# IMPLANTAÇÃO DO NOVO LAMINADOR DA BELGO PIRACICABA COM METODOLOGIA SEIS SIGMA

# INOVAÇÃO NA IMPLANTAÇÃO DE LAMINADORES

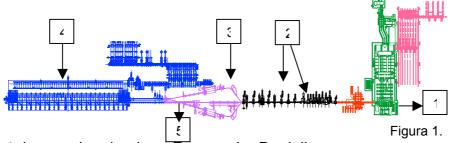
Fernando A.C. Vieira – Eng. De Processo - 2

Luis Augusto Penteado – Chefe Depart. Eng. Processo - 3

Paulo Roberto Cardozo – Gerente de Laminação - 4

Richard C.Gil – Analista de Processo de Produção Sênior – 5

#### Resumo:


Este trabalho tem como objetivo apresentar à comunidade siderúrgica da área de laminação de longos, a implantação do novo laminador de vergalhões para construção civil da Belgo Piracicaba, onde serão apresentados detalhes da nova instalação, bem como uma nova metodologia para implantação do empreendimento, visando reduzir os tempos de start-up e cold comissioning. É desenvolvida uma abordagem dos diversos pontos que geram o investimento, desde sua montagem até os testes de partida, com temas ligados aos novos requisitos que o alto grau de modernidade tecnológica e complexidade impõe as equipes e aplicação de novas técnicas para gerenciamento de todo o empreendimento, buscando a conciliação de todos estes fatores.

Palavra chave: LAMINADOR, SEIS SIGMA, LONGOS

# INTRODUÇÃO:

Ao longo das décadas o perfil dos investidores e fabricantes de laminadores vem se modificando. De um lado a necessidade de atender a acionistas na ampliação de seus negócios com investimentos rentáveis (redução de tempo entre compra e start-up, pay back, etc.) e de outro como se adaptar as novas tecnologias em evolução dos laminadores de longos, e partir a fábrica em tempo recorde com boa adaptabilidade dos operadores e resultados positivos na área de gestão como energia, performance, paradas. Sendo esta modernização de alta complexidade, aplicou-se o conceito de "GERENCIAMENTO DA INOVAÇÃO", abrangendo de forma estruturada uma metodologia para montagem, testes a frio e testes a quente destes novos equipamentos.

O Laminador da Belgo Piracicaba tem uma configuração HSD (High Speed Delivery) de última geração, com elevado número de centrais de lubrificação e hidráulica. Esta condição favorece o processamento de material (barras de vergalhão soldadas para construção civil) em altas velocidades de até 35 m/s, utilizando leitos de resfriamento com sistema twin channel, atingindo elevadas produções com baixo consumo de energia.



Lay-out do novo Laminador – Fornecedor Danieli:

- 1. Forno: 90T/h (Walking Beam) Danieli Combustion
- 2. Gaiolas: Housingless e Cantilever Danieli
- 3. Blocos: BGV Danieli
- 4. Leito de Resfriamento com Twin channel
- 5. QTB: Quenching treatment bar
- Danieli Automation Architeture Siemens S7
- Capacidade: 500.000 T/ano
- Produtos: Vergalhões em barras de 6 a 32 mm

Para se obter toda esta performance são necessárias novas tecnologias com complexos sistemas mecânicos, hidráulicos e eletrônicos, este diferencial é um fator complicador para montagens e partidas. Para tanto surge uma inovação com desenvolvimento de metodologia para verificação de todas as etapas do processo desde a concepção, montagem, testes a frio e testes a quente.

Na abordagem dos processos críticos é fundamental conhecer a evolução histórica dos processos em laminadores de longos, pois o alto grau de automação e complexidade, que estas instalações possuem, impõem na análise uma necessidade de conhecimento operacional que leve a correta priorização de trabalhos a serem desenvolvidos na metodologia Seis Sigmas. A correta escolha da parte crítica do processo é fundamental para um plano de ação pré-partida, que pode significar ganhos de até 6 meses no start-up do Laminador.

