

Aline Lima da Silva² Nestor Cezar Heck³

Abstract

The aim of this research is to determine the optimized conditions for H₂ production by biogas/methane reforming technologies for fuel cells use. The effect of controllable operating parameters on H₂ production is evaluated through thermodynamic equilibrium calculations using the Gibbs energy minimization approach. The heat needed for each reforming process is also analyzed. As one can see from the results, high selectivity towards H₂ formation can be achieved under thermo-neutral operating conditions. A new reforming process involving the in situ CO₂ capture – known as Sorption Enhanced Reforming (SER) – is also studied. It is found that high purity H₂ (>90mol%, on dry basis) can be obtained in a single step process, with no need of water-gas shift reactors, which simplifies enormously the hydrogen plant. Thermodynamic modeling of SER process using CaO, Li₂ZrO₃ and Li₄SiO₄ is carried out, and the best material to be used as sorbent is indicated. Theoretical results are validated against experimental values from literature. In this way, the relevance of computational thermodynamics to the development of new processes and materials for H₂ generation is shown.

Key words: Computational thermodynamics; Biogas; Hydrogen; Catalyst; Reforming.

¹ Technical contribution to 68th ABM International Congress, July, 30th to August 2nd, 2012, Belo Horizonte, MG, Brazil.

² Dr., Postdoctoral researcher, Núcleo de Termodinâmica Computacional para a Metalurgia (NTCm), PPGE3M, UFRGS, Porto Alegre, RS, Brasil; adasilva26@gmail.com.

³ Dr., Professor, Núcleo de Termodinâmica Computacional para a Metalurgia (NTCm), Depto. de Metalurgia, PPGE3M,UFRGS, Porto Alegre, RS, Brasil; heck@ufrgs.br.

ISSN 1516-392X

1 INTRODUCTION

Recently, much attention has been focused on methane/biogas reforming for the production of pure H₂ or synthesis gas – *syngas* – which is a mixture composed essentially of H₂ and CO. The usual temperature for Solid Oxide Fuel Cells (SOFCs) is over 800°C, at which ion-conducting ceramic electrolyte becomes a conductor of oxygen ion.⁽¹⁾ Due to their high operating temperatures and the ability to use CO as fuel, SOFCs can be run on *syngas* produced by biogas/methane reforming technologies. However, low temperature fuel cells such as PEMFC (Proton Exchange Membrane Fuel Cells) run on pure H₂, since CO poisons Pt catalyst. In this way, for PEMFC use, besides the reformer, the hydrogen plant must include water-gas shift (WGS) and preferential CO oxidation (COPROX) reactors.

Biogas is one of the most potential renewable sources for *syngas*/hydrogen production. Biogas refers to a gas produced by anaerobic digestion or fermentation of any biodegradable organic matter, including municipal solid waste, sewage sludge, agricultural wastes, animal dung and energy crops.⁽²⁾ The main components of biogas are methane and carbon dioxide. Biogas reforming is essentially CO₂ reforming of CH₄ (dry reforming of methane). However, the huge energy required and carbon deposition formation on catalyst surface at high temperatures are the main disadvantages of this process.⁽³⁾ In this way, other processes can be employed, such as combined CO₂ reforming and partial oxidation of methane (feedstock composed of CH₄+CO₂+O₂).⁽⁴⁾ Another possibility of *syngas* production is a new process known as methane tri-reforming (feedstock composed of CH₄+CO₂+H₂O+O₂).^(3,4) These latter technologies could lead to an auto-thermal operation, besides of high selectivity towards H₂ formation, while minimizing (or inhibiting) carbon deposition.

The present work is aimed at investigating, from a thermodynamic point of view, the following methane reforming technologies for *syngas* production:

- dry Reforming (DR);
- combined carbon dioxide reforming and partial oxidation (oxy-CO₂ reforming);
- tri-reforming (TR);

The effect of controllable operating parameters – inlet temperature and feedstock composition (CH_4/CO_2 molar ratio, concentration of O_2 and H_2O) – on the selectivity of H_2 and CO, CH_4 and CO_2 conversions and the heat needed for reforming process is analyzed, and theoretical results are compared with experimental values from literature.

In this research, a new reforming process involving the in situ CO_2 capture – known as Sorption Enhanced Reforming (SER) – is also studied. The possibility of producing high purity H₂ (>90mol%, on dry basis) in a single step process, with no need of water-gas shift reactors, is investigated. This is particularly interesting for H₂ use in PEMFCs. Thermodynamic modeling of SER process using CaO, Li₂ZrO₃ and Li₄SiO₄ is carried out, and the best material to be used as sorbent is indicated.

