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Abstract 
Most structural components are designed against fatigue crack initiation, by proce-
dures which do not recognize cracks. Large cracks may be easily detected and dealt 
with, but small cracks may pass unnoticed even in careful inspections, if they are 
smaller than the detection threshold of the inspection method used to identify them. 
Thus, structural design for very long fatigue lives should avoid fatigue crack initiation 
AND be tolerant to undetectable short cracks. But this self-evident requirement is still 
not used in fatigue design routines, which just intend to maintain the loading at the 
structural component critical point below its fatigue limit. Nevertheless, most long-life 
designs work just fine, which means that they are somehow tolerant to undetectable 
or to functionally admissible short cracks. But the question “how much tolerant” can-
not be answered by SN procedures alone. This important problem can only be solved 
by adding a proper short crack fatigue growth threshold requirement to the “infinite” 
life design criterion. This paper evaluates the tolerance to short 1D and 2D cracks, 
and proposes a design criterion for infinite fatigue life which explicitly considers it. 
Keywords: Short cracks; Non-propagating cracks; Fatigue life prediction. 
 

SENSIBILIDADE DO LIMITE À FADIGA ÀS TRINCAS CURTAS 
 
Resumo 
A maioria dos componentes estruturais é projetada contra a iniciação de trincas por 
fadiga, usando procedimentos que não reconhecem trincas. Trincas grandes podem 
ser facilmente detectadas e controladas, mas trincas curtas podem passar desper-
cebidas mesmo em inspeções cuidadosas, se forem menores que o limiar de detec-
ção do método usado para identificá-las. Logo, o projeto à fadiga para vidas muito 
longas deveria evitar o início de trincas e tolerar trincas curtas indetectáveis. Mas es-
te requisito evidente ainda não é usado na maioria das rotinas de projeto, que visam 
apenas manter a tensão no ponto crítico abaixo do limite à fadiga. Entretanto, a mai-
oria destes projetos funciona bem, logo tolera algumas trincas curtas não identificá-
veis, ou funcionalmente admissíveis. Mas a pergunta “quão tolerantes” não pode ser 
respondida apenas por procedimentos SN. Este problema importante só pode ser 
resolvido adicionando um limiar de propagação de trincas curtas apropriado ao crité-
rio de projeto à vida “infinita”. Este artigo avalia a tolerância a trincas curtas 1D e 2D, 
e propõe um critério de vida infinita à fadiga que as considera explicitamente. 
Palavras-chave: Trincas curtas; Trincas não-propagantes; Predição de vida à fadi-
ga. 
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1  INTRODUCTION  
 
The notch sensitivity 0  q  1 relates the linear elastic (LE) stress concentration fac-
tor (SCF) Kt  max/n, to Kf  1 + q(Kt – 1)  SL(R)/SLntc(R), its corresponding fatigue 
SCF at R = min/max, which quantifies the actual notch effect on the fatigue strength 
of structural components.(1) max and min are the maximum and minimum LE stress 
at the notch root caused by n; n is the nominal stress that would act at that point if 
the notch did not affect the stress field around the notch; SL and SLntc are the fatigue 
limits measured on standard (smooth and polished) and on notched test specimens 
(TS). It is well known that q can be associated with the relatively fast generation of ti-
ny non-propagating fatigue cracks at notch roots when SL/Kt < n < SL/Kf. The notch 
sensitivity can be predicted from the fatigue behavior of short cracks emanating from 
notch tips, using relatively simple but sound mechanical principles, which do not re-
quire heuristic arguments, or arbitrary fitting parameters.(2,3) 
The stress field gradients around notch roots affect the fatigue crack propagation 
(FCP) behavior of short cracks emanating from them. For any given material, q de-
pends not only on the notch tip radius , but also on its depth b, meaning that shallow 
and elongated notches of same  may have quite different q. Note that “short crack” 
here means “mechanical” not “microstructural” short crack, since material isotropy is 
assumed in their modeling, a simplified hypothesis experimentally corroborated.  
Short cracks must behave differently from long cracks, as their FCP threshold must 
be smaller than the long crack threshold Kth(R), otherwise the stress range  re-
quired to propagate them would be higher than the material fatigue limit SL(R). In-
deed, assuming that the FCP process is primarily controlled by the stress intensity 
factor (SIF) range, K  (a), if short cracks with a 0 had the same Kth(R) 
threshold of long cracks, their propagation by fatigue would require   , a physi-
cal non-sense.(4) The FCP threshold of short fatigue cracks under pulsating loads 
Kth(a, R = 0) can be modeled using El Haddad-Topper-Smith (ETS) characteristic 
size a0, which is estimated from S0 = SL(R = 0) and K0 = Kth(R = 0).(5) This clever 
trick reproduces the Kitagawa-Takahashi(6) plot trend, using a modified SIF range K’ 
to describe the fatigue propagation of any crack, short or long, 
 

