DESIGN PRELIMINAR DA USINA DE CAPÃO XAVIER ATRAVÉS DE TECNOLOGIA DE SIMULAÇÃO DE PROCESSOS POR MODELOS MATEMÁTICOS⁽⁰¹⁾

Marco Aurélio Soares Martins*

Rita Virgínia Gabriel da Silva**

RESUMO

Este trabalho contempla o *design* preliminar da usina de beneficiamento de minério de ferro da jazida de Capão Xavier da Minerações Brasileiras Reunidas S/A - MBR, localizada próximo à Mina da Mutuca - Município de Nova Lima - MG.

A usina idealizada consiste de operações de britagem, peneiramento com lavagem do minério, classificação, deslamagem, filtragem e recuperação da água de processo em espessadores.

Para dimensionar os equipamentos para as várias operações unitárias do circuito, foi utilizada a tecnologia de simulação de processos por modelos matemáticos. Inicialmente, foram utilizados modelos simples para gerar os fluxos de todo o circuito, tomando como base a performance desejada. Posteriormente, através da utilização de modelos mais sofisticados, foi possível dimensionar, por simulação reversa, o tamanho dos equipamentos..

Foi utilizado o *software* USIMPAC 2 para Windows, que se mostrou bastante eficaz como ferramenta no desenvolvimento do projeto, permitindo investigar ampla gama de situações possíveis de variação de taxa e características do minério alimentado em um curto espaço de tempo.

Palavras chave: Design, simulação, Capão Xavier, modelos matemáticos

⁽⁰¹⁾ Trabalho a ser apresentado ao I Simpósio Brasileiro de Minério de Ferro da ABM, Ouro Preto, M.G., 14 a 17 de outubro de 1996.

Engenheiro de minas e diretor de operação - CEMI - Consultoria em Engenharia Mineral Ltda.

Engenheira de minas - Gerência de Tecnologia da Minerações Brasileiras Reunidas - MBR

INTRODUÇÃO

Os engenheiros de processamento mineral frequentemente se defrontam com diversos problemas técnicos de projeto e de otimização de circuitos. Muitas vezes, faz-se necessária a adaptação, de plantas existentes, às novas necessidades e imposições externas (mudanças na especificação do concentrado, novas orientações de mercado, necessidade de aumento de produção) e internas (mudanças no teor do minério ou tamanho de liberação, etc.). Mesmo que, em certos momentos, os engenheiros de processo não tenham que enfrentar problemas imediatos de adaptação da planta, é improvável que algum aspecto do processo não possa ser implementado para gerar substanciais ganhos ou aumentos na capacidade.

De qualquer forma, é dificil avaliar qualquer solução em potencial para adaptar ou implementar a configuração de uma usina, uma vez que os testes industriais, realizados para definir uma solução em potencial, são geralmente difíceis de organizar, onerosos e de difícil avaliação.

Os engenheiros ligados às áreas de projeto e fabricação de equipamentos para as indústrias de processamento mineral devem estar aptos a selecionar, rapidamente, o equipamento mais adequado para cada aplicação, solicitada pelo cliente, e predizer sua performance sob as diferentes condições de uso. Por outro lado, é de interesse dos fabricantes de equipamentos fornecer uma ferramenta computacional que ajude os operadores das usinas a obter os melhores resultados dos equipamentos.

Os engenheiros de processo, responsáveis pelo *design* de uma nova planta, devem, em todas as etapas do projeto, fazer uso eficiente dos resultados de experimentos realizados para a proposta de otimização da instalação:

- Depois dos testes iniciais de laboratório, é necessário desenhar um fluxograma geral da futura planta e avaliar aproximadamente seu custo de capital. Nesta etapa é importante completar um projeto preliminar rapidamente,
- Durante os testes de planta piloto, é necessário não apenas manter o custo das operações o mais baixo possível (especialmente se a decisão final de investimento não tiver sido tomada ainda), mas também usar os resultados da planta piloto para dimensionar o futuro equipamento a ser comprado, e determinar, dentre as possíveis configurações de fluxograma, a melhor solução para reunir os aspectos técnicos e econômicos.

Os avanços recentes vêm apresentando novos caminhos para direcionar todos os problemas de processamento semelhantes aos descritos acima. Os métodos computacionais de simulação estática permitem, ao engenheiro de processamento mineral, calcular um grande número de soluções possíveis, num tempo razoavelmente curto, conduzindo a plantas com design muito melhor e mais otimizadas.

SIMULAÇÃO ESTÁTICA

Um simulador estático de usinas de processamento mineral é um *software* capaz de predizer a operação, de acordo com as características do minério alimentado e do próprio circuito. A predição dos fluxos de água e minério da planta operada, sob determinadas condições, é chamada de **simulação direta**. O retrocálulo dos parâmetros dos modelos matemáticos, que representam as operações da planta (número de ciclones em operação), é chamado **simulação reversa**.

O USIM PAC 2 é um simulador avançado, que oferece várias alternativas de entrada de dados, geração de relatórios, incluindo resultados de balanços de massa, estimação de parâmetros dos modelos matemáticos, simulação direta e reversa, estimativa investimentos, etc. (ver figura 1).

Figura 1 - Principais funções de um simulador estático

A simulação estática não compete com a simulação dinâmica: não se trata de um nível mais baixo ou elevado de simulação. Enquanto a simulação dinâmica é uma ferramenta essencial para a definição de estratégias de controle e um elemento chave para sistemas avançados de controle de processos, a simulação estática é uma ferramenta essencial ao design de usinas e otimização de pré-controles. A simulação estática é, portanto, adequada para otimização de design de circuitos e de dimensões equipamentos, devendo ser feita antes da implementação de um sistema de controle de processo.

