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Abstract 
High performance control of an interactive process such as a sinter plant relies on 
ability to: honor safety and operational constraints; reduce the standard deviations of 
variables that need to be controlled (e.g. product quantity, quality); de-bottlenecking 
the process; and, maximize profitability or lower cost (e.g. energy savings, improve 
hot metal content). These objectives may be prioritized in this order, but can vary and 
are very difficult to achieve optimally through conventional control. Multivariable 
predictive control is a control technique that has been successfully applied 
throughout the hydrocarbon processing industries to provide high performance 
control since the early 1970’s. This technique is now starting to be used within the 
metals and mining industries with similar results. A multivariable predictive controller 
solution, along with its extensive inferential sensor and built-in optimizer, provides 
online closed loop control and optimization for many interactive metal and mining 
processes to lower the energy cost, increase throughput, and optimize product 
quality and yield.  This paper, through an example for sinter plant process control, 
discusses how the technology can applied to the high energy intensity process of Iron 
and steel making.  
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INTRODUCTION 
 
The advancement of low cost computing technology in the last two decades has 
allowed the proliferation of multivariable model-based control techniques in many 
process industries.  These applications have proven to provide huge benefits through 
the stabilization of the operation and optimization of the process.  Multivariable 
Predictive Control (MPC) is one such technique that allows the control of an entire 
process as a single entity rather than as a collection of isolated control loops. In this 
way the MPC Acting like a high performance managing a number of single-loop 
controllers consistently, the MPC simultaneously handles large numbers of process 
variables and understands future process dynamics thus ensuring that process 
constraints are not violated. 
Payback periods of MPC implementation from less than one month to a typical six 
months have been reported in many petrochemical process areas, lately the 
technology has been applied in various process areas of metals and mining industry 
and similar benefits1, ,2 3 were reported.  Most importantly, the successes of these 
MPC implementations are demonstrating high sustainability where, in many cases, 
service factors of over 95% are achieved.   
With higher input cost and tighten environmental requirements, integrated Iron and 
Steel producers are placing stronger focus in improving the process control of those 
production units where a high energy consumption is required.  In either the Oxygen 
making route or Direct Reduction route, the high energy intensity production units 
reside mostly in the ore agglomeration, reductant preparation, and iron making areas.  
These process areas (such as the pelletizer, sintering bed, coke oven, Blast Furnace 
hot stoves, Direct Reduction unit, air separation unit) require significant amounts of 
fuel. In addition these units generate significant amounts of waste heat or gases that 
can be re-captured and re-cycled.  Small percentage savings of the energy input or 
energy recovery of these process areas means millions of dollars per year to the 
plant.  Multivariable predictive control can provide the means to achieve these 
benefits. 
 
GENERAL CONCEPTS OF MULTIVARIABLE PREDICTIVE CONTROL 
 
Current Multivariable Predictive Control software has its roots in a set of model-based 
control algorithms proposed and implemented within the process industry in the late 
1970s4,5.  Subsequently, many important developments have flourished which have 
resulted in currently available robust multivariable controllers that can handle large 
numbers of input and output process variables, are able to operate with constraints, 
can deal with long dead-times, and incorporate optimization capabilities.  The 
technology advancements have provided tools with easy to use model identification 
for project implementation and future modification together with intuitive Man-
machine interfaces for operator acceptance. Improvements in robustness of the 
control such that any gradual change of the process, equipment, or feedstock can be 
auto-adapted6 have allowed the modern MPC implementations to run with very high 
service factors. 
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The kernel of a MPC is a dynamic interaction model (identified on-line through a set 
of software tools) of the process.  This computing model runs in parallel with the real 
plant and is subject to the same measurement inputs as the plant.  The model is 
used to compute a predicted output trajectory over a certain number of future time 
horizons at each sample point.  An optimization problem is then solved to minimize 
the deviation of this predicted output from a desired trajectory into the future.  The 
decision variables are computed control moves that will output to the plant, and in the 
meantime feedback to the model.  These steps are repeated to allow continuous 
control of the process.  Process variable constraints are included explicitly in the 
control calculation when the optimization step is set up such that the control moves 
are subject to the satisfaction of these constraints.   
The ultimate success of MPC (or any control) is highly dependant upon the 
availability of accurate online measurements.  Many critical process variables, such 
as ore characteristics and product quality, are not economically and/or timely being 
measured on-line as feed-forward or feed-back information for control. However 
current computing technology, in process control, resolves this critical issue through 
the use of  inferential modeling techniques such as multivariate statistics, neural 
networks, or empirical models. These techniques provide the soft-sensing of these 
missing process variables, and can easily be coupled to a MPC for closed loop 
control of the process. 
Figure 1 shows a block diagram of a modern Multivariable Predictive Controller 
(Profit Controller from Honeywell) with an inferential module to provide the soft 
sensing of certain process variables.   
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Figure 1. Block diagram of Honeywell’s Profit Controller with Profit SensorPro 