Thermodynamic equilibrium calculations using the Gibbs energy minimization approach was carried out using the commercial software FactSage 6.3. The selected databases were SGPS and FactPS, which include thermodynamic data for compounds only. The species considered for describing the ideal gas phase were: H_2 , H_2O , CO, CO_2 , CH_4 and O_2 . The solid phase graphite was considered to predict carbon deposition over the catalyst. For the SER analysis, the following solid phases were included:

- CaO, Ca(OH)₂ and CaCO₃ (CaO sorbent);
- Li₂ZrO₃, (Li₂O)(ZrO₂), Li₂CO₃, ZrO₂ (monoclinic, tetragonal and cubic phases were considered) (Li₂ZrO₃ sorbent);
- Li₄SiO₄, Li₂CO₃, Li₂SiO₃ (Li₄SiO₄ sorbent).

In this study, CH₄ conversion (XCH₄), CO₂ conversion (XCO₂), selectivity of H₂ and CO (SH₂ and SCO, respectively), H₂ and CO yields (YH₂ and YCO, respectively) were defined as follows:^(2,4)

$$XCH4 = \frac{F_{CH4,in} - F_{CH4,out}}{F_{CH4,in}} \times 100\%$$
(1)

$$XCO2 = \frac{F_{CO2,in} - F_{CO2,out}}{F_{CO2,in}} \times 100\%$$

$$\frac{F_{CO2,in}}{F_{H2}} \times 100\%$$
(2)

$$SH2 = \frac{F_{H2}}{2 \times (F_{CH4,in} - F_{CH4,out})} \times 100\%$$
(3)

$$SCO = \frac{CO}{(F_{CH4,in} - F_{CH4,out}) + (F_{CO2,in} - F_{CO2,out})} \times 100\%$$
(4)

$$YH2 = \frac{F_{H2,out}}{2F_{CH4,in} + F_{H2O,in}} \times 100\%$$
(5)

$$YCO = \frac{F_{CO,out}}{F_{CH4,in} + F_{CO2,in}} \times 100\%$$
(6)

Where *F* is the molar flow rate of gas flow.

3 RESULTS AND DISCUSSION

3.1 Dry Reforming

Fig.1 shows the effect of inlet CH_4/CO_2 ratio in clean model biogas (sulfur compounds are not included) on conversion (CH_4 and CO_2), selectivity (H_2 and CO), carbon deposition and energy demand for dry reforming. The theoretical results from the present work are validated against experimental values from Xu et al.⁽²⁾

68th abm international annual congress

Figure 1. Effect of inlet CH_4/CO_2 ratio on (a) CH_4 and CO_2 conversion (b) CO and H_2 selectivity (c) amount of solid carbon and (d) enthalpy of dry reforming reaction and concentration of H_2 and CO. The experimental (exp) results in (a) and (b) were obtained from Xu et al.⁽²⁾ and the theoretical (theor) ones were calculated in the present work. T=1073K.

As can be seen from Figures 1a and 1b, when CH_4/CO_2 ratio is in the range of 0.33-1, theoretical results for conversion and selectivity are very close to experimental ones. For higher values of CH_4/CO_2 , however, there is a relevant difference between simulated and experimental values, especially for the values of CH_4 conversion and CO selectivity. According to Xu et al.,⁽²⁾ a high CH_4 concentration in the reactants facilitates CH_4 cracking and carbon deposition, resulting in destabilization of the catalyst. In fact, thermodynamic analysis predicts an increasing amount of solid carbon as CH_4/CO_2 ratio also increases (Figure 1c). Figure 1d shows that al low CH_4/CO_2 ratios the enthalpy of the overall reaction (Δ Hr) approaches the value of enthalpy of methane dry reforming reaction (R1), while that at high CH_4/CO_2 ratios Δ Hr approaches the value of enthalpy of methane cracking reaction (R2), which is consistent with the fact that higher CH_4 concentrations in feedstock results in methane decomposition and, consequently, in greater amounts of solid carbon being deposited over the catalyst.

CH₄+ CO₂→2CO + 2H₂
$$\Delta H_{298K}^{0}$$
 =60 kcal mol CH₄⁻¹ (R1)
CH₄→2H₂+C(s) ΔH_{298K}^{0} =20 kcal mol CH₄⁻¹ (R2)

Thus, in dry reforming process, reformate becomes richer in H_2 as CH_4/CO_2 ratio in feedstock increases, that is, for biogas compositions richer in CH_4 . However, under these conditions, there is an increasing trend for carbon deposition. If the catalyst is deactivated during experiments, the H_2/CO ratio experimentally obtained is inferior to the predicted one, as shown in Table 1. It should be noted that, similarly to the

conversion of CH₄ and CO selectivity, experimental and theoretical results for H_2/CO ratio are in agreement for inlet CH₄/CO₂ ratios in the range of 0.33-1.