     0K (a a ) , where      2
0 0 0a 1 K S        (1) 

 
Steels typically have 6 < K0 < 12MPam, tensile strength 400 < SU < 2000MPa, and 
fatigue limit 200 < SL < 1000MPa (very clean high-strength steels tend to maintain 
the SL/SU  0.5 trend of lower strength steels under fully alternated loads, R 1). If 
by Goodman       0 U L U L 0S 2S S S S 260 S 1300MPa , where S0  2SL is 

the pulsating (R 0) fatigue limit; then the estimated short crack characteristic size a0 

range for steels is                min max max min
2 2

0 0 0 0 01 K S 7 a 700 m 1 K S . 

This a0 range may be overestimated, since the minimum threshold K0min is not nec-
essarily associated with the maximum fatigue crack initiation limit S0max, neither 
K0max is always associated with S0min. But it nevertheless justifies the “short crack” 
denomination used for cracks of a similar small size, and highlights the short crack 
dependence on the FCP threshold and on the fatigue limit of the material. In other 
words, it can be expected that cracks up to a few millimeters may still behave as 
short cracks in some steels, meaning they may have a smaller propagation threshold 
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than that measured with long crack, which have a >> a0. Since the strengths of typi-
cal aluminum alloys are 70 < SU < 600MPa, 30 < SL < 230MPa, 40 < S0 < 330MPa, 
and 1.2 < K0 < 5MPam, their maximum a0 (over)estimated range, thus their short 
crack influence scale, is wider than the steels range, 1m < a0 < 5mm.  
As ETS K’ has been deduced using Griffith’s plate SIF, K = (a)(7) used the 
non-dimensional geometry factor g(a/w) of the general expression for SIF K  
(a)g(a/w) to deal with other geometries, re-defining 
 

      0K g(a w ) (a a ) ,   where         
2

0 0 0a 1 K g(a w ) S   (2) 

 
But the tolerable stress range under pulsating loads tends to the fatigue limit S0 
when a  0 only if is the notch root instead of the nominal stress range. However, 
g(a/w) found in SIF tables usually include the notch SCF, thus they use  instead of 
n as the nominal stress. A clearer way to define a0 when the short crack departs 
from a notch root is to explicitly recognize this practice, separating the geometry fac-
tor g(a/w) into two parts: g(a/w)  (a), where (a) describes the stress gradient 
ahead of the notch tip, which tends to the SCF as the crack length a  0, whereas  
encompasses all the remaining terms, such as the free surface correction: 
 

         0K (a) (a a ) ,   where     2
0 0 0a 1 K S           (3) 

 
Operationally, the short crack problem can be treated by letting the SIF range K re-
tain its original equation, while the FCP threshold expression (under pulsating loads) 
is modified to become a function of the crack length a, namely K0(a), resulting in  
 

    0 0 0K (a) K a a a             (4) 

 
The ETS equation can be seen as one possible asymptotic match between the short 
and long crack behaviors. Following Bazant’s(8) reasoning, a more general equation 
can be used introducing an adjustable parameter   to fit experimental data  

 
 


     

1/ 2
0 0 0K (a) K 1 a a            (5) 

 
Equations (1-4) result from (5) if   2.0. The bi-linear limit, (a  a0)  S0 for short 
cracks, and K0(a  a0)  K0 for long ones, is obtained when g(a/w)  (a)  1 and 
  .  Most short crack FCP data is fitted by K0(a) curves with 1.5    8, but   6 
better reproduces classical q-plots based on data measures by testing semi-circular 
notched fatigue TS [2-3]. Using (5) as the FCP threshold, then any crack departing 
from a notch under pulsating loads should propagate if 
 

   
    


             

12
0 0 0K a a K (a) K 1 a a      (6) 

 
where  = 1.12 is the free surface correction As fatigue depends on two driving 
forces,  and max, (6) can be extended to consider max (indirectly modeled by the 
R-ratio) influence in short crack behavior. First, the short crack characteristic size 
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should be defined using the FCP threshold for long cracks KR Kth(a >> aR, R), 
and the fatigue limit SR, both measured or properly estimated at the desired R-ratio. 

