada com a presença da transformação martensítica (TM) cristalograficamente reversível. O Efeito Pseudoelástico (EPE), caso particular do EMF, refere-se à capacidade de certos materiais recuperarem a forma original após uma deformação além do limite elástico, quando o carregamento é removido. Esta recuperação acontece em temperatura abaixo de M_D, e ocorre quando a martensita é induzida por uma tensão mecânica em temperaturas onde a austenita é normalmente estável, portanto ocorrendo a transformação reversa no descarregamento.⁽¹⁻⁴⁾

A liga NiTi é caracterizada pela TM termoelástica que dificulta a introdução de discordâncias perfeitas, e também pela presença de uma estrutura ordenada com muitas maclas móveis que favorece a reversibilidade cristalográfica da fase martensítica B19' (monoclínica) para a austenítica B2 (cúbica). Esta liga apresenta um dos melhores desempenhos entre as ligas com EMF, com recuperação de forma de até 8%, possui ótima resistência à fadiga e à corrosão, e é altamente bioinerte, com um comportamento mecânico peculiar devido a sua maior facilidade de deformação em baixas temperaturas que em altas temperaturas.⁽⁵⁾ Além disso, estas ligas têm excelentes propriedades de amortecimento, atribuído aos movimentos de interfaces martensita-martensita ou martensita-austenita.⁽⁶⁾ Portanto, muitas aplicações foram desenvolvidas junto com o avanço tecnológico, e tem gerado muitas patentes de ordem comercial em todo o mundo nas áreas naval, aeronáutica, nuclear, automobilística, de materiais com utilidades domésticas, robótica e médica (ortopedia, ortodontia, cardiovascular, entre outros).⁽⁷⁻⁸⁾

O objetivo deste trabalho foi relacionar propriedades mecânicas, temperaturas de transformação e características de microestrutura de uma liga Ni-50,2Ti(%at.)/ Ti-54,9Ni(%p) com a geração de movimento, de força ou de trabalho (atuadores), para serem consistentes em suas aplicações. Por exemplo, o controle de pressão de *stents* implantados em vasos sanguíneos a fim de mantê-los dilatados é possível devido à existência de um platô de tensão constante em larga faixa de deformação.⁽⁹⁾ O estudo do comportamento mecânico é feito a partir de ensaios de tração em condições controladas como temperatura e tensão aplicada. Métodos complementares como ensaios de dureza, microscopia óptica, microscopia eletrônica de varredura (MEV) e análise térmica via calorimetria diferencial de varredura (DSC) foram necessários para relacionar alguns parâmetros.

O processo via fusão em forno de feixe de elétrons (EBM) para a obtenção desta liga de alta pureza é considerado pioneiro ao nível mundial, onde o teor de contaminantes (carbono e oxigênio) é menor em relação ao processo usual em forno de indução a vácuo (VIM).¹⁰⁻¹¹⁾

MATERIAL E MÉTODOS

O lingote de partida utilizado neste trabalho foi produzido via EBM com composição 54,9%p de Ni, 0,014%p de C e 0,064%p de O, peso de 455g e diâmetro de 38mm. Os detalhes de produção podem ser encontrados nas referências.⁽¹⁰⁻¹¹⁾ O lingote de 38mm de diâmetro foi laminado a quente em duas etapas, uma até 20mm e outra até 9,1mm intercalando-se aquecimentos na faixa de 900 a 1000°C. Em

seguida, a barra foi forjada a frio pelo processo de forjamento rotativo até 8,3mm de diâmetro.

As amostras para ensaios de tração foram preparadas como segue: solubilização a 900°C por 30 minutos com resfriamento brusco em água; usinagem do comprimento e da seção para L_0 = 45mm e \emptyset_0 = 6,1mm, respectivamente; e tratamento de alívio de tensão a 200°C por 10 minutos. Os ensaios de tração foram realizados em uma máquina universal Instron 4400, munida de câmara ambiental e *software* Série IX, tomando-se como referência a norma ASTM F2516-05, com ε =0,5min⁻¹, a fim de medir continuamente as deformações elástica, plástica e aquelas oriundas do EMF/ EPE. Extensômetro (G-51-12-A) com 25mm de abertura e termopar foram fixados à amostra. As amplitudes máximas de deformação foram: 2, 4, 6, 8% e até a ruptura à temperatura de 25°C (material no estado martensítico), e 0,8% à temperatura de 120°C (estado austenítico). Após a etapa de tracionamento, a amostra foi aquecida até 150°C para a recuperação da deformação pelo EMF.