Inlet CH /CO	H ₂ /CO molar ratio		
	theoretical	experimental	
0.33	0.51	0.65	
0.67	0.80	0.86	
1	1.08	0.99	
1.5	1.61	1.07	
3	3.17	1.37	

Table 1. Experimental values for H_2/CO ratio in syngas obtained from ⁽²⁾ and theoretical ones

3.2 Combined CO₂ Reforming and Partial Oxidation

In the previous section, it was seen that dry reforming is a highly endothermic process besides of being very prone to carbon deposition for inlet CH_4/CO_2 ratios greater than 1. Since the typical biogas composition corresponds to inlet CH_4/CO_2 ratios >1,⁽⁵⁾ such drawbacks should be overcome. In this way, oxy-CO₂ reforming could be an alternative route for *syngas* generation from biogas.

Figure 2 shows the effect of O₂ addition on conversion (CH₄ and CO₂), selectivity (H₂ and CO), carbon deposition and energy demand. O₂ is added to a clean model biogas whose inlet CH₄/CO₂ ratio is 2:1. From Figure 2a, one can see that the experimental results reported by Sun et al.⁽⁴⁾ for CH₄ conversion and H₂/CO ratio approach the theoretical ones as molar ratio of O₂ increases (for O₂/CO₂ ratios≥0.6). This behavior could be related to the reduction of solid carbon deposition as molar ratio of O₂ increases, as depicted in Figure 2c, preventing catalyst poisoning. In fact, solid carbon is oxidized by O₂, producing CO and CO₂. Interestingly, theoretical and experimental values of CO₂ conversion are in agreement over the whole range of molar ratio of additional O₂. It should be noted that, for O₂/CO₂ ratios≥0.6, CO₂ conversion decreases. CH₄ could be oxidized to CO₂ and the product CO could also be oxidized to CO₂ when there is much more oxygen, and thus the apparent conversion of CO₂ is suppressed.⁽⁴⁾ As O₂ is added to the feedstock, the enthalpy of the overall reaction (Δ Hr) becomes more exothermic due to partial oxidation of methane (R3), as can be seen in Figure 2b.

CH₄+1/2O₂→CO + 2H₂ $\Delta H_{298K}^0 = -8.6 \text{ kcal mol}^{-1}$ (R3) At a molar ratio of O₂/CO₂ equal to 0.91, a thermo-neutral (TN) condition can be

reached, at which Δ Hr=0. Under this condition, no external heat is necessary, the process runs auto-thermally, and H₂/CO ratio in *syngas* is 1.3.

Figure 3 shows the effect of temperature on H₂ selectivity and energy demand in the oxy-CO₂ reforming. With increasing temperature, both H₂ selectivity and enthalpy of the overall reaction (Δ Hr) increase. From Figure 3a, one can see that experimental results obtained for gas hourly space velocities (GHSV) of 10000cm³g⁻¹h⁻¹ are closer to the theoretical ones. Figure 3b shows that at 1.137K auto-thermal operation can be theoretically achieved; this value is between the experimental values of 1.101K and 1.173K.

Figure 2. Effect of additional oxygen on (a) CH_4 and CO_2 conversions and H_2/CO ratio, (b) enthalpy of oxy-CO₂ reforming reaction and H_2 and CO concentrations, (c) amount of solid carbon. 1073K. $CH_4:CO_2:O_2=2:1:X$. Experimental results from ⁽⁴⁾.

Figure 3. Effect of temperature on (a) H₂ selectivity and (b) enthalpy of oxy-CO₂ reforming reaction. Reaction conditions: $O_2/CH_4=0.45$ and $CO_2/CH_4=0.14$. _______theoretical result, experimental results from ⁽⁶⁾ for a GHSV, in cm³g⁻¹h⁻¹, of \blacktriangle 10000 and \bigtriangleup 46000.