A simulação estática é uma abordagem muito efetiva para o *design* de plantas industriais, desde que possibilita:

 um grande número de opções a serem consideradas com relação a fluxogramas, equipamentos, etc.,

- dimensionamento de equipamentos a partir de objetivos pré-definidos de desempenho das várias operações unitárias.
- configurar uma planta industrial, otimizada, em um tempo bastante reduzido.

Esta é também muito usada como uma ajuda operaconal para tomada de decisões em plantas existentes, como por exemplo:

- melhoramento ou adaptação de fluxogramas a mudanças no minério ou nas exigências do mercado,
- escolha de regulagens ou parâmetros de operação de certos equipamentos.

A revolução gerada pela disponibilidade de simuladores de processos minerais vem sendo muito profunda e tem causado mudanças na filosofía de investigação e planejamento de experimentos. Tradicionalmente, estes eram feitos em pequenas escalas de produção, para todas as possíveis configurações de processo levantadas para uma planta industrial. Num futuro próximo, a simulação ajudará na pré-seleção das operações unitárias de um circuito, na geração de dados, de acordo com objetivos pré-determinados, dimensionamento dos equipamentos, em função dos dados gerados, e verificação dos resultados de simulação.

APLICAÇÃO

Usim Pac no design da Usina de Capão Xavier

A seguir é apresentado um caso prático da utilização de tecnologia de simulação de processos minerais na determinação da Usina de Capão Xavier da MBR. Este exemplo é uma oportunidade para descrever a metodologia geral, através da qual pode-se obter, em poucas horas, o *design* preliminar, além de uma avaliação econômica, de uma planta, através do *software* Usim Pac como ferramenta de trabalho. Trata-se de uma usina completa de beneficiamento de minério de ferro hematítico, para produção de produtos diferenciados, principalmente, por suas especificações granulométricas.

O fluxograma final da usina é apresentado na figura 2 e é compreendido de operações de britagem, classificação por peneiramento e hidroclassificação em classificadores espirais e hidrociclones. São produzidos quatro produtos finais básicos:

•	Lump ore ou granulado:	$-1 \frac{1}{4} + \frac{1}{4}$
•	Hematitinha:	$-\frac{1}{2}$ " + $\frac{1}{4}$ "
•	Sinter feed:	- ¹ / ₄ " + 100 #
•	Pellet feed:	-100 # + 20 μm

Figura 2 - Fluxograma da usina de Capão Xavier

O Brasil ainda possui reservas de minério de ferro de alto teor, em sua maioria representadas por minérios hematíticos. A maioria das operações em larga escala no país emprega um circuito de beneficiamento que contempla britagem, peneiramento a úmido e processos de hidroclassificação. As operações auxiliares de desaguamento dos diferentes produtos são também necessárias (especificamente filtragem e espessamento).

As maiores razões para esta prática consagrada estão relacionadas com as características intrínsecas dos minérios e com as necessidades do mercado. Apesar dos teores de ferro do *run of mine* serem bastante altos, diferentes contaminantes estão presentes em níveis que tornam a sua remoção necessária.

As necessidades de mercado e as características intrínsecas do minério tornam necessário separá-lo em produtos, por intervalo de tamanho. Devido aos processos geológicos que agem durante o processo de enriquecimento dos corpos de alto teor, uma divisão natural de tamanho é imposta, gerando produtos *lump ore*, *sinter feed fines* e *pellet feed fines*. O circuito de beneficiamento é desenvolvido para maximizar a recuperação de todos produtos, fazendo sua separação tão eficiente quanto possível.

Quimicamente, o único mineral de ganga que é preferencialmente removido durante o processo de enriquecimento é o quartzo (sílica), uma vez que os corpos de minério hematítico de alto teor são, muitas vezes, derivados da formação local de ferro em bandas que consistem de um acamamento (alternando camadas de quartzo e hematita)

de rocha meta-sedimentar, chamada itabirito. Outros contaminantes também podem se apresentar ou mesmo aparecer no processo de enriquecimento (em último caso, por exemplo, argilas minerais e hidróxidos de alumínio secundários, tal com a boehemita e a gibbsita são formadas). Essas impurezas estão geralmente concentradas nas faixas de tamanhos menores. Como resultado, a fim de produzir *pellet feed fines* com aceitável qualidade química, um fluxo de lamas, rico em impurezas, é produzido como rejeito (operação final de separação de tamanho geralmente desempenhada com um circuito de múltiplos estágios de hidrociclones).

EXPECTATIVA PARA O PRODUTO E CAPACIDADE DE PRODUÇÃO

A separação dos produtos e sua qualidade intrínseca dependem das características das reservas mineráveis. Devido à sua natureza, a mina de Capão Xavier requer um beneficiamento sem concentração, eliminando os contaminantes (lamas) apenas através de ciclonagens.

Os teores esperados de Fe, SiO₂, Al_2O_3 , P e Mn, para os produtos LO, SF e PFF, são apresentados na tabela I.

Tabela 1	-]	Feores	esperados	de l	Fe,	SiO_2 ,	Al_2O_3 ,	Pe	Mn,	para os	produtos	LO,	SF	e
PFF														

Teor (%)	LO	SF	PFF
Fe	65,90	67,20	67,30
SiO ₂	0,86	1,20	1,00
Al_2O_3	1,70	0,99	0,65
Р	0,05	0,03	0,01
Mn	0,28	0,28	0,50

Os critérios utilizados no *design* da usina foram baseados nos dados experimentais levantados pela MBR em conjunto com a CEMI - Consultoria em Engenharia Mineral, em dados de simulação, recomendações de consultores e representantes de equipamentos e na prática industrial.

