DETERMINAÇÃO DOS PARÂMETROS ELASTO-PLÁSTICOS CTOD E INTEGRAL J EM ESPÉCIMES SE(B) UTILIZANDO O MÉTODO ETA¹

Gustavo H. B. Donato² Roberto Liberato Neto³ Sebastian Cravero⁴ Claudio Ruggieri⁵

Resumo

Este trabalho apresenta um procedimento para determinação dos parâmetros elastoplásticos *J* e CTOD em espécimes SE(B) utilizando o método *eta*. O objetivo central é a obtenção de fatores adimensionais η (*eta*) calibrados numericamente e aplicáveis a uma faixa abrangente de dimensões relativas de trincas ($0.05 \le a/W \le 0.7$) e propriedades de encruamento do material. Os resultados das análises permitem estabelecer curvas do fator adimensional η em função da dimensão da trinca (a/W) e das propriedades de encruamento do material as quais permitirão a determinação mais acurada dos parâmetros *J* e CTOD obtidos experimentalmente.

Palavras-chave: Integral J; CTOD; Método eta; Espécimes SE(B); Elementos finitos.

DETERMINATION OF CTOD AND *J* INTEGRAL ELASTO-PLASTIC PARAMETERS FOR SE(B) SPECIMENS USING THE *ETA* METHOD

Abstract

This work presents an estimation procedure to determine the elasto-plastic parameters J and CTOD for SE(B) specimens using the *eta* method. The main purpose is to obtain numerically calibrated η (*eta*) factors which are applicable to an extensive range of relative crack dimensions ($0.05 \le a/W \le 0.7$) and material hardening properties. The analysis results enable the construction of functional forms which describe the variation of the η factors with crack dimension (a/W) and material hardening properties, n. The procedure guarantees more accurate determination of J e CTOD from laboratory measurements of fracture toughness.

Key words: J Integral; CTOD; Eta method; SE(B) Specimens; Finite elements.

¹Contribuição técnica apresentada na 61º Congresso Anual da ABM, de 24 a 27 de julho de 2006, Rio de Janeiro – RJ

²Doutorando do Departamento de Engenharia Naval e Oceânica da Escola Politécnica da USP, gustavo.donato@poli.usp.br

³Graduando do Departamento de Engenharia Mecânica da Escola Politécnica da USP, roberto.liberato@poli.usp.br

⁴Doutorando do Departamento de Engenharia Naval e Oceânica da Escola Politécnica da USP, sebastian.cravero@poli.usp.br

⁵Prof. livre docente do Departamento de Engenharia Naval e Oceânica da Escola Politécnica da USP, claudio.ruggieri@poli.usp.br

1 INTRODUÇÃO

Procedimentos convencionais para a avaliação da integridade mecânica de componentes e materiais estruturais, particularmente aços estruturais ferríticos, sob condições elasto-plásticas utilizam a Integral J e o CTOD (δ) para guantificar as condições de fratura na região de um defeito ou trinca.⁽¹⁾ Ensaios experimentais para medição destes parâmetros elasto-plásticos de tenacidade utilizam rotineiramente espécimes laboratoriais (padronizados) de flexão SE(B)^{*} - single edge crack specimen under bending - ou compactos $C(T)^*$ - compact tension specimen contendo trincas profundas ($a/W \ge 0.5$ onde *a* é o comprimento ou profundidade da trinca e W é a largura do corpo-de-prova). A determinação dos parâmetros J e CTOD para estes corpos-de-prova utiliza procedimentos normalizados (ASTM E1820,⁽²⁾) ASTM E1290,⁽³⁾ BS 7448⁽⁴⁾) baseados sobre a medição experimental das curvas de carga, P, em função da abertura da boca da trinca, CMOD (V), ou em função do deslocamento da linha de carga, LLD (Δ). Uma vez obtidas as curvas experimentais *P* vs. CMOD ou *P* vs. LLD, a Integral *J* é calculada por intermédio da área plástica sob a curva⁽²⁾ enquanto o CTOD é calculado por intermédio do modelo da rótula plástica.^(3,4)

Entretanto, os procedimentos normalizados para determinação dos parâmetros J e CTOD apresentam diversas limitações as quais podem potencialmente comprometer a acurácia das medições experimentais de tenacidade. Os fatores adimensionais η (sobre os quais a determinação de J é baseada) fornecidos pela ASTM E1820 são primariamente válidos para corpos-de-prova com trinca profunda ($a/W \ge 0.5$). No caso de ensaios de corpos-de-prova com trincas mais rasas (a/W < 0.4) ou com geometrias diversas, aqueles fatores η perdem sua estrita aplicabilidade. Adicionalmente (e talvez mais importante), o modelo da rótula plástica (sobre o qual a determinação do CTOD é baseada) é reconhecidamente inadequado (particularmente para pequenos valores de CTOD) uma vez que assume a existência de um centro de rotação fixo localizado aproximadamente sobre a metade do ligamento remanescente da trinca, W - a.