3.3 Tri-Reforming

In the case of tri-reforming process, steam and oxygen are fed into the system. The most important reactions, including (R1) and (R3), are the following:

CH₄ + H₂O →CO + 3H₂
$$\Delta H_{298K}^{\circ}$$
 =49.3 kcal mol⁻¹ (R4)
CO + H₂O → CO₂ + H₂ ΔH_{298K}° = -9.8 kcal mol⁻¹ (R5)

Figures 4a to 4c shows the effect of H_2O addition on conversion (CH_4 and CO_2), H_2/CO ratio, carbon deposition and energy demand. H_2O is added to a clean model biogas whose inlet CH₄/CO₂ ratio is 2:1. Figure 4a shows that CH₄ conversion increases and CO₂ decreases when steam is added to the feedstock. Steam favors reaction (R4) instead of reaction (R1). In fact, (R1) would be depressed by increasing inlet steam molar ratio. In addition, steam enhances the water-gas shift reaction (R5), resulting in an increasing H₂/CO molar ratio. The amount of solid carbon is greatly reduced (Figure 4c). The experimental results from Sun et al.⁽⁴⁾ are in reasonable agreement with theoretical ones for inlet molar ratio of additional steam in the range of 0-1. Note that for the experimental conditions adopted by Sun et al.,⁽⁴⁾ the enthalpy of the overall reaction was positive (endothermic), and external heat would be necessary. However, the tri-reforming process can be adjusted to result in autothermal or even exothermic, as shown in Table 2. For a same H_2/CO ratio, dry reforming would result in highly endothermic, with the undesirable formation of solid carbon. On the other hand, tri-reforming process is slightly exothermic, with no carbon deposition.

Figure 4. Effect of additional steam on (a) CH_4 and CO_2 conversions and H_2/CO ratio, (b) enthalpy of tri- reforming reaction and H_2 and CO concentrations, (c) amount of solid carbon. 1073K. $CH_4:CO_2:O_2: H_2O=2:1:0.6:Y$. Experimental results from Sun et al.⁽⁴⁾

$CH_4:CO_2 = 2:1$), at $I = 1.0/3K$									
	XCH_4	XCO ₂	SH ₂	SCO	H ₂ /CO	C(s)	ΔHr		
Route	(%)	(%)	(%)	(%)	Molar ratio	mol/mol of CH4	kcal/mol CH ₄		
DR	94.5	92.6	96.2	60.6	2.1	0.55	36.7		
TR	99.8	-8.1	100	100	2.1	-	-5.9		

Table 2. Equilibrium data for tri-reforming (CH₄:CO₂:O₂:H₂O=2:1:1:2.2) and dry reforming (CH₄:CO₂ = 2:1), at T=1.073K

3.4 Sorption Enhanced Reforming (SER)

SER provides a promising alternative for single-step production of hydrogen with high purity, which is desirable for PEMFCs application. The concept of SER is based on *Le Chatelier's* principle in which the reaction equilibrium will be shifted to favor hydrogen production upon in situ CO₂ removal. So, if CO₂ generated from reforming reaction is separated from the gas phase using a solid acceptor such as CaO, H₂ production can be enhanced towards completion. In this case, the reformer contains both the catalyst needed for the reforming process and the sorbent for the removal of carbon dioxide.⁽⁷⁾ The carbonation reactions for the different sorbents are shown as follows:

$$CaO(s)+CO_2 \rightarrow CaCO_3(s) \quad \Delta H^0_{298K} = -43 \text{ kcal mol}^{-1}$$
(R6)

$$Li_2ZrO_3 + CO_2 \rightarrow Li_2CO_3 + ZrO_2 \stackrel{\Delta H^0_{298K}}{=} -38.9 \text{ kcal mol}^{-1}$$
 (R7)

$$Li_4SiO_4 + CO_2 \rightarrow Li_2CO_3 + Li_2SiO_3 \ ^{\Delta H^0_{298K}} = -34 \text{ kcal mol}^{-1}$$
(R8)

As can be seen from Table 3, when CaO sorbent is employed, both concentration and yield of H₂ are greatly enhanced, achieving values as high as 93 mol% and 77%, respectively. It should be noted that these results are much greater than those obtained for the process without a sorbent (51.9 mol% and 52.3%, respectively). With respect to CO, its concentration in SER is lower than that in tri-reforming process (no sorbent) – the concentration is decreased from 15 to only 0.7 mol% in the case of CaO sorbent. This fact allows simplifying the hydrogen plant, eliminating unnecessary purification reactors. The enhanced water-gas shift reaction (R5) due to CO₂ adsorption results in a decrease of CO production, accompanied by an increase in H₂ concentration. In this way, Ni/CaO multifunctional catalysts could be used for methane/biogas conversion.