Dados Básicos de Projeto e Capacidade de Produção

Dados básicos

Dudos ousieos		
Produção Anual	da Mina:	6.670.000 t/ano (base úmida) * 6.270.000 t/ano (base seca)
Section 3 Mistura ROM:	média máximo	6% 9%
Secuperação Ma	ássica da Planta:	90%

Produção Anual (base úmida):

Lump Ore:	1.380.000 t/a
Sinter Feed Fines:	2.510.000 t/a
Pellet Feed Fines:	2.270.000 t/a
Total:	6.160.000 t/a

S Especificação de Tamanho de Partículas/Umidade:

Lump Ore:		-31,8 + 6,4 mm,	4% umidade
• Sinter Feed Fines:		-6,4 + 0,15 mm	11% umidade
Pellet Feed Fines:		-0,15 + 10 µm	9% umidade
\$ Distribuição aproximada o	le Produtos (E	Base Seca)	
• Lump Ore:		20,0%	
• Sinter Feed Fines:		34,0%	
Pellet Feed Fines:		31,0 %	
 Lamas (rejeitos): 		15,0%	

and a strange set of the strange state of the strange state of the strange state of the strange state of the st

OBS.: * Considerando a recuperação mássica da usina

A figura 3 apresenta a distribuição granulométrica do ROM, obtida através de informações geológicas do depósito, que serviu como base inicial para todo o estudo de *design* da usina de beneficiamento.

Figura 3 - Curva de distribuição granulométrica do ROM

Para atender aos objetivos básicos da usina, foram estabelecidos os parâmetros de cada equipamento, com respeito aos seus desempenhos, como eficiências de classificação, cortes pretendidos e razão de redução, para os processos de cominuição. A tabela II apresenta os parâmetros dos modelos de nível 0 utilizados para obtenção de todos os fluxos da planta.

Unit # 2		Unit # 16	
Model # 101: Classifier (0A)		Model # 108: Perfect Classifier (0)	
Parameter name	Value	Parameter name	Value
Short circuit of fines (%)	10	Separation cut size (mm)	0,05
Corrected cut size: d50c (mm)	150	Percent solids in the coarse stream (%)	89
Corrected partition curve imperfection	0,27	Unit # 20	
Unit # 3		Model # 103: Hydrocyclone (0A)	
Model # 107: Jaw Crusher (0)		Parameter name	Value
Parameter name	Value	Short circuit of fines (%)	9
Exit setting (m)	0,152	Corrected cut size: d50c (mm)	0,023
Unit # 7		Corrected partition curve imperfection	0,35
Model # 5: Density Regulator (0)		Unit # 22	
Parameter name	Value	Model # 103: Hydrocyclone (0A)	
Percent solids at regulator output (%)	50	Parameter name	Value
Hait # 8		Short circuit of fines (%)	14
Model # 101: Classifier (0A)		Corrected cut size: d50c (mm)	0,0044
Decemeter name	Value	Corrected partition curve imperfection	0,88
Short circuit of fines (%)	0	Unit # 23	
Corrected cut size: d50c (mm)	50	Model # 5: Density Regulator (0)	
Corrected partition curve imperfection	0.27	Parameter name	Value
This # 0	-,	Percent solids at regulator output (%)	40
Model # 101: Classifier (0A)		Unit # 24	
Decompter name	Value	Model # 103: Hydrocyclone (0A)	
Chart circuit of fines (%)	0	Parameter name	Value
Corrected out size: d50c (mm)	31	Short circuit of fines (%)	13
Corrected cut size. abot (min)	0.215	Corrected cut size: d50c (mm)	0,013
Corrected partition curve imperioedon	0,210	Corrected partition curve imperfection	0,44
Unit # 10		Unit # 25	
Model # 125. Symons cone crusher	Value	Model # 2: Solid/Liquid Separator (0)	
Parameter name	0.025	Parameter name	Value
Exit setting (m)	0,025	Percent solids of the slurry stream (mass %)	90
Unit # 11		Unit # 27	
Model # 101: Classifier (0A)	Value	Model # 2: Solid/Liquid Separator (0)	
Parameter name	Value	Darameter name	Value
Short circuit of fines (%)	12	Percent solids of the slurry stream (mass %)	90
Corrected cut size: dSOC (mm)	12	Theit # 20	
Corrected partition curve imperfection	0,25	Vindal # 2: Solid/Liquid Separator (0)	
Unit # 12		Decometer name	Value
Model # 101: Classifier (0A)	Value	Demonst colide of the slurpy stream (mass %)	90
Parameter name	Value	Percent solids of the sturry stream (mass 70)	70
Short circuit of fines (%)	0		
Corrected cut size: d50c (mm)	5,8		
Corrected partition curve imperfection	0,23		
Unit # 15			
Model # 101: Classifier (0A)	N. L		
Parameter name	Value		
Short circuit of fines (%)	0.000		
Corrected cut size: d50c (mm)	0,088		

Tabela II - Parâmetros dos modelos de nível 0

Corrected partition curve imperfection

0,47

A tabela III reúne os resultados dos fluxos de simulação direta e modelos de nível 0. Tabela III - Resultados de Simulação - Nível 0