Este trabalho apresenta um procedimento para determinação dos parâmetros elasto-plásticos J e CTOD em espécimes SE(B) utilizando o método *eta*. O objetivo central é a obtenção de fatores adimensionais η calibrados numericamente e aplicáveis a uma faixa abrangente de dimensões relativas de trincas ($0.05 \le a/W \le 0.7$) e propriedades de encruamento do material. Os resultados das análises permitem estabelecer curvas do fator adimensional η em função da dimensão da trinca (a/W) e das propriedades de encruamento do material, as quais permitirão a determinação mais acurada dos parâmetros J e CTOD obtidos experimentalmente.

2 METODOLOGIA *ETA* PARA DETERMINAÇÃO DA INTEGRAL *J* E CTOD

Métodos para medição experimental da Integral *J* são geralmente fundamentados sobre a sua interpretação energética caracterizada pela taxa de liberação de energia para materiais lineares e não lineares (elasto-plásticos). O procedimento usual para

^{*} ESIS TC7D-1-96: Guidelines for Terminology and Nomenclature in the Field of Structural Integrity

determinação experimental deste parâmetro adotado por diversas normas e recomendações (como, por exemplo, ASTM E1820⁽²⁾) baseia-se na separação de J em componentes elásticas, J_{el} , e plástica, J_{pl} , na forma

$$J = J_{el} + J_{pl} = \frac{K_l^2(1 - v^2)}{E} + \frac{\eta_{J-C}A_{pl}}{B_N(W-a)}$$
(1)

onde *E* é o módulo de elasticidade longitudinal, v é o coeficiente de Poisson, B_N é a espessura *efetiva* do corpo-de-prova ($B_N = B$ para corpos-de-prova sem entalhe lateral) e η_{J-C} representa um fator adimensional dependente da geometria do corpo de prova. Na expressão acima, a componente plástica da Integral *J* é função da área plástica sob a curva *P* vs. CMOD, denotada A_{pl} , A Figura 1 ilustra uma curva *P* vs. CMOD típica para um espécime SE(B) indicando os principais parâmetros utilizados para a determinação de *J*.

Figura 1. Ilustração esquemática da evolução da carga aplicada, P, em função do CMOD (V) para um corpo-de-prova flexão SE(B).

Uma vez que o parâmetro J relaciona-se diretamente com o CTOD (δ) por meio de

$$\delta = \frac{d_n J}{\sigma_{ys}} \tag{2}$$

onde d_n é uma constante adimensional dependente do expoente de encruamento do material,⁽¹⁾ é possível adotar procedimento análogo para a determinação experimental do CTOD por intermédio de suas componentes elásticas e plásticas

$$\delta = \delta_{el} + \delta_{pl} = \frac{K_I^2 (1 - \nu^2)}{2\sigma_{vs} E} + \frac{\eta_{\delta - C} A_{pl}}{\sigma_f B_N (W - a)}$$
(3)

onde σ_f é tensão de fluxo do material definida por $\sigma_f = (\sigma_{ys} + \sigma_l)/2$ e $\eta_{\delta C}$ representa um fator adimensional dependente da geometria do corpo de prova. Analogamente, a componente plástica, δ_{pl} , é função da área plástica sob a curva *P* vs. CMOD, denotada A_{pl} (Figura 1).

Nas expressões acima referentes ao cálculo das parcelas $J_{pl} e \delta_{pl}$, os fatores *eta* correspondentes são obtidos a partir de curvas de carga *vs.* deslocamento da boca da trinca, *P*-CMOD. Alternativamente, é também possível determinar fatores *eta* a partir de curvas de carga *vs.* deslocamento da linha de carga, *P*-LLD, denotados $\eta_{J-L} e \eta_{\delta L}$. O caráter das Eqs. (1) e (3) anteriores continua idêntico, mas os valores $\eta_{J-L} e \eta_{\delta L}$ diferem dos valores correspondentes $\eta_{J-C} e \eta_{\delta C}$ como será apresentado a seguir.