Abaixo o quadro descreve o diferencial entre a tecnologia moderna e a do passado, que levam à necessidade de adequar o Gerenciamento deste novo

empreendimento aos novos requisitos de modernidade, abaixo o quadro descreve este diferencial.

**Quadro Comparativo** 

|                                                           | Quadio Comparativo                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| EVOLUÇÃO HISTÓRICA DOS PROCESSOS EM LAMINADORES DE LONGOS |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| Processo<br>Fornos<br>Laminador                           | Década 70-80  Combustão controlada pelo operador  Trem aberto                                                                                                                                                                                 | Novo Século     Modelos matemáticos para aquecimento     Laminadores contínuos com                                                                                                                                                                                             |  |  |  |  |  |
|                                                           | <ul> <li>Tesouras contínuas com gaiolas convencionais</li> </ul>                                                                                                                                                                              | gaiolas cantilever e<br>housingless                                                                                                                                                                                                                                            |  |  |  |  |  |
| Área de<br>acabamento                                     | <ul> <li>Leitos com calha de<br/>frenagem de até 15m/s</li> </ul>                                                                                                                                                                             | <ul> <li>Leitos maiores com<br/>velocidades de até 40m/s<br/>(sistema HSD)</li> </ul>                                                                                                                                                                                          |  |  |  |  |  |
| Automação                                                 | <ul> <li>Analógica com reles<br/>componentes com baixa<br/>confiabilidade</li> <li>Sistemas analógicos com<br/>componentes eletro-<br/>eletrônicos com índice de<br/>defeitos consideráveis e<br/>baixa velocidade de<br/>pesquisa</li> </ul> | <ul> <li>Sistemas eletrônicos com<br/>PLC's e redes de alta<br/>velocidade e alta<br/>complexidade e alta<br/>velocidade.</li> <li>Aplicação de modelos<br/>matemáticos e supervisórios</li> <li>Maior velocidade de<br/>diagnóstico (softwares e<br/>computadores)</li> </ul> |  |  |  |  |  |
| Sistemas de<br>utilidade                                  | Componentes complexos,<br>sem suporte eletrônico de<br>instrumentação nos<br>dispositivos mecânicos de<br>acionamento                                                                                                                         | <ul> <li>Instrumentação moderna<br/>digitalizada com novos<br/>acionamentos mecânicos e<br/>utilização de supervisórios</li> </ul>                                                                                                                                             |  |  |  |  |  |

Tabela 1.

## METODOLOGIA:

Visando conciliar todos os novos parâmetros de uma laminação moderna e atualizada tecnologicamente aos objetivos de acionistas, uma nova metodologia é aplicada voltada para a "inovação de processos" com a utilização das ferramentas do Seis Sigma.

A partir de novos conceitos de análise, as etapas são descritas na sequência a seguir:

## Análise de Stakeholders:

Definição com a alta administração dos pontos críticos que circundam o empreendimento, tais como: acionistas, comunidade, governo, funcionários, etc. Nesta fase são projetadas as macro ações a serem implantadas durante a montagem.



## • Análise dos processos críticos:

Definição dos processos de maior impacto aos interesses dos stakeholders é feita através de uma matriz onde se cruza o que os stakeholders demandam do investimento e a influência que cada processo tem neste resultado. Nesta fase a estratificação das importâncias segue uma pontuação que gera uma priorização definida, conforme pontuação abaixo:

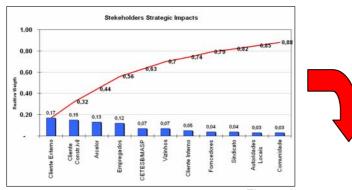



Figura 3

| STAKEHOLDER  | FASE     | NECESSIDADE                                                            | IMPORTÂNCIA DA<br>NECESSIDADE |
|--------------|----------|------------------------------------------------------------------------|-------------------------------|
|              | MONTAGEM | Relação harmônica entre as atividades da usina e a vizinhança          | 3,0                           |
|              |          | Não congestionamento de veículos                                       | 5,0                           |
| VIZINHANCA   |          | Relação harmônica entre as atividades da usina e a vizinhança          | 3,0                           |
| MIZINITATNÇA |          | Manutenção da qualidade de vida                                        | 4,0                           |
|              |          | Relação harmônica entre as atividades da usina e a vizinhança OPERAÇÃO |                               |
|              | UPERAÇAU | Não congestionamento de veículos                                       | 4,0                           |