Stream	Global mass	Global mass	Recovery of	d95 of phase	d80 of phase	Solids
definition:	flowrate of	flowrate of	phase	Sand/Gravel	Sand/Gravel	concentration
	phase	phase Water	Sand/Gravel /	(µm)	(µm)	(%)
	Sand/Gravel	(m3/h)	stream 1 (%)	1.	1000	
	(t/h)					
Stream 1	1100,00	83,60	100,00	50000	6350	92,90
Stream 2	1100,00	83,60	100,00	50000	6350	92,90
Stream 3	959,00	75,20	87,20	40000	3380	92,70
Stream 4	141,00	8,36	12,80	200000	142000	94,40
Stream 5	141,00	8,36	12,80	100000	42700	94,40
Stream 6	1100,00	83,60	100,00	50000	6170	92,90
Stream 7	1100,00	83,60	100,00	50000	6170	92,90
Stream 8	1100,00	83,60	100,00	50000	6170	92,90
Stream 9	1100,00	1100,00	100,00	50000	6170	50,00
Stream 10	0,00	1020,00	0,00	?	?	0,00
Stream 11	1190,00	1100,00	108,00	30000	11000	51,90
Stream 12	86,00	0,00	7,82	200000	139000	100,00
Stream 13	1100,00	1100,00	100,00	20000	4810	50,00
Stream 14	87,50	0,00	7,95	50000	44200	100,00
Stream 15	173,00	0,00	15,80	50000	30400	100,00
Stream 16	955,00	1100,00	86,80	8000	951	46,50
Stream 17	145,00	0,00	13,20	40000	28100	100,00
Stream 18	886,00	1100,00	80,50	3000	667	44.60
Stream 19	68,70	0.00	6.25	20000	11900	100.00
Stream 20	214.00	0.00	19.50	30000	25700	100.00
Stream 21	214.00	0.00	19,50	30000	25700	100.00
Stream 22	515.00	1050,00	46.90	80	41	32.80
Stream 23	441.00	79.30	40.10	4000	1550	84.80
Stream 24	70.60	33.60	6.42	40	42	67.80
Stream 25	371.00	45.80	33.70	5000	1870	89.00
Stream 26	371.00	45.80	33.70	5000	1870	89.00
Stream 27	371.00	45.80	33 70	5000	1870	89.00
Stream 28	515.00	1050.00	46.90	80	41	32.80
Stream 29	285.00	959.00	25.90	30	16	22.90
Stream 30	231.00	94 90	21.00	100	55	70.80
Stream 31	469.00	1620.00	42.60	30	14	22 40
Stream 32	191.00	1400.00	17 30	10	6	12.00
Stream 33	278.00	227.00	25 30	30	18	55.00
Stream 34	509.00	763.00	46 30	80	41	40.00
Stream 35	0.00	441.00	0.00	2	9	40,00
Stream 36	184.00	664.00	16.70	20	12	21.70
Stream 37	325.00	99.20	29.60	100	12	76.60
Stream 38	0.00	63.10	0.00	2	2	0.00
Stream 39	325.00	36.10	29.60	100	4.4	90,00
Stream 40	325.00	36.10	29.60	100	14	90,00
Strcam 41	0.00	0.00	0.00	2	2	2
Stream 42	325.00	36.10	29.60	100	44	90.00
Stream 43	325.00	36.10	29.60	100	44	90.00
Stream 44	0.00	1380.00	0.00	2	2	0.00
Stream 45	191.00	21.20	17.30	10	6	90.00

A figura 4 apresenta as curvas de partição para as várias etapas de classificação da planta.

Figura 4 - Curvas de Partição: Modelos de Nível 0

Através da análise destes resultados,, é possível verificar se foram atendidos os objetivos propostos de qualidade dos produtos.

A partir dos fluxos gerados por simulação direta, para toda a planta, foram dimensionados todos os equipamentos, para atender ao desempenho obtido na simulação anterior. Nesta etapa, utiliza-se do recurso de simulação reversa. São escolhidos modelos matemáticos de nível 1 - modelos que conectam as dimensões dos equipamentos com seu desempenho, e através do desempenho de toda a planta, já obtido anteriormente, calcula-se, por retro-cálculo, as dimensões e regulagens dos equipamentos que atendem aos fluxos e desempenhos propostos.

A tabela IV reúne os resultados dos parâmetros dos equipamentos dimensionados com modelos de nível 1.

A tabela V apresenta os resultados dos fluxos obtidos, por simulação, a partir dos modelos dos equipamentos já dimensionados. A comparação destes resultados com os fluxos correspondentes da simulação de nível 0 (tabela III) permite avaliar se o dimensionamento foi bem sucedido e se atendeu plenamente os objetivos iniciais propostos para a planta.

A figura 5 apresenta as curvas de partição para as várias etapas de classificação obtidas com modelos dos equipamentos dimensionados.

Tabela IV - Parâmetros de nível 1

Unit # 2		N1-14 # 10	1
Model # 114: Screen (1A)			
Parameter name	Value	Model # 125: Symons cone crusher	1
Number of screens in parallel	1	Farameter name	Value
Screen openings (mm)	152	Exit setting (m)	0,025
Wire width (mm)	75	Unit # 11	
Screen width (m)	1.8	Model # 115: Screen (1B)	
Length / width ratio	2.2	Parameter name	Value
Loading parameter	1	Number of screens in parallel	1
Efficiency parameter	6.8	Screen width (m)	2,44
Short circuit of fines (%)	10	Length / width ratio	2,5
Unit # 3		Minimum screen opening (mm)	12,5
Model # 107: Jaw Crusher (0)		Screen wire diameter (mm), 0 for slotted	-
Parameter name	Value	or non square openings	7
Exit setting (m)	0.152	Angle of screen from horizontal (degree)	20
Unit # 7	0,102	Percent solids in the coarse stream (%)	95
Model # 5: Density Regulator (0)		Position of screen in multiple deck screen	1000
Parameter name	Value	(top=1, second=2,)	1
Percent solids at regulator output (%)	50	Unit # 12	
Unit # 8		Model # 115: Screen (1B)	
Model # 115: Screen (1B)		Parameter name	Value
Parameter name	Value	Number of screens in parallel	1
Number of screens in parallel	1	Screen width (m)	2,44
Screen width (m)	2.14	Length / width ratio	2,5
Length / width ratio	2,14	Minimum screen opening (mm)	6,35
Minimum screen opening (mm)	50	Screen wire diameter (mm), 0 for slotted	
Screen wire diameter (mm) () for slotted	50	or non square openings	4
or non square openings	20	Angle of screen from horizontal (degree)	20
Angle of screen from horizontal (degree)	20	Percent solids in the coarse stream (%)	95
Percent solids in the coarse stream (%)	07.5	Position of screen in multiple deck screen	
Position of screen in multiple deck screen	1,5	(top=1, second=2,)	2
(top=1 second=2)		Adjustment of cut size (d50)	1
Adjustment of cut size (d50)	0 000001	Adjustment of imperfection	1
Adjustment of imperfection	0.000083	Adjustment of bypass fraction	1
Adjustment of hunass fraction	0.078284	Unit # 15	
Unit # 9	0,778284	Model # 118: Spiral & rake classifier (1)	1000
Model # 115: Screen (1B)	1 1	Parameter name	Value
Parameter name	Value	Number of classifiers in parallel	2
Number of screens in parallel	value	Classifier length (m)	13,73
Screen width (m)	244	Classifier width/length ratio	0,37
Length (width ratio	2,44	Percent solids in coarse product stream	86
Minimum correst energing (mm)	2,5	Adjustment of corrected d50	1
Screen wire diameter (mm) (for eleved	32	Adjustment of the corrected partition	
Screen wire diameter (mm), 0 for slotted		curve imperfection	1
or non square openings	18	Adjustment of the solids bypass to sand	
Angle of screen from horizontal (degree)	20	(coarse product)	1
Percent solids in the coarse stream (%)	97,5	Decantation efficiency: useful area/total	
Position of screen in multiple deck screen		area (0.35 or 0.5)	0.5
(top=1, second=2,)	2	Classifier type: 1 for rake, 2 for spiral	2
Adjustment of cut size (d50)	1	Calculated spiral diameter (m) if spiral	
Adjustment of imperfection	1	classifier	0.0608407
Adjustment of bypass fraction	1		3,0000707