3 ANÁLISES NUMÉRICAS

Um elemento-chave para o correto e acurado cálculo dos parâmetros *J* e CTOD é a determinação dos fatores $\eta_J e \eta_{\delta}$ por intermédio de análises numéricas refinadas não lineares utilizando o método dos elementos finitos. Tais análises fornecem simulações numéricas detalhadas das forças e deslocamentos necessários para construção das curvas *P-CMOD* (ou *P*-LLD) as quais serão utilizadas para extração dos fatores *eta*. A matriz de análise considera espécimes SE(B) submetidos a flexão 3 pontos com geometria convencional (*W* = 2*B*) e diferentes relações de tamanho da trinca sobre largura, *a/W* = 0.05 a 0.7 em intervalos de 0.05. A geometria dos corpos-de-prova analisados é representada pelo esquema anteriormente apresentado na Figura 1.

As análises numéricas não lineares sob estado plano de deformações (EPD) foram conduzidas utilizando-se o programa de elementos finitos WARP3D.⁽⁵⁾ As soluções computacionais utilizam modelos constitutivos elasto-plásticos obedecendo a teoria de plasticidade incremental (J_2) sob pequenas deformações e critério de Von Mises. A Figura 2 apresenta o modelo de elementos finitos construído para o corpode-prova SE(B) com a/W=0.5; os demais modelos possuem conFigurações similares. Condições de simetria permitem a construção de somente metade da amostra com vínculos apropriados impostos sobre o ligamento (W - a) da trinca. A metade simétrica do modelo possui 1241 elementos isoparamétricos 3D de 8 nós constituindo, portanto, uma única camada representando o plano X-Y do modelo. As condições correspondentes ao estado plano de deformações são obtidas através da imposição de deslocamentos (vínculos) w = 0 na direção Z sobre cada nó do modelo. A aplicação do carregamento é feita através de deslocamentos nodais impostos na região do ponto de aplicação da carga, representado por uma seta na Figura 2; tal estratégia permite melhorar substancialmente a convergência numérica das análises.

Figura 2. Modelo de elementos finitos com condições de contorno e detalhe da malha focal na ponta da trinca. Restrições em Z (não representadas) simulam estado plano de deformações.

O comportamento tensão vs. deformação adotado para os materiais utilizados nas análises obedece um modelo elasto-plástico da forma

$$\varepsilon = \frac{\sigma}{E}$$
 , $\sigma < \sigma_{ys}$ $\frac{\varepsilon}{\varepsilon_{ys}} = \left(\frac{\sigma}{\sigma_{ys}}\right)$, $\sigma \ge \sigma_{ys}$ (4)

onde *n* é o expoente de encruamento do material, σ_{ys} e ε_{ys} são a tensão e deformação de escoamento (0.2% offset). As propriedades mecânicas para os materiais analisados consideram características típicas de aços estruturais ferríticos (por exemplo, aços para vasos de pressão): $\sigma_{ys} = 257$ MPa e n = 5, $\sigma_{ys} = 412$ MPa e n = 10, $\sigma_{ys} = 687$ MPa e n = 20. Em todas as análises, E=206 Gpa e v=0.3.

4 FATORES ETA PARA DETERMINAÇÃO DE J E CTOD

As Figuras 3-5 apresentam os resultados-chave obtidos das análises conduzidas neste trabalho. O presente compêndio de fatores η permite a determinação mais acurada dos parâmetros elasto-plásticos J e CTOD. A Figura 3 apresenta os resultados obtidos da calibração de η_{J-C} utilizando as curvas *P*-CMOD. Nota-se que a influência de n é praticamente desprezível; todas a curvas colapsam essencialmente sobre uma única curva descrevendo a variação de η_{J-C} com a/W. Para valores de a/W inferiores a 0.15, é possível observar uma maior dependência do parâmetro *eta* sobre o valor de n. Além disto, ocorre uma variação algo abrupta na tendência das curvas em torno de $a/W \approx 0.15$. Investigações adicionais revelam que tal comportamento está associado à grande sensibilidade do CMOD para corpos-de-prova com trincas rasas.

