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Abstract 
Digital Microscopy was employed to characterize the microstructure of fiber-
reinforced composite tubes manufactured by filament winding. Optical Microscopy 
was used for void characterization while Scanning Electron Microscopy was used for 
fiber and layer analysis. Acquired images were assembled in mosaics to reveal the 
microstructure of different cross-sections of the sample. Image processing was 
employed to detect either voids or individual fibers and measure their size, shape 
and spatial distribution. Void spatial distribution was analyzed with two different 
methods – local analysis and the tessellation method – revealing different behaviors 
along different cross-sections. Fiber layers were automatically detected and their 
average winding angle and dispersion were analyzed.  
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1. INTRODUCTION 
The microstructural characterization of a material is a key step to understand its 
practical engineering properties. For composites, the microstructural characterization 
is even more critical, because of the many possible arrangements between the 
reinforcing phase and the matrix. When one wants to characterize a composite, the 
volume or mass fraction of the phases is the most commonly described parameter. 
This is a direct consequence of the strong influence that the volume fraction of the 
reinforcing phase has on the properties of the composite.  
However, for heterogeneous materials like fiber-reinforced composites, the influence 
of the microstructure on the engineering properties is critical, and besides the volume 
fraction, the complete understanding of composites properties requires the 
determination of several microstructural parameters such as size, orientation and 
spatial distribution of the fibers and of possible defects. In fact, voids are a common 
feature appearing during the usual manufacturing processes [1,2,3], and even for 
aeronautical grade resin matrix composites, the presence of voids is allowed 
although restricted to low percentages. But, voids are stress concentrators and can 
act as crack initiation points [4]. Therefore, besides their volume fraction, other 
microstructural characteristics such as their spatial distribution and aspect ratio 
should be carefully evaluated [1].  
Although measuring the volume fraction of voids or particles is a common practice 
[5,6], the spatial distribution of these microstructural parameters can also be of 
relevance [1]. By characterizing the preferred distribution of voids, one can access 
information about the manufacturing process itself. For example, for filament winding 
parts, voids preferentially distributed among the tows of fibers are probably due to an 
inappropriate level of stress when the fibers are being wound around the mandrel [7]. 
On the other hand, voids on resin rich areas can originate from entrapped air bubbles 
generated during the stirring of the resin or are due to the evolution of by-products 
during the cure of the resin. Moreover, it can be of interest to determine if the voids 
are clustered or uniformly distributed on the cross section of the composite.  
The use of filament winding also brings a new level of complexity to the 
characterization of the reinforcement phase, as the composite is made up of a series 
of layers, with different thickness and fiber orientations. So it is important to 
discriminate individual fibers, their orientations, and groups of similarly oriented fibers 
forming layers. Gathering all this information is, however, not easy using the 
traditional methods of microstructural analysis. 
Digital Microscopy (DM) is the convergence of microscope automation, digital image 
acquisition, processing and analysis. The use of DM allows a complete 
characterization of a sample in fully automated procedures. Online acquired images 
can be automatically treated and the desired features can be discriminated and 
analyzed. Moreover, a large number of fields, comprising thousands of objects can 
be quickly analyzed, providing high statistical accuracy [8].  
In this work, the microstructure of a glass fiber-reinforced composite pipe fabricated 
by filament winding was fully characterized by Digital Microscopy. Both Optical 
Microscopy (OM) and Scanning Electron Microscopy (SEM) were employed, 
respectively, for void and fiber characterization.  
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2. EXPERIMENTAL 
2.1 Specimen selection and preparation 
Polyester matrix–filament wound glass fiber pipes used for the transport of water in 
offshore oil production facilities and having a nominal internal diameter of 200 mm 
and 7 mm thickness, were analyzed in this work. The pipes were sectioned in rings 
25 mm thick that were then cut into 4 quadrants. Axial and circumferential samples 
were prepared for microstructural analysis (Figure 1). The preparation followed the 
usual procedures of grinding and polishing, from silicon carbide grit (#100) to alumina 
powder (0.5 µm). Whenever possible the cutting operation was performed using a 
low speed saw, to avoid excessive damage of the glass fibers [9].  