Unit # 16		Unit # 23	
Model # 108: Perfect Classifier (0)		Model # 5: Density Regulator (0)	
Parameter name	Value	Parameter name	
Separation cut size (mm)	0,05	Percent solids at regulator output (%)	
Percent solids in the coarse stream (%)	89	Unit # 24	
Unit # 20		Model # 121: Hydrocyclone (2)	
Model # 121: Hydrocyclone (2)		Parameter name	
Parameter name	Value	Number of cyclones in parallel	
Number of cyclones in parallel	56	Cyclone diameter: D (m)	
Cyclone diameter: D (m)	0,15	Distance between underflow and overflow	
Distance between underflow and overflow		nozzles / D	
nozzles / D	3	Diameter of the feed nozzle / D	
Diameter of the feed nozzle / D	0,28	Diameter of the overflow nozzle / D	
Diameter of the overflow nozzle / D	0,3	Diameter of the underflow nozzle / D	
Diameter of the underflow nozzle / D	0,146	Adjustment of the corrected d50	
Adjustment of the corrected d50	1	Adjustment of the partition curve	
Adjustment of the partition curve		imperfection	
imperfection	1	Adjustment of the short circuiting fraction	
Adjustment of the short circuiting fraction	1	Adjustment of the rope discharge limit	
Adjustment of the rope discharge limit	1	Calculated pressure drop (KiloPascal)	
Calculated pressure drop (KiloPascal)	1.265.256	Calculated underflow nozzle diameter (cm)	
Calculated underflow nozzle diameter (cm)		to prevent roping	
to prevent roping	0	Unit # 25	
Unit # 22		Model # 2: Solid/Liquid Separator (0)	
Model # 121: Hydrocyclone (2)		Parameter name	
Parameter name	Value	Percent solids of the slurry stream (mass %)	
Number of cyclones in parallel	95	Unit # 27	
Cyclone diameter: D (m)	0,102	Model # 2: Solid/Liquid Separator (0)	
Distance between underflow and overflow		Parameter name	
nozzles / D	10	Percent solids of the slurry stream (mass %)	
Diameter of the feed nozzle / D	0,27	Unit # 29	
Diameter of the overflow nozzle / D	0,3	Model # 2: Solid/Liquid Separator (0)	
Diameter of the underflow nozzle / D	0,186218	Parameter name	
Adjustment of the corrected d50	- 1	Percent solids of the slurry stream (mass %)	
Adjustment of the partition curve			
imperfection	1		
Adjustment of the short circuiting fraction	1		
Adjustment of the rope discharge limit	1		
Calculated pressure drop (KiloPascal)	2.445.916		
Calculated underflow nozzle diameter (cm)			
to prevent roping	0		

