DETERMINAÇÃO DAS PROPRIEDADES MECÂNICAS DE AÇO AO NIÓBIO EM LAMINAÇÃO CONTROLADA ATRAVÉS DE MODELO MATEMÁTICO*

Emanuelle Garcia Reis¹ José Herbert Dolabela da Silveira²

Resumo

O trabalho apresenta a previsão das propriedades mecânicas de um aço C-Mn com adição de Nb laminado pelo processo TMCP, utilizando equações matemáticas que correlacionam os parâmetros operacionais de deformação e as temperaturas de processo obtidos em uma simulação laboratorial. Foram considerados os fenômenos metalúrgicos de solubilização, precipitação, recristalização e crescimento de grão. Os resultados finais previstos pela simulação mostraram-se satisfatórios, permitindo uma boa previsibilidade da resistência mecânica do laminado a quente.

Palavras-chave: Laminação controlada; Modelos matemáticos; Propriedades mecânicas.

DETERMINATION OF MECHANICAL PROPERTIES OF A NIOBIUM STEEL IN CONTROLLED ROLLING THROUGH MATHEMATICAL MODELING

Abstract

This paper presents the prediction of the mechanical properties of a C-Mn steel with addition of Nb rolled by TMCP process, using mathematical equations that correlate the operating parameters of strain and the process temperatures obtained in a Metallurgical solubilization phenomena, laboratory simulation. precipitation. recrystallization and grain growth were considered. The final results were satisfactory, allowing a good predictability of the mechanical strength of the hot rolled.

Keywords: Controlled rolling; Mathematical models; Mechanical properties.

1 Engenheira civil, M.Sc. facilitadora de melhoria da laminação de chapas grossas, Gerdau Ouro Branco. MG. Brasil.

2 Membro da ABM, engenheiro metalurgista, M.Sc, gerente da laminação de chapas grossas, Gerdau Ouro Branco, MG, Brasil.

O processo de laminação controlada tem por objetivo aumentar a resistência mecânica dos laminados, melhorando a tenacidade sem degradação da soldabilidade. A figura abaixo representa esquematicamente o esquema de deformações e de temperaturas nos passes e as transformações de fases que ocorrem no processo de laminação a quente.

Figura 1: Desenho esquemático do processo de laminação controlada [1].

Os principais parâmetros de controle no processo durante a laminação a quente são: - temperatura de aquecimento,

- temperatura de início da fase de acabamento,
- temperatura de fim da fase de acabamento,

- redução na fase de esboçamento,

- redução na fase de acabamento.

Os aços utilizados no processo de laminação controlada tem microligantes em sua composição química com a intenção de promover o endurecimento da microestrutura em sua plenitude através do controle do refino de grão, da transformação de fases, da precipitação dos carbonitretos, da solução sólida e em conjunto com a laminação, do encruamento [2,3].

Para melhor aproveitar todos estes mecanismos de endurecimento, três temperaturas importantes devem ser consideradas, previamente, para definir as variáveis que devem ser seguidas na laminação:

- temperatura de solubilização

- temperatura de não recristalização: TNR
- temperatura da transformação austenita-ferrita: Ar3

No processo de laminação a quente, a fase de acabamento deve sempre ser realizada abaixo da TNR, para que não ocorra a recristalização dos grãos austeníticos, gerando a "driving force" para a transformação austenita-ferrita e com isto aumenta-se o parâmetro Sv (pontos para nucleação da ferrita) [3].

As curvas abaixo representam o fenômeno de recristalização "clássica" em um processo onde as temperaturas de deformação ocorrem abaixo da TNR, sempre com o passe subsequente em uma temperatura mais baixa que no anterior.

Figura 2: Ocorrência de recristalização e refino de grãos no processo de laminação [4].

Foi feito um teste a quente num laminador piloto, utilizando condições diferentes de temperatura de espera, temperatura de acabamento e taxas de resfriamento. Foram mantidas as deformações e a temperatura de aquecimento.

2 MODELO MATEMÁTICO DO PROCESSO

As equações utilizadas nas simulações estão descritas na Tabela 1 [5-7].

