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Abstract 
Many industrial plants are still using simple and popular tools such as spreadsheet 
applications to analyze complex and multi-variable problems, which do not take into 
account the probabilistic relations. Excessive time consumption to solve problems, 
productivity loss, unreliable results and dimensional constraints can be stated as 
typical limitations of these tools.   To eliminate these drawbacks, ArcelorMittal has 
successfully developed a new methodology that extracts high level information within 
production database and uses unconventional statistical tools based on Bayesian 
Network (BN) Modeling for addressing production issues.  ArcelorMittal’s VEGA 
facility has deployed internally this new approach to perform defect analysis in a 
more efficient and effective manner.  
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1  INTRODUCTION 
 
Many industrial plants are still using simple and popular tools such as spreadsheet 
applications to analyze complex and multi-variable problems. Excessive time 
consumption to solve problems, productivity loss, unreliable results and dimensional 
constraints can be stated as typical limitations of these tools. ArcelorMittal VEGA has 
deployed internally a new approach to perform defect analysis in order to eliminate 
the drawbacks stated above.  
Advantages of using data mining tools instead of simple analysis tools currently used 
on industrial plants such as Excel and others are: 

 Excel is not really appropriate because it can only do simple analysis, plot 
variables in one or two dimensions and make linear regression and not much 
else. It is very difficult in Excel to identify correlation between process 
variables and defect measurement. The main reason for this is that defects 
have, in general, non-linear behaviour in dimension greater than two. 

 Moreover, it is better to use probabilistic models because generally, not all the 
relevant information is available in a database. Nevertheless, one can 
calculate the probability of occurrence of a defect for a given point. Excel is 
not able to take into account this probabilistic behaviour. 

 Time saving: Requires only some minutes to extract the main patterns instead 
of hours or days. 

The methodology for conducting a defect crisis analysis is founded on the following 
pillars (Figure 1): problem identification; defect characterization; process and product 
data collection; modeling (build Bayesian network model); Model evaluation and 
hypotheses testing – and then industrial trials; and finally, solution deployment and 
process control. Data analyses are performed using the commercial software 
Bayesialab – data mining software based on Bayesian Network modeling. 
 

 
Figure 1. Steps for conducting a defect crisis analysis. 

 
The major key of analysis success relies on the database building. A short 
description of the main steps to collect and build the database is presented below: 

 Collect process data: that has been highlighted in the previous analysis  
• Identify a stable period for data sampling 
• Make sure the problem arises often enough 

Problem identification

Team building  

Defect characterization  

Share and collect information  

Build diagrams  

Collect data

Build bayesian networks and rules  

Confront results with the team and modify 
diagrams 
to highlight 

Test hypotheses (modify the process)  

Lock and control the process  
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• Select a measurement frequency in accordance with the failure mode of 
the response 

• Collect all parameters listed during the process mapping 
 Deal progressively with local information (from the process to upstream lines 

information). 
 Analyze data and clean outliers if they really are. 

•  Visualize each variable distribution and look at extreme values 
•  Identify cases with lowest probability value with the Bayesian network 

(this is done in the further steps). 
 A prerequisite to find influent variables is to have data with defect and data 

without defect (if not, a variation in defect density should be observed in the 
data). 

A BN is a graphic probabilistic model through which one can acquire, capitalize on 
and exploit knowledge. It combines the rigor of powerful and stable mathematical 
formalism, the effectiveness of a distributed representation of knowledge and the 
readability of rule-based models. It is used to represent knowledge from a system or 
to find out this knowledge by analyzing data (learning). Through the network one can 
diagnose and simulate, analyze data, make decisions and control systems. 
 
2  BAYESIAN NETWORK 
 
A Bayesian network, belief network or directed acyclic graphical model is a 
probabilistic graphical model that represents a set of random variables and their 
conditional dependencies via a directed acyclic graph (DAG). Probabilistic graphical 
models are graphs in which nodes represent random variables, and the (lack of) arcs 
represent conditional independence assumptions. Hence they provide a compact 
representation of joint probability distributions. 
Figure 2 illustrates a simple BN. Edges represent conditional dependencies; nodes 
which are not connected represent variables which are conditionally independent of 
each other. Each node is associated with a probability function that takes as input a 
particular set of values for the node's parent variables and gives the probability of the 
variable represented by the node. 
 

 
Figure 2. Direct Acyclic Graph – Bayesian Network Illustration. 

