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Summary 

The paper gives a 1 O years overview of the efforts of the steel industry in Western 
Europe (EU) to enhance its -efficiency by improving blast furnace productivity and 
reductant rates as major factors to reduce costs. As a result of steel industry's 
commitment to improve its international competitiveness, restructuring of iron and 
steel industry has been going on. Concentration in large production units at only a 
few sites is therefore a logic consequence. 

The European story for high productivity went along with a steep increase of oxygen 
enrichment even if new large blast furnaces were taken into operation. Oxygen 
enrichment and injection technology are inseparably linked together, giving the 
chance to match operational conditions for low gas volume, favourable coke 

· replacement ratio , high hydrogeh input and optimal flame temperature. 

Productivities of nearly 83 t/m2 .d, total reductant consumption of 422 kg/t HM, coke 
rates of 265 kg/t HM only and coai injection rates of 211 kg/t HM are not reached at 
random. Moreover, these encouraging results point out the potential for consistent 
operation. The global approach for suc;h targets is asking to meet a lot of 
requirements including burden and coke quality, as well as burden distribution, 
process or hearth conditions contrai and high plant availability. 
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lntroduction 

The search for a greater international competitiveness goes along with the personal 
challenge of ironmaking plant operators to continuously improve the blast furnace 
technology and its performances. The paper gives a 1 O years overview of the efforts 
of the steel industry in Western Europe (EU) to enhance its efficiency by improving 
productivity and reductant rates as major factors to reduce costs. 

1. Evolution of blast furnace productivity in the period 1990-2000 

As a result of steel industry's commitment to improve its international 
competitiveness, restructuring of iron and steel industry has been going on in the last 
1 O years. Concentration in large production units at only a few sites is therefore a 
logic consequence. 

Figure 1 illustrates the continuous reduction of number of blast furnaces operated in 
Western Europe in this period. ln 1990 about 94 million t HM where produced in 92 
blast furnaces, .in 2000 nearly the sarne amount of hot metal was produced in 66 
blast furnaces only. The mean specific production per blast furnace has steadily 
increased by 40%, from 1.04 to 1.45 million tpy. The productivity of ali blast furnaces 
correlatively progressed in this time in average frcim 51 . 7 to 58.4 t/m2.d (figure 2). 
The yearly individual best performances bf a blast furnace rised up from 65.6 to 75.6 
t/m2.d. Figure 3 shows that the number of blast furnaces operated with productivity 
higher than 60 t/m2.d increased from nearly 8% in 1990 to 36% in 2000; 6% - that is 4 
blast furnaces - were operated in 2000 with more than 70 t/m2 .d. 

2. Oxvgen enrichment and reductant rate figures 

Fundamental prerequisites to achieve high blast furnace production rates are not a 
secret. Raising productivity requires either to decrease gas volume, which basically 
means to enhance oxygen enrichment and to decrease the specific reductant rate 
and/or to improve furnace perineability. 

The European story for high productivity went along with a steep increase of oxygen 
enrichment even if new large blast furnaces were taken into operation. ln 1990 about 
37% of blast furnaces were still operated without oxygen enrichment and other 49% 
with rather moderate rates up to 23% 02 in the blast (figure 4) . The year 2000 survey 
reports about only 8% blast furnaces operating without o:1 ygen enrichment, 40% with 
enrichment rates between 23 and 25% and in the last nearly 11 % with enrichment 
rates of 27% 02 and more. 

Oxygen enrichment and injection technology are inseparably linked together, giving 
the chance to match operational conditions for low gas volume, favourable coke 
replacement ratio, high hydrogen inp4t and optimal flame temperature. Figure 5 
shows the evolution of reductant rates in the period · 1990-2000. Consistent is the 
reduction in dependence on coke by increased injection rates. The share of 
alternative injectants in the European reductant mix increased in this time from 81 to 
123 kg/t HM, which is from 17 to 25% of the total consumption. 
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Remarkable are individual best performances such that of Sidmar A, with a 
consistent operation over five years with coke rates nearly 300 kg/t HM and a record 
of 286 kg/t HM obtained as yearly average in 1998 in conjunction with coai injection 
rates of 197 kg/t HM (figure 6) . ln 2000 about 22% of European blast furnaces were 
operated with less than 340 kg coke/t HM, ten years before - in 1990 - only 3% 
(figure 7) . ln the sarne period the share of blast furnaces performing coai injection 
rates of 150 kg/t HM and more rised from 3 to 33% (figure 8) . 