Axial
Cut

Circumferential
Cut  

Figure 1 - Illustration of axial and circumferential samples obtained from the composite tube. 

2.2 Image Acquisition 
To characterize the microstructure in respect to the distribution of voids and fibers, as 
well as their spatial orientation, it was desirable to obtain images combining high 
magnification and a large area of analysis. These requisites are not fulfilled by a 
single image. Therefore, it was necessary to capture several images, with the same 
magnification, and to join them together generating a mosaic image [10]. 
For void characterization, the samples were observed by optical microscopy using a 
Zeiss AxioPlan 2 motorized optical microscope. The use of this computer-controlled 
equipment, with a motorized x-y-z sample holder, allows controlled sample 
displacement and the acquisition of a sequence of images with any spatial 
distribution and with automated focus control [8]. The images were captured using an 
AxioCam HR digital camera, with 1300 x 1300 pixels resolution. 
Image mosaics were constructed by joining low magnification images, obtained using 
a 5x objective lens (Zeiss EPIPLAN, NA = 0.13). These images covered an entire 
cross-section of the samples, from the outer to the inner diameter. Each field 
occupied an area of 2750 x 2180 µm2, with a spatial resolution of 2.10 µm/pixel. To 
cover the entire sample area, 7 fields on the x direction and 3 on the y direction were 
necessary, leading to a total area of 19.2 x 6.5 mm2. This procedure permitted a 
complete visualization of each sample, clearly revealing the spatial distribution of 
voids, and allowing the measurement of features on the entire sample. 
For fiber and layer characterization the images the samples were observed by 
scanning electron microscopy, using the backscattered (BSE) mode of image 
formation. BSE was preferred instead of secondary electrons imaging, because the 
intensity of the BSE signal is a function of the atomic weight of the elements on the 
sample. Therefore, a good contrast is obtained between the polymeric matrix and 
glass fibers. Moreover, the images do not show topographical information, which is 
beneficial in the image processing steps, as residual artifacts from sample 
preparation are blurred. The images were captured with 512 x 480 pixels resolution, 
at a magnification of 200x, corresponding to 0.88 µm/pixel. 
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In this case, mosaic images were generated combining 28 images – 4 fields in the x 
direction and 7 in the y direction. This procedure allowed for a complete visualization 
of the cross-section, clearly revealing the spatial distribution of the fiber layers, and 
allowing the measurement of features on the entire sample. 

3. RESULTS AND DISCUSSION 
3.1 Spatial Distribution of Voids 
Figure 2a shows the image of a mosaic from a circumferential sample. The larger 
white rectangle depicted represents one of the 21 (7 x 3) mosaic tiles, also shown 
magnified in Figure 2b. As one can see, the mosaic offers a global view of the 
sample, clearly showing the spatial distribution of voids and fibers. In this view, the 
fibers are mainly aligned perpendicular to the plane of cut and appear as circles. 
Most large visible voids are also approximately round, as can be seen in Figure 2b. It 
is worth mentioning that the circumferential sample actually shows the spatial 
distribution of voids along the axis of the tube. 

2 mm

(a)

(b)

400 µm  
Figure 2 – Circumferential sample. (a) Mosaic image obtained with a 5X objective lens (2.1 µm/pixel). 
(b) Digital magnification of the area outlined by the white rectangle. 

Figure 3a shows a mosaic image of an axial cut through the sample. The fibers 
appear as elongated objects while both round and elongated voids are visible. The 
presence of very elongated voids (Figure 3b), illustrates the relevance of observing 
the sample in different orientations. Moreover, such long objects also highlight the 
usefulness of the mosaic image – in a regular field scan microscopy procedure these 
objects can be too large to fit any individual field, precluding their accurate 
characterization of size and shape. Again, it is worth mentioning that the axial sample 
actually shows the spatial distribution of voids along the circumference of the tube. 
Voids can be discriminated by their grey shade. As seen in Figures 2 and 3, they 
appear darker than the fibers and the polymer matrix. However, small regions of 
fibers damaged during sample preparation exhibit similar contrast, and may lead to 
wrong results. Therefore, an image processing and analysis routine was developed 
to discriminate the several kinds of dark regions appearing on the images, and 
recognize the voids. This routine is described in detail elsewhere [10]. The results are 
shown in Figure 4 for a representative field in Figure 2a. 
Once voids are reliably recognized, their spatial distribution can be measured. This 
analysis was performed on the mosaic images, with two different methods: local 
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mapping and neighborhood analysis. In local mapping the mosaic images were 
scanned with an analysis window of 250 x 250 pixels and, for each window, two 
parameters were obtained: void count and void area fraction. To avoid multiple 
counting of objects at the edges of the windows, a guard frame was used in which 
voids touching the bottom or left edges of the window were not considered. Thus, if a 
void straddles an edge between windows it will be counted only once. These 
parameters were then plotted as contour maps as shown in Figures 5 and 6 for the 
circumferential and axial samples, corresponding to Figures 2a and Figure 3a. 