 
SINTERING PLANT CONTROL EXAMPLE 
 
Agglomerated ores suitable to be fed into a Blast Furnace need not only the right 
chemical composition to ensure quality hot metal production, but the feedstock also 
requires to be tightly controlled for its physical properties such as size, porosity, and 
compressible strength.  This provides for the gas permeability necessary inside 
today’s increasingly larger volume blast furnaces. The iron ore agglomeration 
process, either sintering or pelletizing, is one of the very key process steps in 
stabilizing the operation of the Blast Furnace. 
Sintering is primarily achieved by the forced combustion of a layer of iron ore mixed 
with a controlled percentage of fine coke, called coke breeze. This causes partial 
melting of the individual iron particles and fusing them together. Sintered Ore product 
is typically fed directly to the Blast Furnace via a conveyor belt. A typical sintering 
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process operation consists of feed mix preparation, drum mixing, ignition furnace, 
sinter travelling bed, crushing, screening, and cooling is illustrated in Figure 2.   
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Figure 2. Typical Sintering Process Flow Diagram 

 
Pre-mixed sintering materials coming out from the drum mixer is fed onto the 
travelling belt.  The travelling belt then transports the sinter mix as a bed to an 
ignition hood which ignites the coke breeze in the upper surface  
of the sinter bed.  Combustion lower down in the mix is maintained by  
air flowing through the bed with air suction from the wind-boxes.   
 
The objectives of this process are to achieve the conversion of fine ores into clinker-
like aggregate with a suitable size, and composition for blast furnace feed. Further 
this must be achieved as fast as possible using the least amount of energy whilst 
maintaining all process constraints (such as sinter exit temperature). This is a highly 
interactive process with a number of unique challenges: 

(1) Feed mix variations due to the varying ore bodies nature, and also quite often 
when switching of ores suppliers or mining locations;  

(2) Contrasting time delays of the sintering process with less than 1 minute in the 
ignition and flue gas cycle, and over 30 minutes for the solids traveling on the 
sintering bed;  

(3) Lacking of accurate online measurement to measure many feed and product 
variables such as hardness, basicity, feed moisture, and ore porosity.   

 
An accurate feedstock planning tool can predetermine the necessary blend recipe of 
the feedstock so that chemical properties of the end-product are met and optimal 
coke breeze percentage is calculated. However, high performance sintering 
production also requires a superb management of the sintering bed from material 
charging to discharging.  The sector gate and actuator of the feeding bunker needs to 
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be controlled to achieve a desirable profile of the sinter distribution onto the bed. The 
burners require firing at optimal air/fuel ratio to ignite the coke breeze, and the sinter 
bed grating speed should be controlled at its highest possible speed while ensuring 
complete combustion of the sinter on the bed before discharging. Traditionally, the 
feed preparation blending, the drum mixing, the feeding bunker, the ignition furnace 
burner, the sinter bed speed, and the windbox suction are controlled by isolated 
control loops.  But because all these variables interact it is very difficult to achieve 
optimal control using conventional control. 
Some of these control problems could be overcome through cascading into 
feedforward and/or feedback control schemes with appropriate decoupling. However 
variability of feed moisture, percentage of reject ores, iron fine compositions, coke 
breeze caloric value and compositions, ignition furnace fuel pressure and caloric 
value, flue gas suction pressure, ambient humidity will still present challenges for 
even the best operators to juggle between the interactive, and sometimes conflicting, 
control objectives. Multivariable predictive control can simultaneously control all these 
variables whilst maintaining operational constraints and optimize for throughput and 
energy.  
 
POSSIBLE MULTIVARIBLE PREDICTIVE CONTROL SOLUTION 
 
To discuss how MPC can solve the sinter control problem it is necessary to 
understand some of the terminology associated with MPC.  Process variables are 
classified into: 

(1) Controlled variables (CV's) – the variables that the MPC controller is designed 
to "control" (within a range or to a setpoint),  

(2) Manipulated Variables (MV's) – the values that can be moved by the MPC 
controller within a range to control the CV's,  

(3) Disturbance Variables (DV's) -  these variables impact the process but the 
controller is not allowed to move the value.    

In the sintering process example, depending on the process flow, instruments 
installed, and boundaries of controller, CV’s will be such as the windbox temperature 
of the sinter bed, the sinter bed depth, sinter product mechanical strength, MV’s will 
be such as the feeding bunker flow rate, traveling grate speed, suction fan speed, 
damper position, and DV’s will be such as coke breeze ratio, return fine percentage, 
ignition fuel pressure, and fuel caloric value.   
Figure 3 illustrates how these variables relate to the MPC, and typical setup of MPC 
cascading to the standalone single loop control for fall-back manual operation. 
 