Figura 4

| ITEM | PROCESS UNIT                                              | ABSOLUTE<br>INFLUENCE | RELATIVE<br>INFLUENCE | ACCUMULATED<br>RELATIVE<br>INFLUENCE | CLASSIFICATION | PROCESS              |
|------|-----------------------------------------------------------|-----------------------|-----------------------|--------------------------------------|----------------|----------------------|
| - 1  | Environment                                               | 214,06                | 4,74                  | 4,74                                 | 1,0            | ENGINEERING          |
| 2    | Cold cutting                                              | 170,50                | 3,77                  | 8,51                                 | 2,0            | ROLLING MILL         |
| 3    | Electric Arc Furnace                                      | 168,99                | 3,74                  | 12,25                                | 3,0            | STEEL MILL           |
| 4    | Utilities                                                 | 152,30                | 3,37                  | 15,62                                | 4,0            | ENGINEERING          |
|      | Training and development                                  | 143,41                | 3,17                  | 18,79                                | 5,0            | HUMAN RESOURCES      |
| 6    | Project and planning Engineering                          | 140,86                | 3,12                  | 21,91                                | 6,0            | ENGINEERING          |
| 7    | Ladle Furnace                                             | 134,84                | 2,98                  | 24,89                                | 7,0            | STEEL MILL           |
| 8    | Safety                                                    | 125,41                | 2,77                  | 27,67                                | 8,0            | HUMAN RESOURCES      |
| 9    | Maintenance Planning                                      | 120,62                | 2,67                  | 30,34                                | 9,0            | MAINTENANCE          |
| 10   | Metallic load preparation                                 | 118,48                | 2,62                  | 32,96                                | 10,0           | STEEL MILL           |
| 11   | Alloy preparation                                         | 117,20                | 2,59                  | 35,55                                | 11,0           | STEEL MILL           |
| 12   | Raw material and parts buying                             | 109,82                | 2,43                  | 37,98                                | 12,0           | SUPPLYING DEPARTMENT |
| 13   | Equipment assembly (Mechanical,<br>piping and electrical) | 105,96                | 2,34                  | 40,32                                | 13,0           | ASSEMBLING           |
| 14   | Communication                                             | 102,66                | 2,27                  | 42,60                                | 14,0           | HUMAN RESOURCES      |
| 15   | Continuous casting machine                                | 100,69                | 2,23                  | 44,82                                | 15,0           | STEEL MILL           |
| 16   | Stock liberation                                          | 97,40                 | 2,16                  | 46,98                                | 16,0           | ROLLING MILL         |
| 47   | C-1                                                       | 02.00                 | 0.07                  | 40.05                                | 47.0           | DOLLING MILL         |

Figura 5

#### Criação de Grupos de Gestão:

Após a priorização dos processos críticos, são definidos e organizados grupos de pessoas que envolvem as diversas áreas da empresa, onde o fluxo de análise é seguido para cada processo crítico escolhido.

## Detalhes de uma Análise de Processo:

É apresentado para um processo crítico, como o trem médio do laminador por exemplo, as etapas de análise, tais como: definição de IGOES (entrada, saídas, regras e habilitadores), elaboração da matriz de SWOT (forças, fraquezas, ameaças e oportunidades) daquele processo; aplicação do método de Altschuller onde se elabora, através de uma matriz guia, um plano de ação que garante o

cumprimento das funções do processo e finalmente o redesenho do processo, quando houver necessidade.

A metodologia apontou, para este laminador de longos, os seguintes processos críticos.