(a)

2 mm

(b)

400 µm  
Figure 3 – Axial sample. (a) Mosaic image obtained with a 5X objective lens (2.1 µm/pixel). (b) Digital 
magnification of the area outlined by the white rectangle. 

(b)

(c)

(a)

200 µm

 
Figure 4 – Void discrimination. (a) Original image (5X objective lens, 2.1 µm/pixel). (b) Detected dark 
objects (green and red). (c) Magnified view of the region outlined in (b) – voids are shown in green 
while red objects are smaller than 40 pixels in area and correspond to broken fiber tips. 

The maps provide a global view of the desired parameters across the whole cross-
section, and indicate variations in spatial distribution. Comparing Figure 5 to Figure 6 
one can state that the spatial distribution of voids for the circumferential sample is 
more uniform than for the axial sample. However, even though the maps contain 
quantitative information, the level of uniformity of the spatial distribution is still 
deduced in a qualitative way. To obtain a quantitative parameter that describes the 
uniformity of spatial distribution, a neighborhood analysis was applied. 
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Figure 5 – Local mapping for circumferential sample. (a) Void count. (b) Void area fraction. Horizontal 
and vertical units refer to the count of 250x250 pixels windows in each direction. See text for details. 
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2 mm2 mm  
Figure 6 – Local mapping for axial sample. (a) Void count. (b) Void area fraction. Horizontal and 
vertical units refer to the count of 250x250 pixels windows in each direction. See text for details.  
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In this analysis, the neighborhood of each relevant object, a void in this case, is 
analyzed and its nearest neighbors are identified by the so-called tessellation 
technique [11]. See Figure 7 for the sequence steps shown in a small section of one 
of the mosaics. The original grayscale image (Figure 7a) is segmented and post-
processed as described above, leading to a binary image showing the voids (Figure 
7b). All particles are then simultaneously dilated until a one pixel boundary is left 
around each particle (Figure 7c). This technique is based on the well-known Voronoi 
diagram [12]. Through a sequence of dilation and intersection, the neighboring 
regions to any given reference region can be automatically identified. Another 
intersection operation shows the corresponding original voids (Figure 7d). Then, the 
edge to edge distances between the reference void and its nearest neighbors are 
obtained (Figure 7e). A set of vectors is obtained for each void (Figure 7f) and the 
sequence is repeated for each and every void. 

 
Figure 7 – Image processing sequence to measure void nearest neighbors’ distances. (a) Original 
image fragment. (b) Detected voids. (c) Voids (in color) superimposed on their regions of influence. 
The reference void is shown in green. (d) Detection of nearest neighbors (shown in red). Grey voids 
are not nearest neighbors. (e) Determination of distances between reference void and its neighbors. 
(f) Distribution of distances. 

Thus, a distribution of distances is measured for each void, with its average and 
standard deviation. The coefficient of variation (cov) is defined as the ratio of the 
standard deviation to the average distance. It has been shown previously [11] that for 
a uniform random spatial distribution cov = 0.36 ± 0.02. Deviations from this value 
indicate some degree of clustering of the analyzed phase. 
For the circumferential and axial samples shown, respectively, in Figures 2 and 3, the 
values obtained were cov = 0.37 and cov = 0.50. These results confirm the 
qualitative analysis that indicated that the spatial distribution of voids was almost 
perfectly random for the circumferential sample while the axial sample showed 
substantial clustering. 