Na etapa metalográfica, as amostras foram lixadas (granas 100 a 1200) mudando-se duas vezes de direção (90°) em cada lixa, polidas mecanicamente (pasta de diamante: 6 e 1µm) ou eletroliticamente (92%v: CH₃OH + 8%v: HClO₄, 40V, 5A/cm² e 40s) e atacadas com uma solução (94ml H₂O + 5ml HNO₃ + 1ml HF). A observação das fases presentes deu-se em microscópio óptico Olympus BX60M. Aspectos da superfície de fratura de uma amostra não solubilizada foram observados por MEV, microscópio Philips XL30 (tensão de trabalho: 20 kV, via elétrons secundários). Adicionalmente, três medidas de dureza foram feitas na seção transversal de cada uma destas amostras com o durômetro Süssen-Wolpert.

As temperaturas de transformação martensítica direta e reversa foram determinadas via análise térmica (DSC), de acordo com a norma ASTM F2004-03, em equipamento DSC-404C da NETZSCH. Cada amostra utilizada tinha um guarto de uma fatia de 0,9mm de espessura, cortada com disco adiamantado na ISOMET-1000 (500rpm e 250g), para minimizar a introdução de tensões mecânicas, a partir da barra (\emptyset = 8,3mm) previamente tratada a 900°C por 30 minutos, resfriada em água (para evitar a precipitação de fases) e desengraxada. Tomou-se o cuidado de evacuar a câmara e repor com gás argônio por duas vezes consecutivas antes da corrida, a fim de assegurar a não interferência da atmosfera. Todo o ciclo térmico foi em atmosfera protetora de gás hélio e consistiu de: a) aquecimento inicial de 25 a 200°C a uma taxa de 10°C/min, b) patamar de alívio de tensão a 200°C por 10 minutos, c) resfriamento (5°C/min) de 200 a 25°C, d) um segundo patamar a 25°C por 10 minutos, e e) um novo aquecimento (5°C/min) de 25 a 150°C. A metodologia empregada na determinação das temperaturas de início e término das transformações foi aquela da intersecção de retas tangentes à linha base e aos flancos dos picos característicos.

RESULTADOS E DISCUSSÃO

A Figura 1 exemplifica uma curva DSC obtida com as respectivas temperaturas de transformação martensítica direta M_I , $M_P e M_F e$ reversa A_I , $A_P e A_F$. No aquecimento, foi obtido o pico endotérmico ($A_P \sim 82, 4^\circ$ C) relacionado com a transformação da martensita para a austenita, com suas temperaturas de início e fim ($A_I e A_F$). Analogamente, as temperaturas M_I , $M_P e M_F$ referem-se às temperaturas de início, pico e fim da transformação da austenita para a martensita obtidas no resfriamento com pico exotérmico M_P de ~50,2°C. A liga em questão é martensítica à temperatura ambiente (M_F =37,3°C) e austenítica acima de 89,4°C (A_F). Entre A_I e

 A_F ou M_I e M_F coexistem as duas fases. Segundo as referências, as temperaturas de transformação das ligas NiTi podem variar entre -50 a 110°C, dependendo da composição química e dos teores de impurezas carbono e oxigênio.^(4,12)

Figura 1. Curva DSC da amostra solubilizada e não tracionada.

Os dados obtidos estão resumidos na Tabela 1 para amostras retiradas da barra de NiTi (\emptyset = 8,3mm) simplesmente solubilizada.

Tabela 1. Temperaturas de transformação martensitica da liga Ni-50,2 m(70at.).						
Massa (g)	M _I (°C)	M _P (⁰C)	M _F (°C)	A _I (°C)	A _P (°C)	A _F (°C)
36,0	60,1	50,9	37,3	63,2	82,2	89,4
38,2	60,0	50,2	37,3	62,6	82,4	89,3

Tabela 1. Temperaturas de transformação martensítica da liga Ni-50,2Ti(%at.)

Na Figura 2, são apresentadas as curvas tensão-deformação em tração, para amplitudes de deformação de 0,8% a 120°C e de 2, 4, 6, 8% a 25°C (a); e outra curva até a ruptura a 25°C (b). Os principais resultados estão apresentados na Tabela 2. Pode-se observar que a curva tensão-deformação de amplitude de 4% teve um comportamento mecânico distinto em relação às demais, por isso, alguns valores não foram levantados.

Os resultados de ensaios de tração, Figura 2(a), feitos à temperatura ambiente comprovam os dados de DSC e evidenciam que a amostra encontra-se no estado martensítico nesta temperatura não apresentando recuperação de forma após o alívio da carga (tensão), isto é, a deformação é pseudoplástica. As curvas apresentam uma pequena região linear caracterizando a deformação elástica da martensita e, posteriormente, para deformações maiores, uma região de platô relacionada à reorientação das placas de martensita na direção de solicitação da carga, compreendida entre 150 e 190MPa.