As temperaturas de não recristalização e de transformação austenita ferrita são calculadas através das equações 1 e 2. As principais deformações que ocorrem durante a laminação são determinadas pelas equações 3, 4, 5 e 6.

Os tempos para que ocorra 50% de recristalização estática ou metadinâmica são calculados pelas equações 7 e 8 respectivamente.

Os tamanhos de grão estáticos ou metadinâmicos são dados pelas equações 9 e 10 e crescimento dos grãos austeníticos é dados pela equação 11. O tamanho de grão ferrítico na ausência de deformação retida é dado pela equação 12 e quando existe deformação retida na austenita é dada pela equação 13.

Os valores de limites de escoamento e resistência são calculados pelas equações 14 e 15, e a contribuição da precipitação ao ar é dada pela equação 16 e com resfriamento acelerado pela equação 17.

Se $\epsilon_a < \epsilon_p$ ocorre o fenômeno da recristalização estática e são utilizadas as equações 7 e 9 para determinar o tamanho de grão (d_{RX}). Se $\epsilon_a > \epsilon_p$ ocorre o fenômeno da recristalização dinâmica e são utilizadas as equações 8 e 10 para determinar o tamanho de grão (d_{RX}).

ISSN 1983-4764

abm week

Tabela 1: I	Equações usadas na simulação [5-7]	
Variável	Equação	
Tnr	$Tnr = 897 + 464.C + (6445.Nb - 644.\sqrt{Nb}) + (732.V - 230.\sqrt{V}) + 890.Ti + 363.AI - 357.Si$	(1)
Ar3	Ar3 = 910 - 310.C - 80.Mn - 20.Cu - 15.Cr - 55.Ni - 80.Mo + 0,35.(t - 8)	(2)
	$\varepsilon_{p} = \left(\frac{1+20.[Nb]}{1,78}\right) \cdot 2,8 \cdot 10^{-4} \cdot d_{0}^{0,5} \cdot \left[\dot{\varepsilon} \cdot \exp\left(\frac{375000}{R.T}\right)\right]^{0,17}$	(3)
\mathcal{E}_p ; ε_{c}	$\varepsilon_{c}/\varepsilon_{p} = 0.8 - 13.\text{Nb}_{eff} + 112.(\text{Nb}_{eff})^{2}$	(4)
	$Nb_{eff} = [Nb] - \frac{[Mn]}{120} + \frac{[Si]}{94}$	
	(5)	
\mathcal{E}_{a}	$\varepsilon_{a_{i+1}} = \varepsilon_{i+1} + (1 - X_i) \varepsilon_i$	(6)
to,5	$t_{0,5}^{SRX} = \left(-5,24 + 550.[Nb]\right) \cdot 10^{-18} \cdot \epsilon^{(-4+77.[Nb])} \cdot d_0^2 \cdot exp\left(\frac{330000}{R.T}\right)$	(7)
	$t_{0,5}^{\text{MDRX}} = 4,42.10^{-7}.\dot{\epsilon}^{-0.59}.exp\left(\frac{153000}{\text{R.T}}\right)$	(8)
drx	$d_{SRX} = 1.1.\varepsilon^{-0.67}.d_0^{0.67}$ para T>950°C	(9)
	$d^{MDRX} = 1370.\dot{\epsilon}^{-0.13}.exp\left(\frac{-45000}{R.T}\right)$	(10)
d after t _{ip}	$d^{4,5} = d_0^{4,5} + 4,1.10^{23} t_{ip} exp\left(\frac{-435000}{R.T}\right)$	(11)
dα	$d_{\alpha}^{0} = 2.5 + 3.0.\dot{T}^{-1/2} + 20.[1 - \exp(-1.5.10^{-2}.d_{\gamma})]$	(12)
	$d_{\alpha} = d_{\alpha}^{0} \cdot \left(1 - 0.45 \cdot \sqrt{\varepsilon_{r}}\right)$	(13)
LE	$LE = 62,6 + 26,1.[Mn] + 60,2.[Si] + 759.[P] + 212,9.[Cu] + 3286.[N] + \sigma_{p} + 19,7.d_{\alpha}^{-0.5}$	(14)
LR	$LR = 164,9 + 634,7.[C] + 53,6.[Mn] + 99,7.[Si] + 651,9.[P] + 4726.[Ni] + 3339.4.[N] + \sigma_{P} + 11.d_{\alpha}^{-0.5}$	(15)
σ _P	σ _{P-RA} =2500 MPa/%Nb	(16)