Value 40

Value 55 0,102 10 0,2999058 0,3474781 0,1647337 1 1 1 1 1,551.583 1,510.969

> Valuc 90

Value 90

Value 90

Stream definition:	Global mass flowrate of phase Sand/Gravel	Global mass flowrate of phase Water (m3/h)	Recovery of phase Sand/Gravel / stream 1 (%)	d95 of phase Sand/Gravel (µm)	d80 of phase Sand/Gravel (µm)	Solids concentration (%)
Stream 1	1100.00	93.60	100.00	50000	6350	02.00
Stream 2	1100,00	83,00	100,00	50000	6250	92,90
Stream 3	956.00	83,00	86.00	40000	3120	92,90
Stream 4	144.00	0.11	13 10	200000	156000	92,00
Stream 5	144,00	0,11	13,10	200000	150000	99,90
Stream 6	144,00	92.60	100,00	200000	43400	99,90
Stream 7	1100,00	83,00	100,00	50000	6140	92,90
Stream 8	1100,00	83,00	100,00	50000	6140	92,90
Stream 0	1100,00	1100.00	100,00	50000	6140	92,90
Stream 10	0.00	1020.00	100,00	30000	0140	50,00
Stream 11	1100.00	11020,00	100.00	20000	11100	51.00
Stream 12	64.00	3 10	5.82	200000	145000	05 20
Stream 13	1100.00	1100.00	100.00	20000	4850	50,00
Stream 14	01.00	160,00	0.55	20000	4630	50,00
Stream 15	158.00	7.80	14.40	50000	40100	95,20
Stream 16	158,00	1080.00	86.40	8000	096	95,20
Stream 17	150,00	15.00	12.60	40000	28200	40,70
Stream 19	130,00	1080.00	13,00	40000	28300	90,90
Stream 10	72.00	1080,00	19,80	3000	11000	44,90
Stream 20	72,00	7,24	0,54	20000	11900	90,90
Stream 21	222,00	22,30	20,20	30000	26100	90,90
Stream 22	222,00	22,30	20,20	30000	26100	90,90
Stream 22	508,00	1030,00	40,20	80	41	33,00
Stream 24	424,00	69,10	38,60	5000	1800	86,00
Stream 25	34,00	23,40	4,90	40	42	70,00
Stream 25	370,00	45,70	33,60	5000	2040	89,00
Stream 20	370,00	45,70	33,60	5000	2040	89,00
Stream 29	508.00	45,70	33,60	5000	2040	89,00
Stream 20	308,00	1030,00	46,20	80	41	33,00
Stream 29	288,00	945,00	26,20	30	16	23,40
Stream 21	220,00	80,90	20,00	100	59	71,70
Stream 31	490,00	1620,00	44,60	20	15	23,20
Stream 22	192,00	1140,00	17,40	9.	0	14,40
Stream 33	298,00	477,00	27,10	30	18	38,50
Stream 34	519,00	778,00	47,10	80	41	40,00
Stream 35	0,00	214,00	0,00	7	1 7	0,00
Stream 30	202,00	674,00	18,40	20	13	23,10
Stream 37	316,00	104,00	28,80	100	44	75,30
Stream 38	0,00	68,80	0,00	?	?	0,00
Stream 39	316,00	35,20	28,80	100	44	90,00
Stream 40	316,00	35,20	28,80	100	44	90,00
Stream 41	0,00	0,00	0,00	?	?	?
Stream 42	316,00	35,20	28,80	100	44	90,00
Stream 43	316,00	35,20	28,80	100	44	90,00
Stream 44	0,00	1120,00	0,00	?	?	0,00
Stream 45	192,00	21,30	17,40	9	6	90,00

Tabela V - Resultados de Simulação Nível 1

Figura 5 - Curvas de Partição - Modelos Nivel 1

Ao final do dimensionamento dos equipamentos da planta, pode-se ajustá-los de forma a atender a critérios de padronização e/ou aproveitamento de equipamentos existentes. Desta forma, pode-se ajustar os parâmetros dos modelos dos equipamentos (nível 1) diretamente, executar a simulação direta e obter novamente os resultados dos fluxos para toda a planta. A análise destes resultados finais é, então, feita para verificar a adequação dos objetivos propostos inicialmente.

A tabela VI apresenta a lista dos parâmetros finais dos equipamentos, os quais foram adotados para a planta de Capão Xavier.

Os resultados da simulação, utilizando os parâmetros finais, são apresentados na tabela VII.

As curvas de partição obtidas após a simulação final do circuito são apresentadas na figura 6.

A figura 7 apresenta as curvas granulométricas dos fluxos principais para as três etapas do estudo de *design* - resultados simulados: nível 0, nível 1 e nível 1-2 otimizado.

Tabela VI - Parâmetros de Simulação Nível 1/2 Otimizado

[17] 21 21			1
Unit # 2		Unit # 10	
Model # 114: Screen (1A)		Model # 125: Symons cone crusher	
Parameter name	Value	Parameter name	Value
Number of screens in parallel	1	Exit setting (m)	0,025
Screen openings (mm)	152	Unit # 11	1 Decision
Wire width (mm)	75	Model # 115: Screen (1B)	1.00
Screen width (m)	1,8	Parameter name	Value
Length / width ratio	2,2	Number of screens in parallel	1
Loading parameter	1	Screen width (m)	2,44
Efficiency parameter	6,8	Length / width ratio	2,5
Short circuit of fines (%)	10	Minimum screen opening (mm)	12,5
Unit # 3		Screen wire diameter (mm), 0 for slotted	a section of
Model # 107: Jaw Crusher (0)		or non square openings	7
Parameter name	Value	Angle of screen from horizontal	i di statu i s
Exit setting (m)	0,152	(degree)	20
Unit # 7	1 1 1 1 1 1 1 1	Percent solids in the coarse stream (%)	95
Model # 5: Density Regulator (0)		Position of screen in multiple deck	1. Wich/
Parameter name	Value	screen (top=1, second=2,)	1
Percent solids at regulator output (%)	50	Adjustment of cut size (d50)	1
Unit # 8	the share of	Adjustment of imperfection	1
Model # 115: Screen (1B)	Character 19	Adjustment of bypass fraction	1
Parameter name	Value	Unit # 12	1
Number of screens in parallel	1	Model # 115: Screen (1B)	A. 1 64
Screen width (m)	2,44	Parameter name	Value
Length / width ratio	2,5	Number of screens in parallel	1
Minimum screen opening (mm)	50	Screen width (m)	2,44
Screen wire diameter (mm), 0 for slotted		Length / width ratio	2,5
or non square openings	20	Minimum screen opening (mm)	6.35
Angle of screen from horizontal		Screen wire diameter (mm), 0 for slotted	1. 12.14
(degree)	20	or non square openings	4
Percent solids in the coarse stream (%)	97,5	Angle of screen from horizontal	1. Shipin
Position of screen in multiple deck		(degree)	20
screen (top=1, second=2,)	1	Percent solids in the coarse stream (%)	95
Adjustment of cut size (d50)	0,9999905	Position of screen in multiple deck	13.0000
Adjustment of imperfection	0,9999829	screen (top=1, second=2)	2
Adjustment of bypass fraction	0,9782843	Adjustment of cut size (d50)	1
Unit # 9	1.	Adjustment of imperfection	1 1
Model # 115: Screen (1B)		Adjustment of bypass fraction	i
Parameter name	Value		-
Number of screens in parallel	1		
Screen width (m)	2.44		
Length / width ratio	2.5		
Minimum screen opening (mm)	32		
Screen wire diameter (mm), 0 for slotted			
or non square openings	18		
Angle of screen from horizontal (degree)	20		
Percent solids in the coarse stream (%)	97.5		
Position of screen in multiple deck			
screen (top=1, second=2)	2		
Adjustment of cut size (d50)	1		
Adjustment of imperfection	1		
Adjustment of hunges fraction	1		
regustinent of oypass fraction	1		