Aquecimento: A criticidade deste processo caracterizou-se pelo impacto que o aquecimento impõe num laminador que produzirá diversos tipos diferentes de aço para atender ao mercado mundial da construção civil. Este processo também tem uma solução inovadora, onde há uma conexão direta do lingotamento contínuo e aciaria. Nesta etapa, para alcançar a velocidade de decisões que um processo de 6 veios a 150 ton/h e um forno walking beam e um forno pusher (1 lingotamento, 2 laminadores) demandam para a otimização do enfornamento a quente, é aplicada a solução de um aerial transfer onde não só variáveis de processo, bem como alto nível de automação necessitam de pontos de treinamento e verificações mais apuradas, aliado a simulações e modelos matemáticos de controle de combustão apropriados.

| Processo    | Razão                                                                                                                                                                                             | Resultado Esperado                                                                                                 |  |  |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--|--|
| Aquecimento | <ul> <li>Alto índice de complexidade na gestão de tarugos quentes e frios</li> <li>Conexão direta com o lingotamento contínuo</li> <li>Necessidade de manutenção do ritmo de laminação</li> </ul> | <ul> <li>Baixo consumo de<br/>combustível</li> <li>Aumento de<br/>produção pela taxa<br/>de aquecimento</li> </ul> |  |  |

Tabela 2

**Trem médio de laminação:** Neste processo, a criticidade se apresenta por ser uma etapa da cadeia produtiva onde ocorre um maior número de câmbios de gaiola ou canais, por historicamente ser muito vulnerável a sucatas de processo pela aplicação do processo slit e por ali se garantir o peso linear do produto. No projeto do laminador, a tecnologia Housingless horizontal/vertical com guia slitadora motorizada, foi definida por possuir um alto grau de automação, e ao mesmo tempo, simplicidade do processo.

| Processo   | Razão                                                                                                                                           | Resultado Esperado                                                                           |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Trem médio | <ul> <li>Complexidade de<br/>câmbios e setup<br/>eletrônico</li> <li>Automação complexa e<br/>necessidade de rotinas<br/>de controle</li> </ul> | <ul> <li>Baixo consumo de<br/>energia</li> <li>Aumento do<br/>rendimento metálico</li> </ul> |

Tabela 3

**Corte a frio – Embalagem:** No atendimento do requisito embalagem ao cliente de construção civil, conciliar o elevado nível de automação, complexidade de mecanismos de manipulação e contagem de barras e enfeixamento mostrou-se um processo bastante crítico. O diferencial desta área é a grande quantidade de

componentes aliado ao elevado número de ciclos por hora, necessitando de garantia de performance contínua e alto grau de confiabilidade aos requisitos do cliente.

Aspectos de segurança operacional devem ser também abordados de forma importante, pois o elevado nível de automação necessita de capacitação de operadores nas intervenções nesta área.

| Processo | Razão                                                                                                                             | Resultado Esperado                                                                                                                 |
|----------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
|          | <ul> <li>Ciclos / hora muito<br/>elevados</li> <li>Complexidade de<br/>mecanismos</li> <li>Requisitos de<br/>embalagem</li> </ul> | <ul> <li>Índice de interrupção<br/>pequeno</li> <li>Garantia de<br/>requisitos dos<br/>clientes da<br/>construção civil</li> </ul> |

Tabela 4

Planejamento da manutenção: Em função do elevado número de equipamentos complexos, onde a experiência de manutenção atual em equipamentos já conhecidos, não atende a esta nova tecnologia, foi necessária uma metodologia de definição para este planejamento de manutenção baseado na definição e estruturação da árvore de equipamentos, análise dos manuais existentes dos mesmos e também visitas a estes equipamentos em funcionamentos em outras usinas.

Desta forma foi possível usar a metodologia de FMEA, onde foi definido todo o plano de inspeção e de troca programada, inclusive o plano de preditiva (análise de vibração, termografia e outros) e de comissionamento do laminador.

| Processo   | Razão                                                                                                                                                                                               | Resultado Esperado                                                                                                |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Manutenção | <ul> <li>Elevado número de<br/>equipamentos complexos<br/>com reduzido contingente<br/>de manutenção</li> <li>Necessidade de<br/>implementação de<br/>diversos controles de<br/>inspeção</li> </ul> | <ul> <li>Alta velocidade</li> <li>Custo de<br/>manutenção estável</li> <li>Função dos<br/>equipamentos</li> </ul> |

