ESTUDO DO EFEITO DA TEMPERATURA *LIQUIDUS* DA ESCÓRIA NO PROCESSO DE CARBURAÇÃO DO FERRO EM PELOTAS AUTO-REDUTORAS¹

Alberto Eloy Anduze Nogueira² Marcelo Breda Mourão³ Cyro Takano³

Resumo

Este trabalho estuda o efeito da temperatura liquidus da escória no processo de carburação de ferro em pelotas auto-redutoras. Preparam-se 3 tipos de pelotas: o primeiro grupo, as pelotas padrão, de 17 mm de diâmetro, com 95 % em massa de pó de ferro grau analítico mais 5% em massa de grafita, ambos menores que 100 mesh; o segundo grupo possui a mesma relação ferro carbono, porém com 11,34 % em massa de escória de alta temperatura liquidus, equivalente a 7% em massa de cimento das pelotas auto-redutoras com minério; e o terceiro grupo, com a mesma relação ferro, escória e carbono, porém com escória de baixa temperatura liquidus. Todas as pelotas foram aglomeradas manualmente com parafina. O ciclo térmico consistiu de desvolatilização a 723 K por 5 minutos, e depois processamento das pelotas a 1673 K, durante 10 minutos, em atmosfera de argônio com vazão de 2 NL/min. Realizaram-se análises das amostras obtidas por microscópio óptico, MEV, EDS e LECO. Os resultados mostraram que as pelotas sem escória e com escória de baixa temperatura liquidus apresentaram uma boa carburação e coalescimento da fase metálica, sendo que na que continha escória a carburação foi menor e ambas formaram um único nódulo de ferro. A pelota com escória de alta temperatura liquidus, apresentou uma menor carburação do ferro, entre as três ensaiadas, e um coalescimento ineficaz, obtendose como produtos pequenos nódulos de ferro aglomerados junto com a escória. Possivelmente isto se deve porque os óxidos formadores de escória permaneceram no estado sólido, formando uma barreira física que dificultou a carburação e o coalescimento. **Palavras-chave:** Pelotas de ferro carbono; Escória; Temperatura *liquidus*;

Carburação

CARBURIZATION OF REDUCED IRON FROM SELF-REDUCING PELLETS: STUDY OF THE EFFECT OF THE LIQUIDUS TEMPERATURE OF THE SLAG

Abstract

The effect of the liquidus temperature of slag in the carburization of the reduced iron from selfreducing pellets was studied. Three types of pellets were tested: the first was, the standard pellets, 17 mm of diameter, with 95% of analytic iron powder plus 5% of pure graphite, both less than 100 mesh; the second one, with the same iron-graphite ratio, but with 11.34% of slag with high liquidus temperature (2273K); and the third one, with the same iron, slag and carbon ratio, but with slag with low liquidus temperature (1573K). The slag quantity is equivalent to when 7% of cement is added to the original self reducing pellets. All the pellets were hand made using paraffin as binder. The thermal cycle used was: de-volatilization step at 723 K during 5 minutes, followed at 1673K during 10 minutes, in argon atmosphere at rate of 2 NL/min. The obtained carburized iron and slag were analyzed with optical microscope, MEV, EDS and LECO. The coalescence of the carburized iron was completed, forming a single nugget, with pellets without slag and with slag of the low liquidus temperature. The slag with high *liquidus* temperature presented partial coalescence and lowest degree of carburization. The highest carburization degree was reached with pellet without slag, followed with pellets with that of the slag with low *liquidus* temperature.

Key words: Iron carbon nuggets; Slag; Liquidus temperature; Iron carburizing.

- 2 Membro da ABM, pós-graduando do Depto. Eng. Metalúrgica e de Materiais da EP-USP
- 3 Membro da ABM, Professor Livre-Docente do Depto. Eng. Metalúrgica e de Materiais da EP-USP

¹ Contribuição técnica apresentada na 61º Congresso Anual da ABM, de 24 a 27 de julho de 2006, Rio de Janeiro – RJ

1 INTRODUÇÃO

Este trabalho tem por objetivo estudar o efeito da temperatura *liquidus* da escória no processo de carburação de ferro nas pelotas auto-redutoras

1.1 Composição da Escória

. A composição da escória a ser formada no processo de auto-redução irá depender da composição das cinzas do redutor, da ganga do minério e da composição do aglomerante eventualmente usado. As escórias de pelotas auto-redutoras apresentam teor de Fe²⁺ menores que 3%⁽¹⁾. Neste trabalho compôs-se uma escória sem conter óxido de ferro, para simplificar e poder desprezar o mecanismo de carburação envolvendo a reação de carbono sólido com a escória contendo FeO.