        
2

R R Ra 1 K 1.12 S            (7) 

 
Likewise, the corresponding short crack FCP threshold should be re-written as 

 
 


   
 

1/ 2
R R RK (a) K 1 a a           (8) 

 
All these details are important when such models are used to make predictions in 
real life situations, as they do influence the calculation results. In particular, neglect-
ing the max effect on fatigue can lead to severe non-conservative life estimations, a 
potentially dangerous practice unacceptable for design or analysis purposes. 
 
2 BEHAVIOR OF SHORT CRACKS DEPARTING FROM SLENDER NOTCHES  
 
It is easy to mechanically justify why a crack starting from a sharp notch root can 
propagate for a while before stopping and becoming non-propagating (under fixed 
loading conditions.) A reasonable estimate for the SIF of a small crack a departing 
from the elliptical notch tip in an Inglis plate, with semi-axes b >> a and c, and root 
radius  = c2/b, is KI(a)  n(a)f1(a, b, c)f2(free surface), where the 2b axis is cen-
tered at the x co-ordinate origin,n is the nominal stress (perpendicular to a and b); 
f1(a, b, c)  y(x)/n; y(x) is the stress at (x  b + a, y  0) ahead of the notch tip 
when there is no crack; and f2  1.12. y(x  b + a, y  0) is given by:(9) 

 




          
    

2 2 22 2 2 22y
1 2 2 22 2 2 2n

( x,y 0 ) (b 2bc )( x x b c )( x b c ) bc ( b c )x
f 1

( b c ) ( x b c ) x b c
 (9)  

 
The slender the elliptical notch is, meaning the smaller their semi-axes c/b and tip ra-
dius to depth /b ratios are, the higher is its SCF. But high Kt imply in steeper stress 
gradients y(x, y  0)/x around notch tips, since LE stress concentration induced by 
any elliptical hole drops from Kt  1 + 2b/c  1 + 2(b/)  y(1)/n  3 at its tip border 
to 1.82 < K1.2  y(1.2)/n < 2.11 (for b  c ) at a point just b/5 ahead of it, meaning 
their Saint Venant’s controlling distance is associated with their depth b, not with their 
tip radii .(1) This is the cause for the peculiar growth of short cracks which depart 
from elongated notch roots. Their SIF, which should tend to increase with their length 
a x b, may instead decrease after they grow for a short while because the SCF 
effect in KI  1.12n(a)f1 may decrease sharply due the high stress drop close to 
the notch tip, overcompensating the crack growth effect. This KI(a) estimate can be 
used to evaluate non-propagating fatigue cracks tolerable at notch roots, using the 
short crack FCP behavior. E.g., if a large steel plate with SU  600MPa, SL 200MPa 
and K0 9MPam works under n 100MPa at R 1, verify if it is possible to 
change a circular d 20mm central hole by an elliptical one with 2b  20mm (per-
pendicular to n) and 2c 2mm, without inducing the plate to fail by fatigue.  
Neglecting the buckling problem, important in thin plates, the circular hole has safety 
factor against fatigue crack initiation F = SL/Kfn = 200/150  1.33, as this large hole 
has Kf  Kt 3. But the sharp elliptical hole would not be admissible by traditional SN 
design routines, since it has   c2/b  0.1mm, thus a very high Kt 1 + 2b/c  21. Its 
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notch sensitivity estimated from the usual Peterson q plot(10) would be q  0.32  Kf  
 1 + q(Kt – 1)  7.33, thus it would induce Kfn  376MPa > SL. However, as this Kf 
value is considerably higher than typical values reported in the literature,(1) it is worth 
to re-study this problem considering the short crack FCP behavior. Supposing Kth(R 
< 0)  K0 as usual, K0(a)  K0/[1+(a0/a)]0.5 (by ETS),  L US 0.5S  (the material fa-
tigue limit, as FCP modeling does not need modifying factors required to estimate 
SL), S0 = SU/1.5 (by Goodman) and a0 = (1/)(1.5K0/1.12SU)2  0.13mm, the SIF 
ranges KI(a) for the two holes are compared to the FCP threshold K0(a) in         
Figure 1. The SIF for cracks departing from the circular notch remains below the 
K0(a) FCP threshold curve (which considers the short crack behavior) up to a  
1.54mm. Thus, if a small surface scratch locally augments the stress range and in-
itiates a tiny crack at that hole border, it would not propagate under this fixed n  
100MPa and R 1 load, confirming its “safe” prediction made by traditional SN pro-
cedures. Only if a crack with a > 1.54mm is introduced at this hole border by any oth-
er means, it would propagate by fatigue under those otherwise safe loading condi-
tions. 
 