During the past furnace specific coke consumption was continuously reduced by 
improving ferrous burden material and coke quality, reducing slag rates, as well as 
optimising burden distribution and last but not least by substituting coke by injectants. 
The improved .process control , necessary to reach high injection and productívity 
levels resulted finally in a coke rate reduction more significant than expected before 
by the simple effect of carbon replacement. Figures 9 and 1 O give an overview of 
the replacement ratios for coai and oil in the European hot metal production . The 
slope of the linear regression of the monthly average for individual optimised 
conditions is nearly 1 kg coke/kg coai for Sidmar's coai injection and 1.17 kg coke/kg 
oil for HKM',s oil injection practice. 

ln the light of this arguments figure 11 is a comprehensive evidence for the link 
between low coke rate and high productivity operation. 

3. European highlight performances 

The overview given for the last 1 O years is based on annual average data. 
Furthermore, a certain number of blast furnace plants were operated during 
significant periods of time - at least one month - with highlight performances ranking 
far beyond that limits (figure 12). Productivities of nearly 83 t/m2.d, total reductant. 
consumption of 422 kg/t HM, coke rates of 265 kg/t HM only and· coai injection rates 
of 211 kg/t HM are not reached at random. Moreover, these encouraging results 
point out the potential for consistent operation. The global approach for such targets 
is asking to meet a lot of requirements including burden and coke quality, as well as 
burden distribution, process or hearth conditions control and high plant availability. 

4. Burden guality for high productivity operation 

The increase of the gas throughput in the blast furnace and burden permeability 
improvement are inseparably linked together. That is why the majority of blast 
furnaces operating at high productivity have ratios of prepared burden - that is sinter 
or pellets - close to or even higher than 90%. Figure 13 shows furthermore that the 
share of prepared burden is higher in the case of blast furnaces operating 
simultaneously at high productivity and low coke rate (i.e. high injection rates). 

When the aforementioned key issues for high productivity operation are conside_red, 
the main requirements for burden quality have to be focused on: 

• High permeability and homogeneity going along all furnàce temperature and 
reaction zones, 

• high reducibility to match with _short throughput times and 
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• low tramp element contents such as zinc, lead and alkalis to avoid process 
disturbances. 

Figure 14 shows a comprehensive presentation of the productivity improvement of 
HKM·s BF-8, going along with both : low reductant rates and permeability increase 
despite substantial savings in coke, which is known for its significant contribution to 
stabi11se the burden permeability. These results suggest that the permeability 
improvement by more than 10% in the period 1995-1998 was highly supported by 
improved ferrous burden quality. 

Size distribution of burden materiais is of particular importance to contrai the 
permeability in the upper part of the burden column: main target is to limit the amount 
of fines . Figure15 illustrates the influence of the sinter grain size fraction -5 mm on 
the permeability. For the sarne reason the sinter coarse fraction + 40 mm is generally 
limited too, -searching for a narrow grain size range. 

The extend of low temperature degradation is respohsible for flow disturbances in the 
500º C zone. Particular importance should be attached to sinter degradation, which is 
generally higher compareci with pellets. ln Figure 16 an increase in the frequency of 
tuyere failure is experienced when sinter low temperature degradation increased . ln 
this case poor shaft permeability seems to affect the position of cohesive zone and 
consequently the meltdown behaviour. A lot of research work was done to deepen 
the knowledge and to assess the influence of tramp elements on the degradation. 
The catalytic effect of alkalis on iron oxide reduction seems to enhance the 
degradation tendency, whereas sulphur and chlorine components in the gas phase 
should have an int,ibiting effectA reason more to limit the alkali input in the furnace. 

The specific pressure loss in the cohesive zone is almost five times higher than in the 
dry shaft zone. High softening and melting temperatures, a narrow sdftening-melting 
interval and a low primary slag melting point may improve the permeability in this 
area. 

The final assessment of blast furnace burden configuration however relies on both: 
technological and economical factors, strongly affected by local conditions. As sinter 
plant productivity is increased in arder to raise the smter share in burden, sinter 
marginal costs steadily rise because of raising burnt lime and energy consumption . ln 
this case sinter becomes less attractive compareci with pellets and lump ore, which 
are purchased for fixed prices . 