Ter 1. 11		Discussion of the sum flow models / D	1 0 28
		Diameter of the overflow hozzle / D	0,28
Model # 11-8: Spiral & rake classifier (1)	1.1.1.	Diameter of the underflow hozzie / D	0,18
Parameter name	Value	Adjustment of the corrected abo	1
Number of classifiers in parallel	2	Adjustment of the partition curve	
Classifier length (m)	13,73	Imperfection	1
Classifier width/length ratio	0,37	Adjustment of the short circuiting fraction	1
Percent solids in coarse product		Adjustment of the rope discharge limit	1.
stream	86	Calculated pressure drop (KiloPascal)	3.449.878
Adjustment of corrected d50	1	Calculated underflow nozzle diameter (cm)	
Adjustment of the corrected partition		to prevent roping	0
curve imperfection	1 1	Unit # 23	1
Adjustment of the solids bypass to		Model # 5: Density Regulator (0)	
sand (coarse product)	1	Parameter name	Value
Decantation efficiency: useful		Percent solids at regulator output (%)	40
area/total area (0,35 or 0,5)	0,5	Unit # 24	1
Classifier type: 1 for rake, 2 for spiral	2	Model # 121: Hydrocyclone (2)	1 -
Calculated spiral diameter (m) if spiral		Parameter name	Value
classifier	0,0608407	Number of cyclones in parallel	50
Unit # 16		Cyclone diameter: D (m)	0,102
Model # 108: Perfect Classifier (0)	1 1	Distance between underflow and overflow	
Parameter name	Value	nozzles / D	10
Separation cut size (mm)	0,05	Diameter of the feed nozzle / D	0,23
Percent solids in the coarse stream (%)	89	Diameter of the overflow nozzle / D	0,28
Unit # 20		Diameter of the underflow nozzle / D	0,15
Model # 121: Hydrocyclone (2)	1 1	Adjustment of the corrected d50	1
Parameter name	Value	Adjustment of the partition curve	
Number of cyclones in parallel	56	imperfection	1
Cyclone diameter: D (m)	0,15	Adjustment of the short circuiting fraction	1
Distance between underflow and overflow		Adjustment of the rope discharge limit	1
nozzles / D	3	Calculated pressure drop (KiloPascal)	3.293.545
Diameter of the feed nozzle / D	0,28	Calculated underflow nozzle diameter (cm)	
Diameter of the overflow nozzle / D	0,3	to prevent roping	1.509.391
Diameter of the underflow nozzle / D	0,146	Unit # 25	
Adjustment of the corrected d50	1	Model # 2: Solid/Liquid Separator (0)	
Adjustment of the partition curve	1 1	Parameter name	Value
imperfection	1 1	Percent solids of the slurry stream	
Adjustment of the short circuiting fraction	1	(mass %)	90
Adjustment of the rope discharge limit		Unit # 27	
Calculated pressure drop (KiloPascal)	1.265.256	Model # 2: Solid/Liquid Separator (0)	
Calculated underflow nozzle diameter (cm)		Parameter name	Value
to prevent roping	0	Percent solids of the slurry stream	
Unit # 22		(mass %)	90
Model # 121: Hydrocyclone (2)		Unit # 29	
Parameter name	Value	Model # 2: Solid/Liquid Separator (0)	
Number of cyclones in parallel	90	Parameter name	Value
Cyclone diameter: D (m)	0,102	Percent solids of the slurry stream	
Distance between underflow and overflow		(mass %)	90
nozzles / D	10		
Diameter of the feed nozzle / D	0.23		