 
Figure 1: Using equation (9), it is estimated that cracks should not initiate at the circular hole border, 
which tolerates cracks a < 1.54mm, while the crack which initiates at the elliptical notch tip stops after 
reaching a  0.33mm.  
 
Under these same loading conditions, the KI(a) curve for the elliptical hole starts 
above K0(a), thus a crack should initiate at its border, as expected from its high Kt. 
But as this tiny crack propagates through the high stress gradient ahead of the notch 
root, it sees rapidly diminishing stresses around its tip during its early growth, which 
overcompensate the increasing crack size effect on KI(a). This crack SIF becomes 
smaller than K0(a) at a  0.33mm, when it stops and becomes non-propagating (if 
n and R remain fixed), see Fig. 1. As fatigue failures include crack initiation and 
growth up to fracture, both notches could be considered safe for this service loading. 
But the non-propagating crack at the elliptical notch tip, a clear evidence of fatigue 
damage, renders it much less robust than the circular one, as discussed in Castro e 
Meggiolaro.(1)  
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For analysis purposes, the SIF range of a single crack with length a emanating from 
a semi-elliptical notch with semi-axes b and c (where b is in the same direction as a) 
at the edge of a very large plate loaded in mode I can be written as 
 

      IK F a b ,c b a             (10) 

 
where  = 1.12, and F(a/b, c/b) can be expressed as a function of the dimensionless 
parameter s = a/(b + a) and of the notch SCF, given by  
 

           
2.5

tK 1 2 b c 1 0.12 1 c b            (11) 

 
To obtain expressions for F, extensive finite element calculations were performed for 
several cracked semi-elliptical notches. The numerical results, which agreed well with 
standard solutions,(11) were fitted within 3% using empirical equations [2-3] 
 

          
2 2

t t t tF a b ,c b f K ,s K 1 exp sK sK , c  b and s = a/(b + a)    (12) 

 

       
            

s 2
2 2 2

t t t t tF a b ,c b f K ,s K 1 exp K 1 exp sK sK , c  b    (13) 

 
The SIF expressions include the semi-elliptical notch effect through F or F’. Indeed, 
as s  0 when a  0, the maximum stress at its tip max  F(0, c/b)n Ktn. Thus, 
the -factor, but not the F(a/b,c/b) part of KI, should be considered in the short sur-
face crack characteristic size a0, as done in equation (3). Note also that the semi-
elliptical Kt includes a term [1 + 0.12/(1 + c/b)2.5] which could be interpreted as the 
notch free surface correction (FSC). Thus, as c/b  0 and the semi-elliptical notch 
tends to a crack, its Kt  1.12 2(b/). Such 1.12 factor is the notch FSC, not the 
crack FSC . Indeed, when c/b  0, this 1.12 factor disappears from the F expres-
sion, which gives F(a/b, 0)  1/s, and thus KI  F[a]0.5  [(a + b)]0.5, 
as expected, since the resulting crack for c  0 would have length a + b. 
Traditional q estimates, based on the fitting of questionable semi-empirical equations 
to few experimental data points, assume it depends only on the notch root  and on 
the material ultimate strength SU. Thus, similar materials with the same SU but differ-
ent K0 should have identical notch sensitivities. The same should occur with shallow 
and deep or elongated notches of identical tip radii. However, whereas well estab-
lished empirical relations relate the fatigue limit S0 to the tensile strength SU of many 
materials, there are no such relations between their FCP threshold K0 and SU. 
Moreover, it is also important to point out that the q estimation for elongated notches 
by the traditional procedures can generate unrealistic Kf values, as exemplified 
above. In conclusion, such traditional estimates should not be taken for granted.  
The proposed model, on the other hand, is based on the FCP mechanics of short 
cracks which depart from elliptical notch roots, recognizing that their q values are as-
sociated with their tolerance to non-propagating cracks. It shows that their notch sen-
sitivities, besides depending on , S0, K0 and , are also strongly dependent on 
their shape, given by their c/b ratio.(2,3) Their corresponding Peterson’s curve is well 
approximated by the semi-circular c/b = 1 notch, but this curve is not applicable for 
much different c/b ratios. Therefore, the proposed predictions indicate that these tra-
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ditional notch sensitivity estimates should not be used for elongated notches, a fore-
cast experimentally verified, as discussed in the following section. 
 