Figura 3. Variação de η_{J-C} em função de a/W e n para espécimes SE(B).

Utilizando agora uma regressão quadrática para descrever a relação funcional de $\eta_{J-C} \operatorname{com} a/W$ para $0.15 \le a/W \le 0.7$ resulta

$$\eta_{J-C} = 3.650 - 2.111 \cdot \left(\frac{a}{w}\right) + 0.341 \cdot \left(\frac{a}{w}\right)^2$$
 (para $0.15 \le a/W \le 0.7$) (5)

A Figura 4 apresenta os resultados obtidos da calibração de η_{J-L} para toda a gama de espécimes em estudo. Devido à grande sensibilidade apresentada por η_{J-C} para trincas rasas, a utilização da curva P vs. LLD na determinação de η_{J-L} surge como uma valiosa alternativa à determinação de *J* para trincas rasas ($a/W \le 0.15$). Embora η_{J-L} seja percentualmente mais sensível a *n* e a/W e a medição de LLD adicione maior complexidade experimental, o comportamento das curvas, principalmente para valores reduzidos de a/W, é mais adequado e garante maior acurácia na determinação do parâmetro *J*. Sendo assim, a equação 6 apresenta uma regressão biparamétrica do segundo grau em função de a/W e *n* para a determinação de η_{J-L} para $0.05 \le a/W \le 0.15$ e $5 \le n \le 20$.

Figura 4. Variação de η_{J-L} em função de a/W e n para espécimes SE(B).

 $\frac{\eta_{J-L} = (-0.0014 \cdot n^2 + 0.0591 \cdot n - 0.0346) + (0.0043 \cdot n^2 - 0.342 \cdot n + 11.816) \cdot (\frac{a}{w}) + (-0.0252 \cdot n^2 + 1.6971 \cdot n - 22.459) \cdot (\frac{a}{w})^2}{(\text{para } 0.05 \le a/W \le 0.15 \text{ e } 5 \le n \le 20)}$ (6)

A Figura 5 apresenta a calibração de $\eta_{\delta-C}$. Nota-se a sensível influência de n e a/W sobre este parâmetro. Entretanto, $\eta_{\delta-C}$ apresenta tendência estável e clara ao longo de toda a gama de valores de n e a/W estudados, configurando-se como um fator acurado na determinação do parâmetro CTOD. A equação 7 apresenta uma regressão biparamétrica do segundo grau em função de a/W e n para a determinação de $\eta_{\delta-C}$ para toda a faixa $0.05 \le a/W \le 0.7$ e $5 \le n \le 20$.

$$\eta_{\delta-C} = (1.01 + 0.196 \cdot n - 0.0053 \cdot n^2) + \frac{a}{w} \cdot (-1.2123 - 0.1493 \cdot n + 0.0028 \cdot n^2) + \left(\frac{a}{w}\right)^2 \cdot (0.9592 - 0.0308 \cdot n + 0.0024 \cdot n^2)$$
(para $0.05 \le a/W \le 0.7$ e $5 \le n \le 20$) (7)

Figura 5. Variação de $\eta_{\delta-C}$ em função de a/W e n para espécimes SE(B).

4 APLICAÇÃO: DETERMINAÇÃO DO CTOD EM ESPÉCIMES SE(B)

Esta seção descreve a aplicação da metodologia e resultados anteriores para a determinação do parâmetro elasto-plástico CTOD em corpos-de-prova SE(B) por intermédio dos fatores $\eta_{\delta-C}$ obtidos na Seção 4. O objetivo central é comparar os valores de CTOD derivados da metodologia *eta* com os valores correspondentes obtidos a partir do modelo da rótula plástica utilizado pela norma BS 7448⁽⁴⁾ (e também pela ASTM E1290⁽³⁾).

Os corpos-de-prova SE(B) utilizados nesta aplicação exploratória foram testados por Ohata⁽⁶⁾ e possuem espessura *B*=30mm, largura *W*=60mm, comprimento entre apoios, *S*=240mm com diferentes tamanhos de trinca: *a*/*W*=0.157 e *a*/*W*=0.503. A Figura 6 apresenta as curvas (médias) *P vs.* CMOD medidas experimentalmente. Ensaios mecânicos convencionais forneceram as seguintes propriedades mecânicas: tensão de escoamento, $\sigma_{YS} = 382MPa$, limite de resistência, $\sigma_{YS} = 500MPa$, e coeficiente de encruamento, *n*=10.6.