 
Any complete probabilistic model of a domain must, either explicitly or implicitly, 
represent the joint probability distribution— the probability of every possible event as 
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defined by the combination of the values of all the variables according to the chain 
rule:(1) 
 

     



n

i
iin xxxPxPxxP

2
1111 ,...,,...,  (1) 

   
There are exponentially many such events, yet Bayesian networks achieve 
compactness by factoring the joint distribution into local, conditional distributions for 
each variable given its parents. If ix denotes some value of the variable iX  and 

ipa denotes some set of values for the parents of iX , then  ii paxP  denotes this 

conditional distribution. 
 

   
i

iini paxPxxP ,...,  (2) 

                                                                                         
In the network of figure 2, we have 
 

           453241312154321 ,,,,, xxPxxxPxxPxxPxPxxxxxP   (3) 

                                              
2.1  Difference Between Prediction and Control 
 
We remind some points that appear to be important in this problematic, the difference 
between prediction and control, and illustrate it with a simple example. 
In prediction, the interpretation is based with no change in the observed universe. A 
predictor is constructed with a set of observations and prediction on a new 
observation is calculated without changing the process that has generated the 
previous set of data. In this context, the knowledge of the probability of the 
observations is sufficient to infer a prediction.  
In control, the situation is more difficult as we try to find some actions on the system 
that will attain a particular objective.  In this context, we are facing the problem of 
constructing a causal model from data. If the real cause is not measured in the 
database, it is even possible to obtain rules that seem to have good efficiency. To 
highlight the difference, we present a simple example with a model containing three 
variables: 

 C has two states C1 & C2, which is the parameter responsible for the defect 
that cannot  be observed  

 P has two states P1 & P2, an observed parameter, which is dependant on 
the parameter C 

 D representing the defect with Defect or Ok states. The marginal probability 
of the state Defect is 12.4% and Ok is 87.6%. 

We use a Bayesian network notation to represent this model:  
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P

P1
P2

79.4
20.6

D

Deffect
OK

12.4
87.6

C

C1
C2

20.0
80.0

 
Figure 3. Distribution for each parameter in the database (ex : C is 20% at C1). 

  
P

P1
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C2
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Figure 4. In the database with P = P1, the rate of defect is 15%. 
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Figure 5. In the database with P = P2, the rate of defects is 2.50%. 

 
In prediction mode, if we observe P=P1 (Figure 4), the risk of defect is 15% and, 
otherwise, if P = P2 (Figure 5) the risk of defect is 2.5%.   
With a database obtained from this model, a rule-based model will produce the rule: 
if P = P2 then purity is 97.5% with a coverage of 20.6%.  
In a control mode, if we impose on P to be at the value P2, it is not at all guaranteed 
that the rate will decrease at a rate of 2.5%. Indeed, in this model it is C which has a 
physical effect on P and not the opposite. 
This little example shows that it is not possible to guarantee with a rule-based 
algorithm causal relationship between process parameters and defect variable. In 
real case, the cause is the consequence of many conjugate effects and this problem 
is increased by the number of variables to take into account. 
To our knowledge, a way to infer causal relationship is to adopt for instance the 
theory proposed by  Pearl.(2) In this theory, directed graphs (Bayesian Network) are 
constructed with some algorithms based on conditional independence between 
variables. In this context, it is then possible to propose a family of possible graphs 
with causal relations. 
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2  EXAMPLE OF DEFECT ANALYSIS – EDGE WAVES ON HDG PRODUCTS 
 
The Edge Waviness Defect is the result of an abnormal elongation at the edges of 
the strip. The effects of the defect is the downgrading of the material or reallocation 
to another customer requesting a narrower strip, involving non-scheduled extra 
processing such as edge cutting the material, incurring additional yield losses and 
increased cycle time in supplying the original customer. 
The first root cause assumptions were related to the flatness of the full hard coils 
and/or zinc over coating at the edges of the strip at the continuous galvanizing line. 
On the defect analysis, many hours and energy have been spent by process and 
production teams to identify the root causes, parameters to change and control, but 
without success. Hence, the defect modeling approach was undertaken. 
In order to clarify the results described in the next section, a short description of the 
tandem cold mill is appropriate: The Tandem Cold Mill (TCM) at ArcelorMittal Vega is 
a four stands, 4High mill equipped with Bending and CVC (Continuously Variable 
Crown) as flatness controllers. The CVC consists of hydraulic equipment moving 
axially both top and bottom work rolls, which are ground to an S-Shaped curve. As a 
result, the strip is subject to work rolls with crown varying from 0 to 0.45μm 
continuously, requiring less work roll inventory and easier roll-shop management. On 
the other hand, as it is a new technology and not very common around the world, it is 
still under development to determine good presets for Bending and CVC to improve 
flatness of full hard coils going to the galvanizing line. 
 
3  ANALYSIS WITH DEFECT MODELING APPROACH  
 
One very useful property of BN is its ability to learn from observations. Learning of 
BN can be divided into two types: parameter learning and structure learning. With 
parameter learning, the structure of the BN is given and only the conditional 
probability table parameters are learned. With structure learning, the BN structure 
itself is learned. 
Structure Learning: Automatic algorithms allow the expert to quickly discover all the 
direct probabilistic relationship in the data with a global view, thanks to the graphical 
representation of the Bayesian Network model. Parameters are positioned according 
to the probabilistic relationship force (Figure 6). Network structure learnt is in 
accordance with process flow as well as parameters relationship as highlighted 
through the different inner nodes colors (clustering technique) – HDG parameters 
located in the red bound box and TCM parameters in the blue bound box.    
 