3 VERIFICATION OF ELONGATED NOTCH SENSITIVITY PREDICTIONS 
 
Fatigue tests were carried out on modified SE(T) specimens of thickness t  8mm 
and width W 80mm, to find the number of cycles required to re-initiate the crack af-
ter drilling a stop-hole of radius  centered at its tip, generating an elongated slit with 
b  27.5mm, as detailed in Wu et al.(3) The original objective of those tests was to 
study life improvements obtained by the stop-hole repair technique, but these tests 
can also be used to support the validity of the proposed model. The TS were made 
from an Al alloy 6082 T6, with SY  280MPa, SU  327MPa, and Young’s modulus E 
 68GPa. The particularly careful tests were made at 30Hz under fixed load range at 
R  0.57, to avoid any crack closure influence on their FCP behavior. The TS were 
first pre-cracked until reaching the required crack size. Then they were removed to 
introduce the stop-holes in a milling machine, using a slight under-size drill precisely 
centered at their crack tips. Finally, the holes were enlarged to reach their size using 
a reamer. The stop-hole sizes were large enough to remove the previous plastic 
zones.    
The fatigue crack re-initiation lives at the tip of the resulting elongated notch can be 
modeled by N procedures using (i) the alloy parameters ’f 485MPa, b 0.0695, 
’f  0.733 and c 0.827, and Ramberg-Osgood’s coefficient and exponent of the 
cyclic stress-strain curve, H 443MPa and h 0.064;(12) (ii) the nominal stress range 
and R-ratio; and finally (iii) the stress concentration factor of the notches generated 
after repairing the cracks by a stop-hole at their tips, which can be calculated by FE 
(Kt 11.8, 8.1, and 7.6 for the 3 stop-hole radii,  1, 2.5, and 3 mm.)  
The repaired crack can be modeled by calculating the stress and strain maxima and 
ranges at the stop-hole root border by Neuber’s rule, and by using them to calculate 
the crack re-initiation lives by an appropriate N rule, considering the influence of 
the mean loads. Neglecting this effect could lead to severely non-conservative pre-
dictions, as the R-ratio used in the tests was high (Coffin-Manson predictions are 
highly non-conservative, thus useless in this case). Figure 2 shows that the lives pre-
dicted by the elastic version of Morrow’s equation (which is an extension of the clas-
sical Goodman line) and by the Smith-Watson-Topper (SWT) equation are similar in 
this case, and predict well the measured data. Further details are available in Wu et 

al.(3) 
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Figura 2: Predicted and measured crack re-initiation lives after introducing stop-holes with radii  = 
1.0mm at the tip of the crack, using the properly calculated Kf of the resulting elongated slit (instead of 
its Kt) and appropriate N procedures. 
 
4  A CRITERION TO ACCEPT SHORT CRACKS 
 
Based on the encouraging life estimations for these fatigue crack re-initiation data, 
the reverse path can be followed, assuming the methodology presented here can be 
used to generate an unambiguous acceptance criterion for small cracks, a potentially 
much useful tool for practical applications. Most structural components are designed 
against fatigue crack initiation, using N or SN procedures which do not recognize 
cracks. Hence, their “infinite life” predictions may become unreliable when such 
cracks are introduced by any means, and not quickly detected and properly removed. 
Large cracks may be easily detected and dealt with, but small cracks may pass un-
noticed even in careful inspections, if they are smaller than the detection threshold of 
the inspection method used to identify them. Thus, structural components designed 
for very long fatigue lives should be designed to be tolerant to short cracks.  
However, this self-evident requirement is still not usually included in fatigue design 
routines, as most long-life designs just intend to maintain the stress range at critical 
points below their fatigue limits, guaranteeing that  < SR/F, where F is a suitable 
safety factor. Nevertheless, most long-life designs work well, which means that they 
are somehow tolerant to undetectable or to functionally admissible short cracks. But 
the question “how much tolerant” cannot be answered by SN or N procedures alone. 
Such problem can be avoided by adding (6) and (7) to the “infinite” life design crite-
rion which, to tolerate a crack of size a in its simplest version, should be written as 
 