Legenda:	Legenda:
- C, Mn, Si, P, Ni, N, Nb, Ti, Al, Si, Mo, Cu= elementos químicos do laminado [%] - Tnr= Temperatura de não recristalização [°C] - Ar3= Temperatura de transformação austenita ferrita [°C] - T= temperatura no passe [°C] - \mathcal{E}_p = deformação de pico - \mathcal{E}_c = deformação crítica - \mathcal{E}_a = deformação acumulada	$ - t_{ip} = tempo entre passes [s] - t_{ip} = tempo para 50% de recristalização (SRX= recristalização estática e MDRX= recristalização metadinâmica) [s] - dRX= tamanho de grão recristalizado (SRX= recristalização estática e MDRX= recristalização metadinâmica) [µm] - d after tip= tamanho de grão em crescimento [µm] - d_0 = tamanho de grão austenítico no passe [µm] - d0α = tamanho final ferrítico na ausência de deformação [µm] - dα= tamanho de grão ferrítico final [µm] - LE= limite de escoamento [MPa] - LR= limite de resistência [MPa]$
 ε = taxa de deformação [s-1] R= constante dos gases [KJ/mol.K] 	- σ _P = contribuição da precipitação [MPa]

3 MATERIAIS E MÉTODOS

O estudo da simulação foi realizado com um aço com 0,17% de C, 1,45% de Mn e 0,022% de Nb. A laminação ocorreu em um laminador laboratorial com medição digital de temperatura nos passes através de pirômetro de contato.

O corpo de prova tinha uma espessura inicial de 100 mm e foi laminado até uma espessura final de 25 mm. Os corpos de prova foram aquecido em forno do tipo mufla à 1.160°C e a temperatura de início de laminação foi 1.100°C.

A laminação controlada ocorreu com 50mm de espessura de espera e a temperatura de espera variou de 960°C a 770°C. A temperatura de acabamento variou de 900°C a 700°C.

Os corpos de prova que sofreram resfriamento acelerado tiveram uma temperatura de início de resfriamento de 780°C a 680°C, temperatura final de resfriamento de 500°C e taxas de resfriamento de 19 C/s a 26°C/s.

4 DISCUSSÃO DOS RESULTADOS

Os resultados do modelo matemático e resultados reais do processo de laminação controlada encontrados estão mostrados nas tabelas 2.