             
Figure 6. Bayesian Network - Discover the direct probabilistic relations in the data. 

DEFECT  

HDG TCM
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Defect parameter is located in the surrounding area of TCM variables, giving to the 
expert a first overview of the overall relationship.   
Supervised learning for defect modeling: one can focus entirely on the 
characterization of the target variable, e.g. defect occurrences, aiming to identify the 
sufficient set of variables that can explain the defect and the probabilistic relations 
(Markov blanket). The Markov blanket has a very interesting property. It is made up 
of the parents, the children and the co-parents. If the values of the nodes are known, 
the target node becomes entirely independent of all the other variables.  
Additionally, the model created can be useful for automatic defect classification and 
support on-line decision making. 
The main features stressed by the network (Figure 7) concern cold rolling 
parameters, mainly those controlling the crown of the work rolls, related to the 
flatness control. Markov blanket is an interesting tool for extracting the most 
important variables (feature selection).   
 

    
Figure 7. Bayesian Network – Defect characterization. 

 
Probabilities distributions of each parameter are shown in the Figure 8.  
 

 
Figure 8. Probability distributions are clearly visualized for a better understanding. 

 
4  INFERENCE AND PROBLEM SOLVING 
 
Because a Bayesian network is a complete model for the variables and their 
relationships, it can be used to answer probabilistic queries about them. For 
example, the network can be used to find out updated knowledge of the state of a 
subset of variables when other variables (the evidence variables) are observed.  
Dynamic inference can thus be performed. Inference is the process of calculating the 
probability of one or more variables “X” given some evidence “e”. The evidence is 
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expressed as an observation of the state of some variables in the BN. In short: P(X|e) 
needs to be calculated.(3) 
Because of the propagation of the new information (defect=yes) the probability 
distributions for every node have been updated, allowing the expert to evaluate the 
new probability distributions (Figure 9). 
     

       
Figure 9. Dynamic inference – evidence is observed and probabilities are updated. 

 
The conditional probability table of the defect variable shows that 59.10% of the coils 
with defect were produced by the operational team “D” and 48.92% of coils were 
produced with the CVC parameter of the stand number three above 2.778 mm. In 
consequence of that practice, flatness issues have been highlighted through the 
parameter “Plan LO”. 
Discrepant results have been observed when comparing cold rolling parameters 
(mainly bending and CVC) and production team. A large amount of coils produced by 
a specific shift that are directly related to the parameters above can explain the 
defect occurrences, e.g. differences in operating practices among the operators. 
Corrective actions have been taken based on these results, actuating on the CVC 
position and bending force parameters aiming to get a more appropriate full hard 
flatness for further galvanizing process.  
The first analysis carried out based on the data collected during the defect 
occurrences increase in May/10 have shown an expressive influence of the CVC 
position of Stand 3 at the TCM. After actions taken, material loss dropped from 
0,54% to 0,19% in the next two months. 
Because of the complexity of controlling flatness through a four-stand cold rolling mill 
with both CVC and bending control, any process perturbation at the TCM or 
upstream lines is sufficient to increase defect occurrences. This could be proven four 
months after the first set of actions taken. A new data base and analysis have 
established presets for Bending and CVC of Stands 1, 2 and 3 of TCM. Moreover, an 
accurate prediction model was obtained, classifying correctly up to 85% of defective 
coils (using a test database). Material loss rate dropped from 1,17% to less than 
0,15% after second set of actions taken, as can be seen on Figure 10. 
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Figure 10. Material loss and HDG production. 

 
5  CONCLUSION 
 
A methodology has been successfully developed to extract high level information 
within production database in order to solve production issues, such as quality 
problems and support decision making by using unconventional statistical tools 
based on Bayesian Network Modeling. 
To recap, after an accurate database is built, a detailed analysis can be carried out in 
a few minutes by using proper statistical methods, saving time and allowing the 
experts to diagnose and simulate the system behaviour and support decision making. 
Some advantages of using BN formalism for these purposes are: 

 Allow one to learn about relationships between variables and as it is graphical 
it facilitates the understanding.   

 Is robust as it is statistically generated and the complexity can be controlled. 
 BN is able to model causal relationships between variables. 
 Can handle incomplete data sets and it is possible to combine expert 

knowledge and data into a BN. 
 If needed the model can be integrated in a production line. 

Besides defect diagnosis, internal studies are being carried out in order to master 
strip flatness control and process flexibility.  
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