            
12

R RK a g(a w ) 1 a a ,         2
R R Ra 1 K S        (14) 

 
As fatigue limits SR include the influence of microstructural defects inherent to the 
material, (14) complements it considering the component tolerance to cracks. A sim-
ple case study can clarify how useful this concept can be, as discussed next. 
Due to an unusual manufacturing problem, a batch of an important component was 
sold with small surface cracks, causing some unexpected annoying failures. The task 
was to estimate how such cracks affect the stresses those steel components could 
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tolerate under uniaxial fatigue loads, knowing that their rectangular cross section has 
2mm by 3.4mm; their measured fatigue limit under R 1 is SL 246MPa; and their 
SU 990MPa. As SL > SU/2, it may include surface roughness effects which should 
not affect the cracks. But, in the absence of reliable information, the only safe option 
is to use the measured SL value to estimate SR and aR. Therefore, by Goodman 
 

               R L U U LS S S 1 R S 1 R S 1 R            (15) 

 
The mode I stress range  tolerable by this component when it has a uniaxial sur-
face crack of depth a can thus be expressed by 
 



 


   

 
        

   

R F
12

R3

K

aa a a 2w a[a 0.752 2.02 0.37(1 sin ) ] sec tan 1w a2w 2w 2w a

 (16) 

 
where w = 3.4mm was the component width, and its g(a/w) geometry factor was ob-
tained from Tada, Paris e Irwin.(11) Figures 3-5 plot the maximum tolerable stress 
ranges (for F  1) for several R-ratios. As the FCP threshold of this component was 
not available, it had to be estimated. The typical threshold range for steels is 6 < K0 
< 12MPam. It is usual to assume KR  K0 for R < 0 loads (except if the load histo-
ry contains severe underloads). Lower limit estimations for positive R are Kth(0 < R 
 0.17) 6MPam, and Kth(R > 0.17) 7(1 – 0.85R).(1) Using   1.12 and K0  
6MPam, the short crack characteristic value is estimated as a0 59m. Figure 3 
shows that if this component works under  286MPa and R 0.12, it tolerates 
cracks up to a  105m, and under  = 176MPa and R = 0.44, cracks up to a  
150m, e.g. Figure 4 uses semi-log coordinates to enhance this component small to-
lerance to short cracks. 
Therefore, this simple (but sensible) model indicates that this component is not too 
tolerant to 1D surface cracks. However, as this conclusion is based on estimated 
properties, it is worth to study its sensibility to the assumed values. Figure 5 shows 
the prediction range associated with the typical interval expected for the estimated 
properties, enhancing how important it is to measure them. Note that (14) assumes 
that the short crack is unidimensional and grows without changing its original plane. 
Note also that this model only describes the behavior of macroscopically short 
cracks, as it uses macroscopic material properties. Thus it can only be applied to 
short cracks  which are large in relation to the characteristic size of the intrinsic ma-
terial anisotropy (e.g. its grain size). Smaller cracks grow inside an anisotropic and 
usually inhomogeneous scale, thus their FCP is also affected by microstructural bar-
riers, such as second phase particles or grain boundaries. However, as grains cannot 
be mapped in most practical applications, such problems, in spite of their academic 
interest, are not really a major problem from the fatigue design point of view. 
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Figure 3: Effect of a surface crack of size a in the largest stress range R(a) tolerable by a strip of 
width w = 3.4mm loaded in mode I, for various R-ratios (it is assumed that it has K0 = 6MPam and  
= 6, thus a0 = 59 and a0.8 = 55m). 
 
However, this model has another limitation which may be more important for practical 
applications: it assumes that the short crack can be completely characterized by its 
depth a. But most short cracks are surface or corner cracks, which tend to grow by 
fatigue at least in two directions, maintaining their original plane when they are 
loaded under pure mode I conditions. In these cases, they can be modeled as bidi-
mensional (2D) cracks which grow both in depth and width. In reality, both long and 
short cracks (these meaning cracks not much larger than aR) only behave as 1D 
cracks after having cut all the component width to become a through crack, with a 
more or less straight front which propagates in an approximately uniform way. Thus, 
equation (16) must be adapted to consider this fact.  
 