At first sight it seems to be of interest to include cheap ore in the blast furnace 
burden . But operational results confirm previous findings suggesting that lump ore 
affects shaft permeability and locally impede sinter reduction . Figure 17 illustrates 
the impact of higher lump ore ratios on indirect reduction; this is asking for more 
coke. That is why consistent high productivity operation with high lump ore ratios was 
not yet practiced in Western Europe. 
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5. Coke guality for high productivity operation 

Coke quality plays as well a significant role for the permeability contrai and in 
particular in the lower part of the blast furnace. The gas flow in this area is to a great 
extend influenced by the hot metal and slag flow, dripping out of the cohesive zone 
via the "dead man", into the hearth. The final grain size of the coke in the hearth is 
decisive for these conditions as well as for hearth drainage and liquid evacuation. 
Samplings in the nitrogen quenched BF-5 at former Mannesmann Works assessed a 
decrease of coke layer voidage from 0.45 at the stockline to 0.3 at tuyere level. The 
general approach to improve bosh coke size is to optimise feed coke size arid 
strength while minimising coke breakdown inside the blast fumace during reduction. 
Figure 18 shows the influence of coke grain size distribution on productivity 
performance of BF-2 at Rautaruukki Steel. 

The need for excellent coke quality is even stronger when the targets for productivity 
and injection rates are high. Different investigations mention enhanced coke fines in 
the raeeway area with high-pulverised coai injection. This could be explained by 
longer residence time of coke in the fumace, in particular in the zone where its 
gasification occurs (figure 19). Consequently the coke is exposed to greater 
mechanical and chemical attack. Moreover the coke is bumt proportionately less at 
tuyeres, whereas more coke is consumed for direct reduction. For this reason it 
seems to be advisable to increase the share of nut coke charged with" the ferrous 
burden. 

Coke reactivity, assessed by the CSR index is supposed to give a good approach for 
the coke degradation by gasification. That is why CSR values of at least 60% and 
recently 65 % are at present considered to be necessary to support a stable blast 
furnace operation, especially for large furnaces as illustrated in figure 20 for BF­
Schwelgem 1. By appropriate selection of coai mixtures and coking process contrai 
coke with CSR of 65-to?0o/o as yearly average can be produced nowadays (figure 
21). Figure 22 shows the worsening of furnace permeability with decreasing CSR 
values with a time lag of many days experienced at Sidmar. Even if afterwards the 
CSR increases again, it takes time before permeability recovers. lnvestigations with 
marked coke at BF-Schwelgern 1 of TKS indicated that coke substitution in the 
hearth would take several weeks: That is why coke regularity and homogeneity are of 
utmost importance . 

. 6. Hearth wear and extension of campaign life 

Hearth conditions are significantly influenced during high productivity operation. 
Statistical studies made by Sidmar show a strong correlation between hearth wall, 
hearth bottom temperatures and productivity variations. As mentioned before, high 
in~ection rates may impair the permeability of the dead man. Consequently enhanced 
peripheral flow of hot metal and slag occurs resulting in a pronounced refractory 
wear. That is why a good liquid evacuation with controlled tapping speed as well as 
liquid and wall temperature monitoring are essential prerequisites for stable · 
operation. Figure 23 demonstrate the effect of stronger peripheral flow going along 
with the productivity increase on the tap hole length at BF-A of HKM, despite 
optirrnsed tapping practice with shorter times between taps and improved clay 
quality. A new type softly operating drill machine equipped with a high speed 
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hydraulic hammer supported by nitrogen and water cooling - installed during the 
rebuild 1998 - was a major contribution to stabilise the tap hole area. 

Nevertheless one question has to be discussed at the end: Does productivity impair 
the blast furnace life? Specialist's opinions vary on this point. ln figure 24 specific hot 
metal production during a campaign has been plotted versus productivity for 
completed campaigns of blast fumaces blown in the period 1975-1990. Obviously, 
blast furnace campaign life was not negatively affected by increased productivity, 
mostly even the opposite occurs. This finding is valid at least up to productivity of 
around 2.2 Um3 inner volume and 24 h, corresponding to about 2.6 t/rn3 working 
volume and 24 h according to European reference parameters. 

This result is not unexpected because long furnace life requires apart from 
constructional prerequisites a consistent process operation, high quality burden 
materiais and sophisticated tapping technology. These are not only prerequisites for 
long campaigns, but afso essential conditions for high productivity operation. 
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Fig. 23 lnfluence of productivity on tapping conditions at HKM 
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