Stream definition:	Global mass flowrate of phase Sand/Gravel	Global mass flowrate of phase Water (m3/h)	Recovery of phase Sand/Gravel / stream 1 (%)	d95 of phase Sand/Gravel (µm)	d80 of phase Sand/Gravel (µm)	Solids concentration (%)
	(1/h)					1.
Stream 1	1100,00	83,60	100,00	50000	6350	92,90
Stream 2	1100,00	83,60	100,00	50000	6350	92,90
Stream 3	956,00	83,50	86,90	40000	3120	92,00
Stream 4	144,00	0,07	13,10	200000	156000	100,00
Stream 5	144.00	0.07	13.10	200000	45400	100.00
Stream 6	1100.00	83.60	100.00	50000	6140	92.90
Stream 7	1100,00	83,60	100,00	50000	6140	92.90
Stream 8	1100.00	83.60	100.00	50000	6140	92.90
Stream 9	1100.00	1100.00	100.00	50000	6140	50.00
Stream 10	0.00	1020.00	0.00	2	2	0.00
Stream 11	1190.00	1100.00	109.00	30000	11100	51.90
Stream 12	64.00	3 19	5.82	200000	145000	95 20
Stream 13	1100.00	1100.00	100.00	200000	4850	50.00
Stream 14	94.00	1 69	8 55	50000	45100	95 20
Stream 15	158.00	7.89	14 40	50000	30700	95 20
Stream 16	950.00	1080.00	86.40	8000	986	46 70
Stream 17	150,00	15.00	13 60	40000	28300	90,90
Stream 18	878.00	1080.00	79.80	3000	709	44.00
Stream 19	72.00	7 24	6.54	20000	11900	90,90
Stream 20	222.00	22 30	20.20	30000	26100	90,90
Stream 21	222,00	22,30	20,20	30000	26100	90,90
Stream 22	508.00	1030.00	46 20	80	41	33.00
Stream 23	424.00	69.10	38 60	5000	1800	86.00
Stream 24	54.60	23.40	4 96	40	42	70,00
Stream 25	370.00	45 70	33.60	5000	20.10	80.00
Stream 26	370,00	45,70	33,60	5000	2040	89,00
Stream 27	370,00	45.70	33,60	5000	2040	89,00
Stream 28	508.00	1030.00	46.20	80	2040	39,00
Stream 20	288.00	045.00	26.20	30	41	33,00
Stream 30	200,00	945,00	20,20	100	50	23,40
Stream 31	440.00	1570.00	10,00	20	12	21.00
Stream 32	172.00	1110.00	15 70	20	5	12,90
Stream 33	268.00	465.00	24.30	30	17	26.60
Stream 34	488.00	732.00	44.40	90	41	30,00
Stream 35	0.00	180.00	0.00	2	2	0.00
Stream 36	152.00	627.00	13.80	10	0	10,00
Stream 37	336.00	105.00	30.50	100	44	76.20
Stream 29	0.00	67.60	0.00	100		0.00
Stream 30	336.00	37.30	30,50	100	11	0,00
Stream 40	336,00	37,30	30,50	100	44	90,00
Stream 41	330,00	37,30	50,50	100	44	90,00
Sucan 41	0,00	0,00	0,00	100		00.00
Stream 42	330,00	37,30	30,50	100	44	90,00
Stream 43	330,00	37,30	30,50	100	44	90,00
Stream 44	0,00	1090,00	0,00	7	2	0,00
Stream 45	172,00	19,10	15,70	8	5	90,00

Tabela VII - Resultados de Simulação Nível 1/2 Otimizado

Figura 6 - Curvas de Partição Nivel 1/2 otimizado

Figura 7 - Curvas de Distribuição Granulométrica - Nivel 0, Nível 1 e Nível 1/2 Otimizado

CONCLUSÃO

A utilização de tecnologia de simulação para o *design* preliminar da planta de beneficiamento de Capão Xavier permitiu agilidade e precisão na obtenção dos resultados pretendidos. A metodologia adotada foi bastante eficaz e pode ser padronizada facilmente no departamento de projeto e desenvolvimento da empresa, permitindo incluir detalhes culturais e várias premissas de eficiências e critérios para as várias operações unitárias do processo.

O software USIMPAC 2 para Windows, se mostrou bastante eficaz como ferramenta no desenvolvimento do projeto, permitindo investigar ampla gama de situações possíveis de variação de taxa e características do minério alimentado em um curto espaço de tempo.

REFERÊNCIA BIBLIOGRÁFICA

- Durance, M. V., Guillaneau, J.-C., Villeneuve, Fourniguet, G., Brochot, S., Usim Pac 2 for windows: "Advanced simulation of mineral Processes", *Progress in Mineral Processing Tecnology*, Demirel & Ersayin (eds) © 1994, Balkema, ISBN
- Guillaneau, J.-C., Durance, M. V., Villeneuve, J., Guyot, O., "Computer aided Optimization of Mineral Processing Plant: Usim Pac 2.0 for Windows", Avanced Tecnologies for Mineral Processes, three years of innovation, junho de 1993, Orleans, França.
- Guillaneau, J.-C., Durance, M. V., Villeneuve, Fourniguet, G., Brochot, S., "Computer simulation of mineral and hidrometallurgical processes: Usim Pac 2.0, a single software from design optimization", *International Symposium on Modeling*, *Simulation and Control of Hidrometallurgical Processes*, 24 de agosto a 2 de setembro, 1993, Quebec, Canadá.
- Guillaneau, J.-C., Durance, M. V., Villeneuve, J., Brochot, S., Fourniguet, G., "Simulation Improvements in Mineral Processing", *Mineral Processing and Extractive Metallurgy Review*, 1995, Vol. 15, pp. 205-215
- Karra, V. K., "Development of a model for predicting the screening performance of a vibrating screen", *CIM Bulletin*, abril de 1979, pp. 167-171.
- Libaude, J., Morizot, G., Morin, D., Guillaneau, J.-C., "New Technological Developments in Mineral Processing", *Asian Mining*, 1993, India.
- Plitt, L. R., "a Mathematical model of the hydrociclone classifier", CIM Bull., dezembro de 1976.
- Sastry, K. V. S., "Principles and Methodology of Mineral Process Modeling", Control 90 - Mineral/Metallurgical Processing, AIME/SME, pp. 3-10.

PRELIMINARY DESIGN OF CAPÃO XAVIER BY PROCESS SIMULATION TECHNOLOGY USING MATHEMATICAL MODELS

ABSTRACT

This work involves the preliminary design of the Capão Xavier iron ore processing plant, that belongs to Minerações Brasileiras Reunidas S/A - MBR located at the edge of road BR-040 Nova Lima county M.G.

The designed plant includes a crushing circuit followed by wet screening, classification, desliming and filtering associated to the recovery of used water with the help of thickeners.

The performed work was supported by mathematical models and process simulation for sizing all the selected equipments. Initially simple models gave the support to the stream generation based on the required performance. Then, it was used more sophisticated models to size all the equipments through reverse simulation.

All the work was performed with the help of the software USIM PAC 2.0 for windows that has shown very effective as project development tool making possible to investigate a wide spectrum of possibilities through the streams and ore characteristics

Key words: Design, Simulation, Capão Xavier, Mathematical Models