	A MOSTRA A																							
5.0	Baaaa	d ₀	т	dɛ/dt	t _{ep}	_	_	_	_	RD	t _{0,5 X}	t _{0,05 X}	t _{0,95 X}	tps	PPT	v	d _{rec}	se	d ap	ós t _{ep}	df	Tx.	d ⁰ a	dα
Eq.	Passe	(µm)	(°C)	ε	(s)	3	ε _a	ε _p	ε _c	?	(s)	(s)	(s)	(s)	?	× .	RMD	RE	RMD	RE	(µm)	(°C/s)	(μm)	(µm)
	1	150,0	1.100	4,8	35,5	0,12	0,12	0,97	0,62	Ν	73	5,4	315,4	0	Ν	28,6%	21,0	129,9	80,4	100,9	100,9			
	2	100,9	1.080	6,4	11,0	0,18	0,26	0,90	0,58	Ν	9	0,6	36,8	0	Ν	59,1%	19,1	59,3	26,3	46,3	46,3			
	3	46,3	1.060	7,9	11,5	0,21	0,32	0,69	0,45	Ν	2	0,1	7,5	0	Ν	99,0%	15,4	30,7	28,2	34,2	34,2			
Α	4	34,2	960	11,2	127,5	0,32	0,32	1,01	0,65	N	11	0,8	45,7	0	N	100,0%	12,0	25,0	34,9	36,4	36,4			
	5	36,4	940	12,8	11,5	0,30	0,30	1,18	0,76	Ν	24	1,8	103,0	0	Ν	28,4%	10,5	27,3	20,6	23,8	23,8			
	6	23,8	900	13,7	67,0	0,26	0,47	1,19	0,77	N	11	0,0	0.0	8	S	0,0%	9,6	15,2	23,8	23,8	23,8	AR		
	7	23.8	900	13,9	-	0.20	0.67	1.20	0.77	N	5	0.0	0.0	10	S	0.0%	0.5	12.0	23.8	23.8	23.8	1.5	10,9	6.9
						,	,	,	,				MOSTR			,			,					
		do	т	dɛ/dt	ton					RD	tor	tons	to or	ter	PPT		drec	se	d ap	ós t _{en}	d,	Tx.	d ⁰ -	d"
Eq.	Passe	(um)	(°C)	ε	(s)	3	ε _a	ε _p	ε _c	?	-0,5 (s)	-0,05 (s)	-0,35 (S)	(s)	?	х.	RMD	RE	RMD	RE	(um)	(°C/s)	- a (um)	(um)
	1	150.0	1 100	4.8	35.5	0.12	0.12	0.97	0.62	N	73	5.4	315.4	0	N	28.6%	21.0	129.9	80.4	100.9	100.9	80.4	100.9	(
	2	100.9	1 080	77	11.0	0.25	0.34	0.93	0.60	N	5	0.4	20.7	0	N	79.7%	18.6	50 2	17.9	41 2	41.2		100,0	
	2	41.2	1.060	9.6	11.5	0.20	0.35	0.67	0.43		1	0.1	4.8		N	99.9%	12.6	26.6	22.0	28.6	28.6			
	4	20.6	060	0,0	247.5	0,20	0,00	1.56	1.00	N	204	0,1	0,0	9	•	0.0%	0 /	20,0	22,0	20,0	20,0			
в	4 c	20,0	000	3,0	247,0	0,22	0,22	1,00	1,00		234	0,0	0,0		3	0,0%	0,4	47.7	20,0	20,0	20,0			
	5	28,0	850	11,2	11,5	0,23	0,45	1,09	1,09	N	80	0,0	0,0	0	3	0,0%	7,7	11,1	28,0	20,0	20,0			
	0	28,0	830	11,3	67,0	0,18	0,64	1,92	1,24	N	69	0,0	0,0	10	3	0,0%	7,0	14,1	28,0	28,0	28,6			
	(28,6	805	11,8	14,3	0,16	0,80	2,27	1,46	N	94	0,0	0,0	11	S	0,0%	6,5	12,1	28,6	28,6	28,6	AR		
	8	28,6	800	11,9	-	0,14	0,93	2,35	1,51	Ν	78	0,0	0,0	13	S	0,0%	0,3	10,9	28,6	28,6	-	1,5	11,9	6,7
												A	MOSTRA	C										
Fa	Passe	\mathbf{d}_0	т	dɛ/dt	t _{ep}	e	e	e	e	RD	t _{0,5}	t _{0,05}	t _{0,95}	t _{ps}	PPT	x -	d _{rec}	se	d apo	os t _{ep}	df	Tx.	d ⁰ a	dα
-ч.	1 4330	(µm)	(°C)	ε	(s)	č	ча	Фр	чc	?	(s)	(s)	(s)	(s)	?	~	RMD	RE	RMD	RE	(µm)	(°C/s)	(µm)	(µm)
	1	150,0	1.100	4,8	35,5	0,12	0,12	0,97	0,62	Ν	73	5,4	315,4	0	Ν	28,6%	21,0	129,9	80,4	100,9	100,9			
	2	100,9	1.080	7,7	11,0	0,25	0,34	0,93	0,60	Ν	5	0,4	20,7	0	N	79,7%	18,6	50,2	17,9	41,2	41,2			