Conforme apresentada na Figura 2(b), ao se continuar a deformação, há um crescimento contínuo da carga, que caracteriza a deformação plástica da martensita até se chegar à ruptura.

Figura 2. Curvas tensão-deformação para amostras solubilizadas a 900°C por 30 minutos e resfriadas em água: (a) variando-se a deformação (as setas tracejadas indicam a recuperação da deformação pelo EMF depois de aquecidas a 150°C e resfriadas a 25°C) e (b) curva tensão-deformação até a ruptura.

Tabela 2. Propriedades mecânicas da liga Ni-50,2Ti(%at.)

		<u> </u>	/ /	/			
AD (%)	E(GPa)	LE _{0,2%} (MPa)	R _E (%)	R _{EMF} (%)	R⊤(%)	D _R (%)	
2	41,7	154,7	0,9	0,7	1,6	0,4	
4	-	-	1,0	2,5	3,5	0,5	
6	42,5	139,6	0,9	3,2	4,1	1,9	
8	40,8	142,0	1,1	5,3	6,4	1,6	
							_

AD= Amplitude de Deformação; E= Módulo de Young; $LE_{0,2\%}$ = Limite de Escoamento a 0,2%; R_E = Recuperação Elástica; R_{EMF} = Recuperação pelo EMF; R_T = Recuperação Total; D_R = Deformação Residual.

A influência da temperatura na resistência mecânica da amostra pode também ser observada na Figura 2(a) para a amostra ensaiada a 120°C. Aqui se observa que a resistência mecânica é maior em temperaturas altas, uma característica da liga NiTi. A tensão a 0,2% de deformação passou de ~150MPa para ~450MPa, uma diferença significativa, conforme prevista na literatura.⁽¹³⁻¹⁸⁾ Nesta temperatura, a amostra é austenítica (acima de A_F=89,4°C), e a deformação ocorre, inicialmente, pela deformação elástica da austenita seguida pela deformação plástica permanente. Pelo fato da amostra não ter apresentado a recuperação elástica, supõe-se que a mesma esteja acima da temperatura M_D (temperatura máxima acima de A_F, na qual a martensita pode ser induzida mecanicamente).

Ainda conforme apresenta a Tabela 2, foi observada uma recuperação média total ($R_E + R_{EMF}$) de 80% para uma amplitude de deformação variando de 2 a 8%. Apesar do aumento aparente da deformação residual (D_R), a deformação plástica permanente foi a mesma.

Nas curvas de DSC obtidas pode-se observar, ainda, que a TM direta e reversa ocorreu em uma única etapa, não sendo observado nenhum pico térmico adicional correspondente à transformação da fase R. Este fenômeno tem sido comprovado nos ensaios de tração pela ausência de um escoamento inicial antes de 1% de deformação nas curvas tensão-deformação, caracterizando uma liga rica em titânio.⁽⁴⁾

Em relação à amostra solubilizada a 900°C/30min e tracionada a 25°C (estado martensítico) até a ruptura, conforme mostra a Figura 2(b), foram medidas e comparadas as seguintes propriedades mecânicas com aquelas encontradas na literatura (LR= Limite de Resistência; LE= Limite de Escoamento; E= Módulo de Young; D_T = Deformação Total), conforme apresentado na Tabela 3.

Tabela 3. Quadro comparativo de propriedades mecânicas.					
Propriedades	Liga	Liga NiTi			
Mecânicas	Ni-50,2Ti(%at.)	da literatura(*)			
LR (MPa)	577	895			
LE (MPa)	145	70 – 140 para martensita			
E (GPa)	42	28 – 41 para martensita			
$D_T(\%)$	25,6	5 – 10 (trabalhado a frio)			
. /		25 – 50 (recozido)			
	* 1* 1 /1 . 1/ 1	25 – 50 (recozido)			

(*) fonte: <u>http://www.jmmedical.com/html/selected_properties.html</u>

Na Figura 3, encontram-se imagens adquiridas por microscopia óptica da liga Ni-50,2Ti(%at.) de amostras retiradas da barra de 8,3mm de diâmetro notando-se que o material antes da solubilização a 900°C apresenta bandas de martensita deformada (dureza ~350HB), conforme indicadas pelas setas na Figura 3(a), enquanto que, após a solubilização, a estrutura é bastante homogênea apresentando contornos de grão (dureza ~200HB), Figura 3(b). Deve-se ressaltar que a estrutura é martensítica na temperatura de observação, abaixo de M_F=37,3°C, conforme apresentado na Tabela 1.