1.2 Efeito da Escória no Processo de Carburação

É de consenso entre vários autores⁽¹⁻³⁾ que para o bom desempenho do processo auto-redução para obtenção de nódulos metálicos é necessário atingir-se simultaneamente as temperaturas *liquidus* da liga ferro-carbono formada e da escória. Desconhecem-se ainda as causas exatas deste requisito, porém acredita-se que a temperatura *liquidus* da escória afeta diretamente o processo de carburação da fase metálica, sendo que a não obtenção da fase líquida na escória restringe o processo de carburação da fase metálica. Existe uma linha tecnológica que propõe a obtenção de nódulos de ferro carbono valendo-se entre outras coisas da obtenção da temperatura *liquidus* da escória próxima da temperatura *liquidus* da liga ferro carbono formada.

Um trabalho interessante sobre o efeito da escória no processo de carburação de ferro foi realizado por Ohno.⁽⁴⁾ Ele concebeu uma interessante experiência, na qual colocava-se uma amostra de grafita e ferro metálico separados por uma amostra de escória, a qual continha entre 10 a 40% em massa de FeO. O seu objetivo era simular as condições da zona coesiva de alto-forno.

A explicação é que: quando o óxido de ferro contido na escória entra em contato com o carbono sólido, o mesmo é imediatamente reduzido e formam-se uma partícula de Fe e uma bolha de CO, como mostra a Figura 1 (a). A partícula de Fe é simultaneamente carburada pelo carbono e se liquefaz na interface escória-carbono. A partícula líquida de Fe-C é transportada da interface escória-carbono para a interface escória-ferro devido ao fluxo de escória baseado na diferença de tensão superficial (efeito Marangoni) como é mostrado na Figura 1 (b). A partícula líquida de

Fe-C coalesce imediatamente na superfície do ferro e o carbono se difunde como indicado na Figura 1 (c). O ferro reduzido se carburaria continuamente pela repetição desta seqüência. A concentração de carbono na interface ferro-escória nas fases iniciais do processo estaria na faixa de 0,3% em massa.

Neste trabalho pretende-se entender o fenômeno de carburação de Fe quando não se tem óxido de ferro contido na escória.

2 PROCEDIMENTO EXPERIMENTAL

Preparam-se 3 tipos de pelotas. O primeiro grupo, as pelotas padrão, de 17 mm de diâmetro, com 95 % em massa de pó de ferro grau analítico mais 5% em massa de grafita, ambos menores que 100 mesh. O Segundo grupo possui a mesma relação ferro carbono, porém com 11,34 % em massa de escória de alta temperatura liquidus (≈2273 K), equivalente a 7% em massa de cimento das pelotas autoredutoras geralmente estudadas com minério de ferro. Neste caso a escória foi simulada com cimento Portland tipo ARI (alta resistencia inicial), com uma composição esperada como mostrada na Tabela 1. O terceiro grupo, com a mesma relação ferro, escória e carbono, porém com escória de baixa temperatura liquidus (≈1573K). Para este último grupo, a escória foi preparada previamente misturandose cimento Portland tipo ARI com sílica e alumina nas guantidades calculadas para atingir a composição indicada (Tabela 1). A localização das ditas composições no diagrama ternário pode ser vista na Figura 2. A mistura para baixa temperatura liquidus foi fundida a 1673K em cadinho de aço inox para garantir à obtenção da fase líquida, e posteriormente moída e adicionada às pelotas nas quantidades especificadas. As pelotas foram aglomeradas manualmente com 25% em massa de parafina, por dois motivos: o primeiro para evitar a aglomeração com água ou associados, o que poderia oxidar o ferro do sistema alterando a composição desejada das escórias ou reagindo com o carbono; e o segundo para simular uma baixa compactação na fabricação das pelotas como acontece na aglomeração manual ou nos sistemas pelotizadores. É importante ressaltar que nesta experiência, é desprezível a presencia de oxigênio, seja na atmosfera ou na forma de óxido facilmente redutível, o que diminui a possibilidade de carburação gasosa através de CO. Portanto, induzindo-se para que o sistema de carburação seja por vias sólidosólido e/ou sólido-líquido. O ciclo térmico consistiu de desvolatilização a 723 K por 5 minutos, e depois processamento das pelotas a 1673 K, durante 10 minutos, em atmosfera de argônio com vazão de 2 NI/min. A amostra foi resfriada em atmosfera de argônio. Realizaram-se analises das amostras obtidas no microscópio óptico. MEV e EDS. Também realizaram-se quantificações da concentração de carbono via LECO, para o qual as amostras foram decapadas com acido nítrico 1N, para eliminar quaisquer vestígios de carbono não associado à carburação do ferro.