	3	41,2	1.060	9,6	11,5	0,29	0,35	0,67	0,43	Ν	1	0,1	4,8	0	N	99,9%	12,6	26,6	21,8	28,6	28,6			
-	4	28,6	858	9,8	247,5	0,22	0,22	1,57	1,01	N	311	0,0	0,0	9	S	0,0%	8,1	28,3	28,6	28,6	28,6		Real	
С	5	28,6	836	11,2	11,5	0,23	0,45	1,84	1,19	N	125	0,0	0,0	8	S	0,0%	7,4	17,7	28,6	28,6	28,6	Tempo[s]=	13	
	6	28.6	826	11.3	67.0	0.18	0.64	1.97	1.27	N	78	0.0	0.0	10	S	0.0%	6.8	14.1	28.6	28.6	28.6	Ti [°C]=	765	
	7	28.6	800	11.8	14.3	0 16	0.80	2 34	1 51	N	112	00	0.0	11	S	0.0%	64	12.1	28.6	28.6	28.6	TF [°c]=	425	
	8	28.6	800	11.9		0.14	0.93	2 35	1.51	N	77	0.0	0.0	13	S	0.0%	0.3	10.9	28.6	28.6	28.6	26.2	10.1	5.68
		20,0		,.		0,11	0,00	2,00	.,			0,0	-,-		-	0,010	0,0	,.	20,0	,-	,-		,.	-,
_		d	т	dɛ/d	t +	_				RD	t.,	t	AWOSH		PPT		р		d au	nós t.	d.	Tx.	d ⁰	d
Eq	. Passe	(um)) (°C)	ε ⁰	• t _{ep} (s)	3	ε _a	ε _p	ε	?	(s)	^{10,05}	(s)	ւ _{թs} (s)	?	Х	RMD	RE	RMD	RE	_ ur (um)	(°C/s)	ս _α (um)	u _α (μm)
	1	150.0) 1.106	3 4,8	35.5	0,12	2 0,12	2 0,94	0,61	N	64	4,8	278,1	0	N	31,8%	21,2	129,9	74,4	98,0	98.0	(/	1/	
	2	98,0	1.080) 8,1	11,5	0,27	7 0,36	0,93	0,60	N	4	0,3	17,1	0	N	86,7%	18,5	47,3	17,0	40,9	40,9	-		
	3	40,9	1.060) 10,0	12,3	0,30	0,3	5 0,68	0,44	N	1	0,1	4,8	0	N	100,0%	10,5	26,7	15,7	27,1	27,1	-		
	4	27.1	765	80	487 8	8 0 1	5 0 1	5 2 72	1 75	N	16 604	0.0	0.0	16	S	0.0%	5.6	27.1	27.1	27.1	27.1			
	5	27.1	757	91	13.3	0.16	3 0.3	2.95	1 90	N	4 153	0.0	0.0	15	S	0.0%	5.2	22.0	27.1	27.1	27.1	-		
		, ·		<u>ب</u> , ا	,0	9,10	,-	2,00	2.06	 N	2 494	0.0	0.0	17	-	0.0%	4.9	17.0	27.1	27.1	27.1		Real	1
D	6	27 1	747	9.6	13.6	0 14	5 () A4		2 U.S.		A 100 Aug					0,070	-,0	,0	<u></u>				i i i i i i i i i i i i i i i i i i i	1
D	6	27,1	747	9,6	13,6	0,1	0,46	3,20	2,00	N	2 072	0,0	0,0	20	c	0.0%	17	14 4	27.1	27.4	27.4	Tempolel	- 6	
D	6 7	27,1 27,1	747 737	9,6 9,8	13,6 13,7	0,18	0,40 3 0,58	3,20 3,46	2,00	N	2.072	0,0	0,0	20	S	0,0%	4,7	14,4	27,1	27,1	27,1	Tempo[s]	= 6	1
D	6 7 8	27,1 27,1 27,1	747 737 729	9,6 9,8 10,0	13,6 13,7 68,8	0,18	0,46 3 0,58 1 0,70	3,20 3 3,46 3 3,68	2,00 2,22 2,37	N N	2.072	0,0	0,0	20 23	s s	0,0%	4,7	14,4 12,8	27,1 27,1	27,1 27,1	27,1 27,1	Tempo[s]= Ti [°C]=	= 6 = 682	
D	6 7 8 9	27,1 27,1 27,1 27,1 27,1	747 737 729 702	9,6 9,8 10,0 10,3	13,6 13,7 68,8 13,9	0,18 0,13 0,13 0,11 0,11	0,46 0,58 0,58 0,70 0,80	3,20 3,46 3,68 3,68 4,58	2,00 2,22 2,37 2,95	N N N	2.072 1.886 4.098	0,0 0,0 0,0	0,0 0,0 0,0 0,0	20 23 30	S S S	0,0% 0,0% 0,0%	4,7 4,2 3,9	14,4 12,8 11,6	27,1 27,1 27,1	27,1 27,1 27,1	27,1 27,1 27,1 27,1	Tempo[s]= Ti [°C]= TF [°c]=	= 6 = 682 = 568	5.67