Figura 3. Micrografia óptica da seção transversal da barra (\emptyset = 8,3mm) (a) não solubilizada e (b) solubilizada (400x). Ataque: 94ml H₂O + 5ml HNO₃ + 1ml HF.

Na Figura 4, é mostrada a superfície de fratura da amostra não solubilizada, onde podem ser observados, basicamente, as regiões fibrosas sugerindo tensões altas em todos os níveis de deformação, e alguns *dimples* (microcavidades) sugerindo fratura dúctil. Conforme mostra a Tabela III, a amostra solubilizada a 900°C/30min apresenta uma deformação plástica razoável com alongamento total em torno de 25%.

Figura 4. (a) Visão geral da superfície de fratura da amostra não solubilizada submetido ao ensaio de tração (MEV - 16x). (b) Região da superfície de fratura a ½ raio da amostra não solubilizada (MEV - 2000x).

A maioria das investigações é feita em ligas NiTi ricas em níquel, como nas referências: (13): 51,4%; (15): 50,2%; (16): 50,5%; (17): 50,5% e (18): 50,1%, em porcentagem atômica. As temperaturas de transformação martensítica, em função do teor de níquel, são independentes da composição abaixo da equiatômica e decresce continuamente para teores crescentes acima dessa mesma composição. 12) Geralmente, os precipitados que se formam no lado rico em Ni melhoram o EMF/ EPE e podem ser usados para ajustar as temperaturas de transformação, que são extremamente importantes para aplicações práticas. A liga NiTi estudada neste trabalho, ao contrário, é rica em titânio (50,2%at.), não podendo ser endurecida por precipitação através dos precipitados Ti₂Ni, pois o limite de solubilidade no diagrama de fases é quase vertical no lado rico em titânio (2,4). Portanto, este fato deve ser levado em conta ao se comparar os resultados deste trabalho, com aqueles encontrados na literatura.

A motivação presente é a possibilidade de adequação desta liga ao tipo de aplicação. Sabendo-se que a liga Ni-50,2Ti(%at.) apresenta uma histerese térmica pequena ($A_I - M_I \sim 3^{\circ}$ C) e a capacidade de recuperação de deformação ($R_T \sim 80\%$), é pressuposto que esta liga seja ideal para aplicações em atuadores, cuja precisão e rapidez na mudança de forma e geração de trabalho são requeridas. Ou ainda, pode-se enquadrar numa classe de problemas onde a deformação da peça durante o aquecimento seja, simplesmente, o efeito desejado, como a armação de óculos que pode ser deformada acidentalmente à temperatura ambiente (estado martensítico), tal que, o usuário, por simples aquecimento em água em ebulição (100°C), pode fazê-la retornar a sua forma original, já que a temperatura A_F é ~89°C.

CONCLUSÃO

No presente trabalho, uma liga NiTi produzida por EBM, com baixos teores de impurezas, é caracterizada físico-mecanicamente, cujos resultados principais são sintetizados.

A amostra apresenta uma estrutura totalmente martensítica na temperatura ambiente, onde bandas de martensita e contornos de grão podem ser observados via micrografia óptica. A caracterização do material nesta temperatura é comprovada por análise térmica (DSC), pois a amostra está abaixo de M_F=37,3°C, e também, nos ensaios de tração, devido à ocorrência da deformação pseudoplástica.

Além disso, pode-se afirmar que não existe a fase R martensítica, entre as fases martensítica B19' e austenítica B2, pois não é observado nenhum pico térmico adicional via DSC, correspondente ao aparecimento da fase R. Isto foi comprovado nos ensaios de tração pela ausência de um escoamento inicial antes de 1% de deformação nas curvas tensão-deformação, caracterizando uma liga rica em titânio.

Dos ensaios de tração à temperatura ambiente, foi observada uma região de platô relacionada à reorientação das placas de martensita na direção de solicitação da carga, compreendida entre 150 e 190MPa. A recuperação média total ($R_E + R_{EMF}$) foi de 80% para uma amplitude de deformação variando de 2 a 8%, com o aquecimento da amostra.

A partir de um ensaio de tração a 120° C (amostra no estado austenítico), observou-se que a resistência mecânica é maior em temperaturas altas. A tensão a 0,2% de deformação foi de 450MPa, ou seja, três vezes maior que aquela apresentada quando na temperatura ambiente. Pelo fato da amostra não ter apresentado a recuperação elástica, supõe-se que a mesma esteja acima da temperatura M_D (temperatura máxima acima de A_F, na qual a martensita pode ser induzida mecanicamente).