Escória	CaO	SiO ₂	Al ₂ O ₃
Escória de alta temperatura <i>liquidus</i> (T. <i>liquidus</i> ≈ 2273 K)	72,85	21,58	5,57
Escória de baixa temperatura <i>liquidus</i> (T. <i>liquidus</i> ≈ 1573 K)	23,33	62,86	13,81
Nota: a composição da escória (cimento Portland tipo ARI para estimativa da temperatura liquidus.) foi levada a um s	istema ternário Ca	$O, SiO_2, e Al_2O_3,$

Tabela 1. Composição das escórias (% em massa).

3 RESULTADOS E DISCUSSÕES

Na Figura 3 é possível ver o resultado do processo de carburação e coalescimento da pelota padrão, formada por pó de ferro e grafita, sem escória. Este consiste de um único nódulo, sem a presença de nenhum outro corpo ou partícula ao seu redor.

Na Figura 4 observa-se o resultado da pelota formada por pó de ferro, grafita e escória de alta temperatura liquidus, o qual consiste de uma porção de pequenos nódulos não coalescidos, aparentemente carburados, presos na escória que não se liquefez. A causa da limitada coalescência mostrada na Figura 4 pode ser observada pela Figura 5, onde duas gotas semelhantes não coalescem pela presença de corpos estranhos nas suas superfícies, os quais impedem o contato de ambas.

Na Figura 4 pode-se observar o resultado obtido com a pelota composta de pó de ferro, grafita e escória de baixa temperatura *liquidus*, onde se tem um único nódulo de ferro carbono, rodeado da escória que se liquefez. Nesta experiência se faz evidente a necessidade da liquefação da escória para atingir-se o coalescimento do nódulo de ferro.

Figura 5. Ausência de coalescimento de duas gotas semelhantes pela contaminação superficial.

Os resultados foram reproduzidos em 3 experiências conforme podem ser observados na Figura 6.

Na Figura 7 apresentam-se os resultasdos, por EDS, dos nódulos de ferro carbono para cada caso, descartando-se a presença de qualquer elemento a não ser ferro e carbono, o qual elimina a possibilidade de ter-se diferenças na concentração de carbono entre os nódulos de ferro pela variação do potencial químico do carbono motivada pela presença de outros elementos de liga.

Figura 7. Da esquerda para direita: EDS dos nódulos de ferro padrão; com escória de alta temperatura *liquidus*; e com escória de baixa temperatura *liquidus*, mostrando que os nódulos contêm basicamente ferro e carbono.

Tabela 2. Concentração de carbono no ferro. Média de 3 determinações.

Amostra	%C (em massa)
Ferro-grafita (padrão)	4,3±0,1
Ferro-grafita-escória de alta temp. <i>liquidus</i>	2,9±0,1
Ferro-grafita-escória de baixa temp. <i>liquidus</i>	3,6±0,2

Na Tabela 2 pode-se observar a análise de carbono de cada um dos nódulos. A concentração de carbono na amostra ferro-grafita (padrão) é maior do que nas outras duas, concluindo-se que a presença de escória, seja em estado sólido ou líquido dificulta em maior ou menor grau o processo de carburação. Ao se comparar a concentração de carbono entre a pelota de ferro carbono com escória de alta temperatura *liquidus* e com a de baixa temperatura *liquidus* observa-se que a liquefação da escória promoveu mais a carburação do ferro. Isto provavelmente se deve ao fato de que a escória ao se liquefazer, esta escoa, diminuindo a barreira física entre o carbono e a partícula de ferro. A carburação em altas temperaturas (acima de 1273 K) acontece nas primeiras etapas via sólido-sólido, onde o contato entre as partículas de ferro e de carbono é fundamental. Qualquer barreira física entre as duas partículas afeta o processo de carburação.