(a) (b) 

(d) 

(c) 

100 µm 

(e) (f) 
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3.2 Fiber and Layer Analysis 
Figure 8a shows a typical mosaic obtained operating the SEM in BSE mode. The 
contrast between fibers and matrix is sharp and one can easily distinguish fibers in 
different orientations, and the several layers resulting from filament winding. This 
image has undergone background correction to eliminate intensity variations 
between the several image tiles and noise filtering. The details of the procedure are 
described elsewhere [13]. 
Fibers were automatically discriminated by their gray shade, as shown in Figure 8b. 
A few steps of post-processing were necessary to eliminate spurious objects in the 
background and holes in fibers. Boundaries between touching fibers were also 
obtained by the traditional watershed method [14]. 

 
  

Figure 8 – (a) Example of a mosaic image obtained by assembling 28 (4x7) individual images, after 
equalizing the illumination of each field. (b) Fiber discrimination. 

Once fibers were accurately detected, a sequence of image processing operations 
was employed to discriminate layers. The basic principle behind this discrimination 
was the separation by fiber shape. Fibers normal to the image plane appear round, 
while fibers inclined relative to this plane appear as ellipsoids. Thus, shape 
parameters such as the aspect ratio and the circular shape factor [8] where used. 
Thus, the original image was separated into two intermediate images containing 
normal and inclined fibers. See Figure 9. 

  
Figure 9 – (a) Fibers normal to the image plane. (b) Fibers inclined to the image plane. 

A sequence of morphological operations was then applied to join neighboring fibers, 
eliminate stray or broken fibers, and detect each fiber layer. The details are 
described elsewhere [13]. The result is shown in Figure 10, where each layer is 
identified by a different color, superimposed on the original image. 
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The winding angle of each fiber can be obtained through the measurement of its 
major and minor projections (Fmax and Fmin) and the equation 








⋅





=

π
φ 180

max

min
F

FarcsenFiber  

The winding angle of a layer is estimated as the average of the winding angles of all 
fibers that belong to that layer. The results are show in Table 1, where one can see 
that a nonsymmetrical stacking sequence was used. From a mechanical behavior 
point of view this is not a good result, since nonsymmetrical laminates have bending-
stretching coupling that can cause warping due to in-plane forces [15]. 
It is apparent from the results listed in Table 1 that larger standard deviations were 
found for the layers with more inclined angles (especially layers 3, 8, and 11). This is 
consistent with the comments above, regarding the difficulty to separate touching 
fibers in these layers. In certain cases, the separation lines of the watershed method 
break elongated fibers, creating objects with varying shapes within a layer, and thus 
biasing the winding angle measurement. 

 
Figure 10 – Final discrimination of fiber layers 
according to fiber orientation. 

Table I – Winding angles of the fiber layers 

Layer # Angle 
(degrees)* 

1 38.8 ± 4.9 

2 14.0 ± 3.8 

3 34.4 ± 11.4 

4 49.4 ± 5.0 

5 63.6 ± 5.3 

6 10.5 ± 3.2 

7 63.0 ± 4.6 

8 36.6 ± 10.5 

9 63.2 ± 4.0 

10 7.5 ± 4.0 

11 36.9 ± 10.1 

12 64.9 ± 2.8 

13 41.2 ± 8.8 

*Angle is shown as average ± standard deviation 

The methodology of identification of the actual lamina stacking sequence, however, 
proves its robustness, since the microstructural characterization of the entire cross 
section can be used to monitor deviations from the manufacturing designed lamina 
stacking sequence. A correction in the fabrication routine can thus be made, and 
better quality pipes can be manufactured. 

4. CONCLUSIONS 
The use of mosaic images covering the entire cross section of the fiber-reinforced 
composite was fundamental to reveal the complete microstructural arrangement, 
showing the spatial distribution of voids and fibers. 
The developed methodology was able to discriminate voids from preparation defects, 
and obtain their spatial distribution in a quantitative way. It was also possible to 
identify each individual lamina wound during the manufacturing process of a 
composite pipe. The image processing and analysis procedure developed to 
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measure fiber size and shape allowed the determination of the average winding 
angle for each identified layer.  
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