 
Figure 4: Similar to Figure 3, but with semi-log scale to enhance the short crack tolerance. Small 
cracks with a < 30m have practically no effect in its fatigue resistance.  
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Figure 5: Typical steel threshold 6 < K0 < 12MPam and  exponent 1.5 <  < 8 ranges influence in 
the largest mode I stress ranges 0 tolerated by the w � 3.4mm strip, as a function of the 1D superfi-
cial crack size a. 
 
Therefore, assuming that: (i) the cracks are loaded in pure mode I, under quasi-
constant  and R conditions, with no major overloads; (ii) material properties meas-
ured (or estimated) testing 1D specimens may be used to simulate the FCP behavior 
of 2D cracks; and (iii) 2D surface or corner cracks can be well modeled as having an 
approximately elliptical front, thus their SIF can be described by the classical New-
man-Raju equations.(13) In this case, it can be expected that the component tolerance 
to cracks be given by: 
 

  
  





           
       

12
R a R

12
R c R

K a (a,c,w,t) 1 a a

K c (a,c,w,t) 1 a c
       (17) 

 
For semi-elliptical surface cracks in a plate of thickness t, the SIF in the depth a and 
width c directions, KI,a = (a)a and KI,c = (c)c, are given by: 
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        

          

      
                 

 

I,a a

I,c c
2 4

2 424
2 4

2 4.

K a a F M Q

K a c F (M Q) a c G

F(c w ,a t) sec[( c 2w) a t] 1 0.025[(c w) a t] 0.06[(c w) a t]

a 0.89 a 1 a a1.13 0.09 0.54 0.5 14(1 ) , a cc c0.2 a c 0.65 a ct tM

c a 0.04(c a) (c a)










   
     
       
    
 

5 2 2

1.65

1.65

2 c

2 c

(a t) 0.2 0.11(a t) , a c

1 1.464(a c) , a c
Q

1 1.464(c a) , a c

1.1 0.35(a t) , a
G

1.1 0.35(a t) (c a), a

    (18) 

 
For quarter-elliptical corner cracks, the a and c geometry functions are: 
 

     
 

 

                              
                     






 

3

a
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2

1.65

c

c a c a c a 2w t c asec 0.752 2.02 0.37 1 sin tan
2w t w t 2w t c a 2w t

a 1.06 a a a a1.08 0.03 0.44 0.5 0.25 14.8 1
c 0.3 a c t c c t
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t

1 1.464 a c
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
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
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2
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c a c a c a 2w t c a0.752 2.02 0.37 1 sin tan
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a 1.06 a a a a1.08 0.03 0.44 0.5 0.25 14.8 1
c 0.3 a c t c c t
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t
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










  (19) 

 
These complicated SIF functions enhance the operational advantage of treating the 
FCP threshold as a function of the crack size, Kth(a), as claimed above. For struc-
tural calculations and mechanical design purposes, it is indeed relatively simple to 
use either equation (16) or (17) to evaluate the influence of surface cracks on the 
component fatigue strength. Moreover, it is not too difficult to adapt the 2D equations 
to include notch effects. 
 
5 CONCLUSIONS 
 
A generalized El Haddad-Topper-Smith’s parameter was used to model the threshold 
stress intensity range for short cracks dependence on the crack size, as well as the 
behavior of non-propagating fatigue cracks. This dependence was used to estimate 
the notch sensitivity factor q of semi-elliptical notches, from studying the propagation 
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behavior of short non-propagating cracks that may initiate from their tips. The pre-
dicted notch sensitivities reproduced well the classical Peterson’s q estimates for cir-
cular holes or approximately semi-circular notches, but it was found that the notch 
sensitivity of elongated slits has a very strong dependence on the notch aspect ratio, 
defined by the ratio c/b of the semi-elliptical notch that approximates the slit shape 
having the same tip radius. These predictions were confirmed by experimental mea-
surements of the re-initiation life of long fatigue cracks repaired by introducing a stop-
hole at their tips, using their calculated Kf and appropriate N procedures. Based on 
this promising performance, a criterion to evaluate the influence of small or large sur-
face cracks in the fatigue resistance was proposed. 
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