As micrografias via MEV sugerem a ocorrência de fratura dúctil mesmo no estado não solubilizado, e uma deformação total razoável de 25,6% após solubilização a 900°C/30min.

Agradecimentos

À Fundação de Amparo a Pesquisa do Estado de São Paulo, processos 04/13131-7 e 00/09730-1.

Ao Eng. Roberto Miglioli, CCTM-IPEN, pela usinagem dos corpos-de-prova.

Ao Téc. Mariano Castagnet, CCTM-IPEN, pelo auxílio técnico nos ensaios de tração.

REFERÊNCIAS

- 1 HODGSON, D. E.; WU, M. H.; BIERMANN, R. J. Shape Memory Alloys. In: **ASM HANDBOOK**, 10 ed., v. 2, p. 897-902, 1998.
- 2 OTSUKA, K.; KAKESHITA, T. Science and Technology of Shape-Memory Alloys: New Developments. **MRS Bulletin**, v. 27, n. 2, p. 91-98, feb. 2002.
- 3 FUNAKUBO, H. **Shape Memory Alloys**. Tokyo: University of Tokyo, v. 1, 275 p., 1987.
- 4 OTSUKA, K.; WAYMAN, C. M. **Shape Memory Materials**. New York: Cambridge University Press, 289 p., 1998.
- 5 STOECKEL, D. Fabrication and properties of nickel-titanium shape memory alloy wires. **Wire Journal International**, s.l., p. 30-40, april 1989.
- 6 LOEB B.; OLIVEIRA, J. F.; MENDES, M.; SAKIMA, T.; BARREAU, G. Desenvolvimento de ligas com memória de forma. **Revista ABM Metalurgia e Materiais**, São Paulo, v. 50, n. 431, p. 692-698, julho 1994.
- 7 DUERIG, T. W. The Use of Superelasticity in Modern Medicine. **MRS Bulletin**, v. 27, n. 2, p. 101-104, feb. 2002.
- 8 MCGOWAN, A. M. R. Industrial and Commercial Applications of Smart Structures Technologies. **PROCEEDINGS OF SPIE**: The International Society for Optical Engineering, San Diego, USA, March 18-21, v. 4698, 2002.
- 9 PLANT, S. D.; GRANT, D. M.; LEACH, L. Behaviour of human endothelial cells on surface modified NiTi alloy. **Biomaterials**, v. 26, p. 5359-5367, 2005.
- 10 OTUBO, J.; RIGO, O. D.; MOURA NETO, C.; KAUFMAN, M. J.; MEI, P. R. Low carbon content shape memory alloy produced by electron beam melting, **Materials Research**, v. 7, n. 2, p. 263-267, 2004.
- 11 OTUBO, J.; RIGO, O. D.; MOURA NETO, C.; MEI, P. R. The effects of VIM and EBM processing techniques on the purity of NiTi SMA. **ICOMAT International Conference on Martensitic Transformations**, Shanghai, June 14-17, 2005.
- 12 RIGO, O. D.; OTUBO, J.; MEI, P. R. Influência do teor de níquel nas temperaturas de transformação martensítica da liga NiTi com Efeito de Memória de Forma. 60° Congresso Anual da ABM, Belo Horizonte/ MG, 25-28 de Julho, 2005.
- 13 QIAN, L.; SUN, Q.; XIAO, X. Role of phase transition in the unusual microwear behaviour of superelastic NiTi shape memory alloy. **Wear**, v. 259, p. 309-318, mar. 2005.
- 14 MIYAZAKI, S.; IMAI, T.; IGO, Y.; OTSUKA, K. Effect of cyclic deformation on the pseudoelasticity characteristics of Ti-Ni alloys. **Metallurgical Transactions A**, v. 17, p. 115-120, 1986.
- 15 LIU, Y.; XIANG, H. Apparent modulus of elasticity of near-equiatomic NiTi. **Journal of Alloys and Compounds**, v. 270, p. 154-159, 1998.
- 16 TAN, G.; LIU, Y. Comparative study of deformation-induced martensite stabilization via martensite reorientation and stress-induced martensitic transformation in NiTi. **Intermetallics**, v. 12, p. 373-381, 2004.
- 17 TAN, G.; LIU, Y.; SITTNER, P.; SAUNDERS, M. Lüders-like deformation associated with stress-induced martensitic transformation in NiTi. **Scripta Materialia**, v. 50, p. 193-198, 2004.
- 18 SHAW, J. A.; KYRIAKIDES, S. Thermomechanical aspects of Ni-Ti. Journal of Mechanics and Physics of Solids, v. 43, n. 8, p. 1243-1281, 1995.