 

1072



MPC
Technology

FC FC TC PC PC

Controlled Variables
(CV's)

Disturbance
Variables (DV's)

Manipulated
Variables (MV's)

Control Targets
(Setpoints/Ranges)

Optimization Parameters
(Prices, Costs, Directions, Targets)

 
Figure 3, MPC Variables and typical cascading set-up with single loop controllers 

 
IMPLEMENTATION METHODOLOGY 
 
Modern MPC technology provides many convenient tools for the user to define the 
controller, identify the model, validate the effectiveness, and commission for online 
closed loop control. A possible MPC project implementation for a sintering process 
will involve the following steps: 
 

1. Controller definition 
Although MPC nowadays can easily handle very large matrix of variables in a 
single controller, it is often a project decision to determine the choice of one 
large controller or splitting it into multiple smaller ones. A process 
consideration must be given to the ease of implementation, interactions 
between the process variables, impact when a model is out of services, and 
more importantly the intuitiveness for the operators. 
A preferable configuration for the sintering process is to adopt two 
multivariable controllers: (1) feed preparation blending control, and (2) 
sintering bed process from charging to discharging including the windbox 
suction and flue gas waste heat recovery.  Modern MPC technology, such as 
Honeywell’s ProfitOptimizer,  provides features where multiple MPC’s can be 
connected to each other and economic objectives can be globally observed. 
The matrix including CV’s, MV’s and DV’s of each controller will be defined in 
this stage.   

2. System Identification 
A process called step testing is necessary to find out the dynamic response of 
the inputs and outputs, and through the response the MPC model is identified.  
By moving one of the inputs and keeping the other inputs constant, the 
dynamic of the outputs can be observed through this step test process.   
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Figure 4 shows an example model matrix and dynamic responses of the inputs 
and outputs.  Software tools, such as the Honeywell Profit Design Studio, are 
available for the system identification and computation of the response 
equations with the best fitted parameters.   
In the cases where inferential technology (for unmeasured properties) is 
required these can be constructed from historical plant data using modern 
tools such as Honeywell’s ProfitSensor Pro. 
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Figure 4, Conceptual Input-Output Model: Results of System Identification of Sintering plant  

 
3. Controller commissioning 

The model derived through the model identification is then hosted on a 
computer connected to the control system.  The MPC is set up as a 
multivariable cascade controller connected to the control loops of the 
manipulated variables under an Auto/Manual selection.  Man-machine 
interfaces are provided to the operator and maintenance staff for the 
operation, troubleshooting, and maintenance of the controller. 
A common practice during this commissioning phase is to put the controller in 
a read only mode, i.e. the controller is connected online but not sending its 
setpoints to the single loop controllers.  Once the model is validated and the 
operation team is comfortable with this new way of controlling, the controller 
can be put into online closed loop operation. 
 

ESTIMATED BENEFITS 
 
Each sintering process has its own control issues and objectives.  Some are 
throughput limited, some do not have variable frequency drive on the suction fan, 
some have windboxes that could cause rim zone effect, some have limited 
instruments in measuring moisture content, and some have many types of ore with 
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different optimum set points for each type.  Because each circuit has different 
objectives, the MPC benefits will vary from site to site.   
To generalize, it is typical to realize a throughput increase of 1% or more by applying 
multivariable predictive control.  These throughputs can result from reducing the 
variations between operation teams, stabilizing sinter quality and hence lowering 
reject, pushing closer to the maximum constraint on throughput, avoiding downtime 
through stable controls, or a combination of all of these.  In additional, energy 
savings of 2 to 10% can be achieved through lowering ignition fuel burn and 
optimization of coke breeze and tightening control of windbox suction power and 
cooling. Because of the stability of control there will also be a lowering of greenhouse 
gas emissions. These benefits can provide millions of dollars worth of additional profit 
per year for a typical operation.   
 
CONCLUSIONS 
 
Advanced process control techniques such as multivariable predictive control can 
show improvements and pay for itself in a short period when compared to a simple 
PID or manual operation.  The iron and steel industry should look at the experience 
of other industries in evaluating the life cycle cost and the future potential of 
systematic expansion to plant-wide optimization offered by MPC techniques.  The 
latest MPC technologies allow easy or automatic identification of the model making 
implementation straightforward. The increased robustness of the controller coupled to 
its feedback trim ensures that the MPC controller will be  available with a high service 
factor even with feedstock changes and equipment condition degradation.   
MPC technology has been demonstrated to be applicable to metals and mining 
processing units with many successful applications.  Typically, providing benefits of 
over 1% improvement in the throughput of usable product. This may represent 
millions of dollars per year increase in revenue for a typical process unit.   
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