Calcium-based sorbents are typically employed in SER technology. However, it is reported that CaO sorbent loses more than half of their absorption capacity after several absorption/regeneration cycles. A suitable absorbent should combine relatively low regeneration temperatures and good multi-cycle performance. In this context, synthetic Li-based sorbents have been developed recently,⁽⁸⁾ which can withstand several absorption/regeneration cycles without important loss of CO₂ absorption capacity. According to thermodynamic results from Table 3, the order from higher to lower hydrogen concentration and yield is as follows: CaO>Li₂ZrO₃>Li₄SiO₄. In fact, CaO is able to form a greater amount of carbonate than the other sorbents. It should also be noted that in the presence of a sorbent the process becomes more exothermic, due to reactions (R6)-(R8).

8^m abm international annual congress

Sorbent	H ₂	СО	carbonate	YH_2	YCO	∆Hr		
	Mol%, dry	Mol%, dry	Mol per mol of CH ₄	(%)	(%)	kcal/mol CH ₄		
CaO	93.4	0.7	1.33	77.7	1.2	-75.1		
Li_2ZrO_3	71.5	8.2	0.8	57.3	13.5	-51.9		
Li_4SiO_4	54.3	14.4	0.13	52.7	28.9	-24.2		
Tri- reforming	51.9	15.2	-	52.3	31.6	-20.2		

Table 3. Equilibrium data for sorption enhanced reforming with different sorbents (CaO, Li_2ZrO_3 or Li_4SiO_4) and tri-reforming. Reaction conditions: 873K, $CH_4:CO_2:O_2:H_2O:$ sorbent=2:1:1:2.2:2.7

4 CONCLUSION

The present work was aimed at investigating, from a thermodynamic point of view, different reforming technologies for *syngas* production from biogas and methane. The following conclusions can be drawn from the present study:

- DR technology: Higher H₂ selectivity can be obtained with increasing inlet CH₄/CO₂ molar ratios. However, under these conditions, there is an increasing trend for carbon deposition. Besides, the overall process is highly endothermic;
- Oxy-CO₂ reforming: H₂/CO ratio and process exothermicity can be controlled by manipulating the temperature and the concentration of O₂ in feedstock;
- Tri-reforming: By manipulating both O₂ and H₂O it is possible to achieve an auto-thermal/exothermic process with high H₂ selectivity, without carbon deposition;
- SER: High purity H₂ can be produced at lower temperatures by using CaO sorbent along with the catalyst in the reformer. The order from higher to lower hydrogen concentration and yield is as follows: CaO>Li₂ZrO₃>Li₄SiO₄.

Acknowledgments

The authors would like to thank FAPERGS (Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul) and CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) for their financial support (Postdoctoral fellowship – Edital 09/2012 - DOCFIX).

REFERENCES

- 1 Omosun A, Bauen A, Brandon N, Adjiman C, Hart D. Modelling system efficiencies and costs of two biomass fuelled SOFC systems. J Power Sources 2004;131: 96–106.
- 2 Xu J, Zhou W, Li Z, Wang J, Ma J. Biogas reforming for hydrogen prodution over a Ni-Co bimetallic catalyst: Effect of operating conditions. Int J Hydrogen Energy 2010; 35: 13013-13020.
- 3 Izquierdo U, Barrio VL, Requies J, Cambra JF, Güemez MB, Arias PL. Tri-reforming: A new biogas process for synthesis gas and hydrogen production. Int J Hydrogen Energy 2012, In Press.
- 4 Sun D, Li X, Ji S, Cao L. Effect of O2 and H2O on the tri-reforming of the simulated biogas to syngas over Ni-based SBA-15 catalysts. J Natur Gas Chem 2010; 19: 369-374.

- 5 Rasi S, Veijanen A, Rintala J. Trace compounds of biogas from different biogas production plants. Energy 2007; 32:1375-1380.
- 6 Choudhary VR, Mondal KC. CO₂ reforming of methane combined with steam reforming or partial oxidation of methane to syngas over NdCoO₃ perovskite-type mixed metal-oxide catalyst. Applied Energy 2006; 83:1024-1032.
- 7 Lima da Silva A, Müller IL. Hydrogen production by sorption enhanced steam reforming of oxygenated hydrocarbons (ethanol, glycerol, n-butanol and methanol): Thermodynamic modeling. Int J Hydrogen Energy 2011; 36: 2057-2075.
- 8 Kato M, Yoshikawa S, Nakawaga K. Carbon dioxide absorption by lithium orthosilicate in a wide range of temperature and carbon dioxide concentrations. J Mater Sci Lett 2002;21:485-487.