Tabela 5

## Testes de partida:

| C    | BELGO<br>Grupo Arcelor                       | COMIS                                                                        | SIONAMEN             | lΤ  | O À | À FRIO - ÁREA FORNO                                      |
|------|----------------------------------------------|------------------------------------------------------------------------------|----------------------|-----|-----|----------------------------------------------------------|
|      |                                              |                                                                              |                      |     | EC  | QUIPAMENTO: Zona 2                                       |
| ITEM | O QUE FAZER                                  | COMO                                                                         | QUEM                 | N   | Α   | OBS:                                                     |
|      | 1                                            | TESTES ELÉTRICO                                                              | S (sem inte          | rfe | rêr | ncia)                                                    |
| 1    | Painel 30BB.P051                             |                                                                              |                      |     |     |                                                          |
| 1,1  | Checar Conexões em<br>Geral do Painel        | Componentes Presentes,<br>Conectados e bem<br>Identificados?                 | DANIELI/<br>Elétrica |     |     | Checar, antes de ligar, se o Painel<br>não está em Curto |
| 1,2  | Checar Reaperto dos<br>Componentes           | Checar Reaperto dos<br>Componentes por<br>amostragem                         | DANIELI/<br>Elétrica |     |     | Certificar-se que o Painel está<br>DESENERGIZADO         |
| 1,3  | Energizar                                    | Energizar o Painel e fazer<br>Medições e Faseamento<br>dos Pontos Principais | DANIELI/<br>Elétrica |     |     |                                                          |
| 1,4  | Simular Bloqueios e<br>Emergências do Painel | Pressionar Bloqueios e<br>Emergências e o seu<br>respectivo funcionamento    | DANIELI/<br>Elétrica |     |     |                                                          |

Após definições dos processos acima, os mesmos serão trabalhados pela metodologia de "Gerenciamento da Inovação", conforme apresentado a seguir.

1. Definição de Indicadores e metas: aonde se que chegar e em quanto tempo.



Figura 7

- 2. Análise do Processo "IGOES"
  - Inputs entrada (matéria prima, etc.).
  - Guides Regras e padrões
  - Enablers Habilitadores (recursos, máquinas, etc.)
  - Outputs resultados do processo

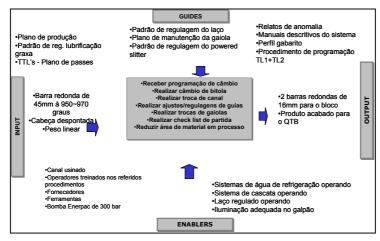



Figura 8

Fluxo do Processo: para a realização BARRA REDONDA produto? Alinhar powered slitter powere slitter NÃO Realizar Realizar Alinha Tem canais ajuste do trem ajuste das guia no NÃO Trocal Partir o

3. Fluxograma – mapeamento do processo

Figura 9

- 4. SWOT Forças e Fraquezas Aqui o grupo analisa através de brainstorming os itens que afetam o processo.
  - FORÇAS São características interna ao processo, que podem influenciar positivamente no seu desempenho. (Ex: Fabricante com elevado know-how)
  - OPORTUNIDADES São ganhos identificados em função das características dos equipamentos ou processo. (Ex: Enfornar a quente)
  - FRAQUEZAS São características internas ao processo, que podem influenciar negativamente no seu desempenho. (Ex: Ausência de snap shear)
  - AMEAÇAS São riscos identificados em função das características dos equipamentos ou processo. (Ex: Falta de gás, incêndio no subsolo)

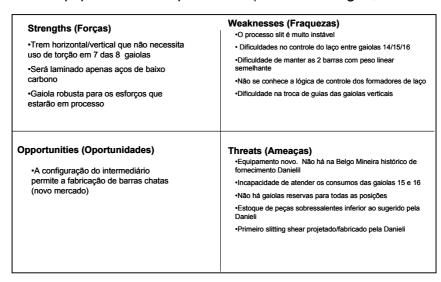



Figura 10

## 5. Identificação de Paradigmas:

São crenças arraigadas que não foram repensadas. Ex: Laminador como prioridade de programação. Estes paradigmas, uma vez mantidos, podem muitas vezes gerar distúrbios no start-up imprevisíveis.