A imagem de elétrons retro-espalhados permite diferenciar elementos pesados de elementos leves, sendo que imagens claras representam os elementos pesados e as imagens obscuras os leves. Ao comparar as imagens de elétrons retro-espalhados da pelota padrão (Figura 8) com as das pelotas com escórias de alta temperatura *liquidus* (Figura 9) e de baixa temperatura *liquidus* (Figura 10) observa-se presença de microestrututas correpondentes às composições de Fe-C eutéticas e hipoteutéticas, confirmando as análises de carbono.

Nas Figuras 11 e 12 podem-se observar resultados qualitativos mostrando os principais componentes (por EDS) das escórias obtidas. A relação CaO-SiO2-Al2O3 da escória de alta temperatura liquidus confirma a escória empregada neste caso. As presenças de ferro e carbono podem ser explicadas pelo fato de que há sobra de carbono e que pequenas partículas de ferro ficam retidas na escória. Na escória de baixa temperatura liquidus também a relação CaO-SiO2-Al2O3 está coerente. A

presença de cromo nesta escória pode ser explicada pelo contato da mesma com o cadinho de aço inox durante a fusão previa no momento do preparo

4 CONCLUSÕES

- A escória de alta temperatura *liquidus* compromete o processo de coalescência das partículas de ferro carbono.
- A presença de escória, seja liquefeita ou não, dificulta o processo de carburação do ferro.
- A escória de alta temperatura *liquidus* compromete a carburação do ferro em maior grau do que a escória de baixa temperatura *liquidus*.

Agradecimentos

Agradece-se a Fundação de Amparo à pesquisa do Estado de São Paulo (FAPESP) processo n° 03/02404-0, e ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) processo n° 141980/2005-2 pelos auxílios prestados.

REFERÊNCIAS

- 1 Shimizu, M.; Nishioka, K.; Maeda, T. Rapid reduction and melting of carbon composite iron ore pellets on high temperature. In: Fourth Japan-Brazil symposium on dust processing-energy-environment in metallurgical industries. EPUSP, São Paulo, Brazil, 2002, 103-114.
- 2 Meissner, S.; Kobayashi, I.; Tanigaki, Y.; Tacke, K. Reduction and melting model of carbon composite ore pellets. **Ironmaking and Steelmaking**, v. 30, n. 2, 2003, 170-176.
- 3 Iguchi, Y.; Fanming, M.; Hiura, M. Reaction enhancing mechanism in iron orecarbonaceous material composite pellets heated at elevated temperatures, In: Fourth Japan-Brazil symposium on dust processing-energy-environment in metallurgical industries. EPUSP, São Paulo, Brazil, 2002, 77-88.
- 4 Ohno, K.; Hino, M. Kinetic analysis of iron carburization during smelting reduction. In: Science and technology of innovative ironmaking for aiming at energy half consumption. ISIJ, Japan, November, 2003, 17-20.
- 5 Committee for Fundamental Metallurgy. Slag Atlas. Verein Deutscher Eisenhuttenleute, Germany, Dusseldorf, 1981, 57.
- 6 Nogueira, A. Mourão, M. Takano, C. Estudo do processo de redução e fusão de pelotas auto-redutoras no intervalo entre 1573 a 1673 K, 59° congresso anual da ABM-Internacional, 19 de julho de 2004, São Paulo-SP-Brasil, 114-124.
- 7 D'Abreu, J. C.; Martins, K. M; Noldin Jr, J. H. Iron phase morphology of selfreducing briquettes. In: Fourth Japan-Brazil symposium on dust processingenergy-environment in metallurgical industries. EPUSP, São Paulo, Brazil, 2002, 89-102.