Com os valores de *n* e a/W, os fatores $\eta_{\delta-C}$ são determinados para cada um dos espécimes ensaiados utilizando-se a função de ajuste descrita pela Eq. (7) anterior. Estes resultados em conjunção com as curvas *P* vs. CMOD fornecem os

valores de δ_{exp} tanto pelo modelo da rótula plástica como pelo método *eta* para ambos espécimes no ponto de carga máxima (indicado pela seta na Figura 6). A

Tabela 1 apresenta os valores obtidos de δ_{exp} para os dois métodos. A Figura 7 apresenta o evolução do CTOD com o aumento da carga *P* experimental para ambos corpos-de-prova (os pontos sobre as retas definem valores de CTOD para um mesmo valor de carga aplicada *P*).

	$\delta_{ ext{exp}-BS7448}$	$\delta_{\exp-\eta}$	Desvio %
a/w=0.157	0.8652	0.6057	29.99%
a/w=0.503	0.6409	0.4828	24.67%

Tabela 1. Resultados de $\delta_{\rm exp}$ para os espécimes ensaiados.

Figura 6. Curvas P vs. CMOD para (a) espécime SE(B) a/W=0.157 e (b) espécime SE(B) a/W=0.503 (6).

Figura 7. Evolução do CTOD com o aumento da carga P experimental para ambos corpos-de-prova (os pontos sobre as retas definem valores de CTOD para um mesmo valor de carga aplicada P).

5 CONCLUSÕES

Do presente trabalho pode-se concluir que:

- A aplicação da metodologia *eta* possibilita a determinação mais acurada dos parâmetros J e CTOD obtidos experimentalmente, incluindo conFigurações geométricas diversas e extensiva faixa de propriedades mecânicas;
- Os fatores η_{J-C} são praticamente independentes das propriedades de encruamento do material na faixa $0.15 \le a/W \le 0.7$. Para trincas mais rasas $(0.05 \le a/W \le 0.15)$,o parâmetro η_{J-L} mostra-se mais adequado.
- Os fatores $\eta_{\delta-C}$ apresentam maior dependência sobre as propriedades de encruamento do material na faixa de comprimentos de trinca analisada;
- A aplicação da metodologia *eta* em substituição ao modelo da rótula plástica na determinação do CTOD fornece valores mais realistas. Os valores de CTOD obtidos a partir da análise exploratória de ensaios experimentais conduzidos sobre corpos-de-prova SE(B) são maiores se calculados pelo modelo da rótula plástica da BS7448, apresentando diferença percentual da ordem de 30% em relação ao método *eta* para trincas rasas.

Agradecimentos

Esta investigação é patrocinada pela Fundação de Amparo à Pesquisa de Estado de São Paulo – FAPESP (Projeto Temático 03/02735-6 e Bolsa de Doutorado No. 04/15719-1).

REFERÊNCIAS

- 1 ANDERSON, T. L. *Fracture Mechanics: Fundaments and Applications 3rd Edition*, CRC Press, New York, 2005.
- 2 AMERICAN SOCIETY FOR TESTING AND MATERIALS. *Standard Test Methods for Measurements of Fracture Toughness*. ASTM E-1820, 1996.
- 3 AMERICAN SOCIETY FOR TESTING AND MATERIALS. Standard Test Method for Crack-Tip Opening Displacement (CTOD) Fracture Toughness Measurement. ASTM E-1290, 1993.
- 4 BRITISH STANDARD. Fracture Mechanics Toughness Tests Part I: Method for Determination of K_{Ic}, Critical CTOD and Critical J values of Metallic Materials. BS 7448, 1991.
- KOPPENHOEFER, K., GULLERUD, A., RUGGIERI, C., DODDS, R. AND HEALY,
 B. WARP3D: Dynamic Non-linear Analysis of Solids Using Preconditioned Conjugated Gradient Software Architecture. Structural Research Series (SRS) 596, UILU-ENG-94-2017, University of Illinois at Urbana Champaign.
- 6 OHATA, M., The Effect of Specimen Geometry on CTOD -Values Based Upon the Local Approach, Ms.C. Thesis, Department of Manufacturing Science, Osaka University, 1993 (Em Japonês).