## 6. Matriz de Altshuller:

Desenvolvida pelo cientista russo Genrich Altshuller, é uma matriz que indica os princípios mais promissores para solucionar as contradições de processos. Nas células da matriz são indicados os princípios mais promissores para solucionar o conflito.

| P                                                                                                    | LANE        | JAME           | NTO D           | A MA          | ITUNA      | ENÇÃO                                                                                                                                                                        |
|------------------------------------------------------------------------------------------------------|-------------|----------------|-----------------|---------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                      |             |                |                 |               |            | trabalho, com qualidade e menor custo.<br>Tempo / 27 - Confiabilidade                                                                                                        |
| Contra-Função                                                                                        | Resultados  | Carac          | terísticas a Me | elhorar       | Princípios | Idéias                                                                                                                                                                       |
| oonuu r unquo                                                                                        | Indesejados | 24             | 25              | 27            | Utilizados |                                                                                                                                                                              |
| Falta sistemática padronizada para agir diante do<br>feedback da Engenharia com relação aos serviços | 24          | ×              | 24, 26, 28, 32  | 10, 28, 23    | 10, 23, 26 | <ul> <li>Criar procedimento para direcionar as informações da Engenharia</li> <li>Criar sistematica de reuniões para tratar os assuntos relacionados a Engenharia</li> </ul> |
| executados                                                                                           | 27          | 10, 28         | 10, 30, 4       | ×             | 10, 23, 20 | 332                                                                                                                                                                          |
|                                                                                                      | 24          | ×              | 24, 26, 28, 32  | 10, 28, 23    | 10.23      | - Desenvolver software que trabalhe as informações do SAP, estratificando po<br>Equipamento                                                                                  |
| Difilculdade p/extratificação dos custos                                                             | 25          | 24, 26, 28, 32 | ×               | 10, 30, 4     |            | <ul> <li>Criar acompanhamento das requisições e reservas para que garanta que todas<br/>sejam direcionadas para ordens de manutenção</li> </ul>                              |
| p/equipamento                                                                                        | 27          | 10, 28         | 10, 30, 4       | ×             | 10, 23     |                                                                                                                                                                              |
|                                                                                                      | 28          | ×              | 24, 34, 28, 32  | 5, 11, 1, 23  |            |                                                                                                                                                                              |
|                                                                                                      | 25          | 24, 26, 28, 32 | x               | 10, 30, 4     | İ          | Criar sistematica para analise e definição das prioridades, validação das solicitações e feedback para os solicitantes                                                       |
| Falta de critério p/priorizar ações das solicitações;                                                | 27          | 10, 28         | 10, 30, 4       | ×             | 10, 23     | Ajustar o sistema de acompanhamento (Sopão), para verificar o atendimento das prioridades                                                                                    |
|                                                                                                      | 31          | 10, 21, 29     | 1, 22           | 24, 2, 40, 39 |            | - Criar sistematica de feedback para os solicitantes das atividades                                                                                                          |