Tabela 2: Resultados do modelo microestrutural e microestruturas para os corpos de prova.

Pode-se perceber na Tabela 2 que a medida que a taxa de resfriamento aumenta as microestruturas tornam-se mais refinadas. O tamanho de grão passa de 7 μ m para 6 μ m. Na fase de desbaste as equações utilizadas mostram que houve recristalização e que na fase de acabamento houve precipitação. Isso demonstra que as equações utilizadas representam bem os fenômenos metalúrgicos quando ocorre resfriamento ao ar e no resfriamento acelerado.

A tabela 3 e Figura 3 mostram os resultados das propriedades mecânicas reais e calculadas pelas equações de previsão.

A una a a fura	Limite de E	scoamento [Mpa]	Diferença	Limite de Re	Diferença	
Amostra	Calculado	Real	[%]	Calculado	Real	[%]
Α	444	428	3,7%	604	580	4,1%
В	447	472	-5,4%	606	592	2,3%
С	468	614	-31%	618	870	-41%
D	468	542	-16%	618	685	-11%

 Tabela 3: Resultados das propriedades mecânicas reais e calculadas pelas equações de previsão.

Figura 3: Resultados dos ensaios de tração.

A diferença média encontrada entre os valores de limite de escoamento e limite de resistência está consistente para uma primeira abordagem para a previsibilidade das propriedades mecânicas.

Houve um aumento dos limites reais de escoamento e resistência nas amostras C e D que sofreram resfriamento acelerado.

Percebe-se que a diferença é maior para os casos onde a taxa de resfriamento é maior. Isto poderia ser explicado pelo efeito da precipitação e também pela formação de uma microestrutura martensítica e acicular, onde as equações de previsão utilizadas não tem precisão adequada.

4 CONCLUSÃO

O modelo desenvolvido neste trabalho fornece uma previsão adequada dos valores de limite de escoamento e limite de resistência para laminação controlada com resfriamento ao ar. Para o processo de laminação controlada com resfriamento

acelerado o modelo necessita de um ajuste na contribuição da precipitação e da transformação de fases.

Além disso, o modelo, ainda que muito simplificado, fornece uma orientação quanto aos mecanismos de amaciamento envolvidos ao longo do processo termomecânico. Entretanto, quando ocorre a precipitação e a presença de microestruturas aciculares, adaptações precisam ser feitas nas equações.

Agradecimentos

Agradecemos ao Antônio Augusto Gorni pelos valiosos ensinamentos adquiridos durante o curso sobre laminação controlada e modelos matemáticos ministrado com o apoio da ABM.

REFERÊNCIA

- 1 S. Vervynckt, K. Verbeken, B. Lopez and J. J. Jonas, Modern HSLA steels and role of non-recrystallisation temperature, International Materials Reviews 2012, vol. 57, n° 4
- 2 Anthony J. DeArdo; Future Challenges and Opportunities for Steel and Steel Research, Steel Forum 2009
- 3 Gorni A.A., Modelos Matemáticos para a Laminação de Produtos Planos, Curso ABM, 2012
- 4 Treinamento SVAI, England, 2012
- 5 REIS E.G., Dissertação de Mestrado, Modelo Matemático para Previsão das Propriedades Mecânicas na Laminação de Perfis Estruturais, UFMG – 2007
- 6 6- Pietrzyk, Cser e Lenard, Mathematical And Physical Simulation Of The Properties Of Hot Rolled Products, Elsevier Science, 1999
- 7 Hodson, P. D. & GIBBS, R. K., A Mathematical Model to Predict Properties of Hot Rolled C-Mn and Microalloyed Steels. ISIJ International, 32:12, December 1992, 1329-1338