Figura 11

## 7. Plano de Ação:

| EM | O QUE?                                                              | QUEM         | PORQUE               | сомо                                                          | QUANDO    |
|----|---------------------------------------------------------------------|--------------|----------------------|---------------------------------------------------------------|-----------|
| 1  | - Reduzir o tempo de vida útil do<br>canal de laminação para evitar |              |                      | Consensar novos limites de vida de canal                      | 30/4/2004 |
|    | propagação do desgaste;                                             |              |                      | Alterar procedimento operacional                              | 15/5/2004 |
|    |                                                                     |              |                      | Analisar performance atual de cilindros convencionais         | 30/3/2004 |
|    | - Desenvolver especificação de                                      |              |                      | Analisar performance atual de<br>cilindros encamisados do TL1 | 30/3/2004 |
| 2  | cilindros com maior resistência ao<br>desgaste (metal duro);        | Luís Augusto | Estabilizar processo | Desenvolver especificações junto aos fornecedores             | 15/4/2004 |
|    | desgaste (metal dulo),                                              |              |                      | Propor alterações necessárias                                 | 15/4/2004 |
|    |                                                                     |              |                      | Orçar alterações propostas                                    | 30/4/2004 |
|    |                                                                     |              |                      | Obter verbas (se necessário)                                  | 30/4/2004 |
|    |                                                                     |              |                      | Implantar alterações/sistemas                                 | 15/5/2004 |
|    |                                                                     |              |                      | Start-up e treinamento                                        | 15/5/2004 |
| 3  | Utilizar madeira para "imprimir"     perfil da barra em processo e  | Sámia        | Monitorar processo   | Desenvolver o gabarito                                        | 15/6/2004 |
| 3  | compará-la com perfil-gabarito;                                     | Sérgio       | Monitorar processo   | Desenvolver procedimento de<br>monitoramento dos passes       | 15/6/2004 |
|    |                                                                     |              |                      | Treinamento da equipe                                         | 30/6/2004 |
|    |                                                                     |              |                      | Desenvolver plano de testes com<br>os referidos sistemas      | 20/4/2004 |
| 4  | trabalho de refinamento do PID do co                                | Cristiano    | Otimizar a automação | Realizar testes                                               | 30/6/2004 |
|    |                                                                     |              | uutomayuo            | Apresentar relatório consolidado                              | 30/7/2004 |
|    |                                                                     |              |                      | Adequação de procedimento                                     | 30/7/2004 |

Figura 12

#### **RESULTADOS ESPERADOS:**

O resultado esperado desta metodologia é de vencer a curva de aprendizado em seis meses, atingindo a produção nominal e em até um ano, atingir a mesma estabilidade de operação de um laminador de operação consolidada de 5 anos.

| • | Produção            | 50.000 T/mês                     |
|---|---------------------|----------------------------------|
| • | Energia Elétrica    | Inferior a 90 Kwh/t              |
| • | Consumo Gás Natural | Inferior a 20 Nm <sup>3</sup> /t |
| • | Cobble Rate         | Inferior a 0,4%                  |
| • | Rendimento Metálico | Superior a 96%                   |

## **CONCLUSÃO FINAL:**

Espera-se com o novo método de Gerenciamento da Inovação atingir a performance nominal do equipamento em 1 ano de funcionamento. Para tal as equipes de trabalho gastaram em torno de 3000hH apenas no planejamento de como receber e estruturar operacionalmente o laminador, garantindo com isso o a previsibilidade das mais diversas situações operacionais. A previsibilidade possibilita as ações de contramedida para eliminá-las na raiz.

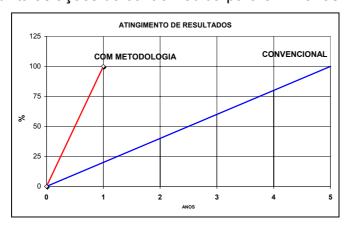



Figura 13

#### AGRADECIMENTOS:

- À Equipe da Laminação da Belgo Mineira Piracicaba
- Ao Sr. Carlos A. Oliveira Inovação da Tecnologia.

#### REFERÊNCIAS BIBLIOGRÁFICAS:

- Falconi, V.C Gerenciamento da Rotina do Trabalho do Dia a Dia. Editora DG, 8ª Edição, Minas Gerais 2002.
- Oliveira, C. A Inovação da Tecnologia, do produto e do processo Editora DG,
   2ª Edição, Minas Gerais 2003.

## AGRADECIMENTOS:

À Equipe da Laminação da Belgo Mineira Piracicaba Ao Sr. Carlos A. Oliveira – Inovação da Tecnologia.

# REFERÊNCIAS BIBLIOGRÁFICAS:

Falconi, V.C Gerenciamento da Rotina do Trabalho do Dia a Dia. Editora DG, 8ª Edição, Minas Gerais 2002.

Oliveira, C. A Inovação da Tecnologia, do produto e do processo Editora DG, 2ª Edição, Minas Gerais 2003.

- Helman, H; Andery, P. R. P. Análise de falhas (aplicação dos métodos de FMEA – FTA). Editora QFCO. 1995.
- Prahalad, C. K.; Hamel, G. A competência básica da Organização. Harward Business School. 1990.