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Abstract 
In this paper, the effect of vibrations in elastohydrodynamical lubrication of spur gear 
pairs will be described. The relevance of inertial effects in the contacting bodies on 
film fluid lubrication will be clarified with comparisons to static formulations. A new 
model describing the dynamic behavior of two coupled transient EHL elliptical 
contacts will be presented and applied to characterize the dynamics of a spur gear 
pair. 
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1  INTRODUCTION 
 

Understanding the dynamic behavior of gear pairs is crucial in order to reduce 
vibration and noise, and this is especially true for spur gear pairs. For this reason, 

many approaches have been proposed in the past years to describe the dynamics of 
gear systems. In 1958, Harris(1) proposed a method to reduce vibrations in spur gear 
pair by means of profile reliefs. Harris assumed that the coupling is stiffer when two 
pairs of teeth are in contact, more deformable when only one couple is mating. In 
1990, Kahraman and Singh(2) described the dynamics of a spur gear pair using a       

1 dof lumped parameter model like that depicted in  
Figure 1 (a). The 1 dof model was validated by Kahraman and Blankenship,(3) who 

also proved the effectiveness of profile modifications in reducing gear vibrations. In 
the last years, many models for gear dynamics were proposed, taking into account 
misalignments, profile errors or the full transmission, but relatively a few efforts were 
done to characterize the damping coefficient cg(t). Figure 1 (b), shows the amplitude-
frequency diagrams for a case study (see Barbieri(4) for more details): varying the 
damping coefficient, the response of the system can be either fully linear or can 
present a non-linear softening behavior due to loss of contact in the mating teeth pair. 

To study the damping effect in the spur gear pair, it is necessary to consider the 
lubricant between the surfaces in contact. The lubrication regime for industrial gear 
systems is elastohydrodynamic, i.e. it is necessary to keep into account local 
deformation in the contacting surfaces due to lubricant pressure to obtain a proper 
estimation of oil pressure and minimum film thickness. Indeed, since the first results 
due to Grubin(5) in 1949, coupling between Reynolds equation and the elastic 
deformation integral was applied to gears, since the minimum film thickness obtained 
from EHL computation was high enough to explain the reduced wear rate measured 
on tooth flanks. In more recent times, the problem of transient EHL lubrication in gear 
pairs, i.e. taking into account the squeeze term of the Reynolds equation, has been 
faced by many authors. In 1997, Larsson(6) presented a solution for the lubricated line 
contact problem under a square-wave load, to simulate the varying number of teeth 
in contact. In 2004, Wang, Li and Yang(7) used a trapezoidal varying load and took 
into account thermal effects and non-Newtonian lubricants. 

All the literature found on this problem solve a static equilibrium equation, together 
with Reynolds equation and the elastic integral deformation, in order to find the rigid-
body approach, so they completely neglect inertial effects. The purpose of this paper 
is to show what happens to the film thickness and to the rigid body approach, if 
inertial effect are taken into account. It is to note that the rigid body approach is the 
Dynamic Transmission Error DTE of the gear pair, and is a direct indicator of the 
vibration level. 
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Figure 1: (a) Lumped parameter model for spur gear dynamics; (b) Amplitude-frequency diagram for 
different values of the non-dimensional damping coefficient (0.01 black, 0.05 red, 0.1 blue) 

 
2  METHODS 

 
The problem of transient EHL will be solved for the point contact, so that the effect 

of gear crowning can be considered. Transient Reynolds equation reads: 
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where um is the mean velocity of the mating profiles and varies linearly during tooth 
contact. 
Film thickness is computed as follows: 
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where Rx is the equivalent radius of curvature in the profile direction and Ry along the 
face width. Ry is constant during tooth meshing, while Rx is varying with quadratic 
law. Figure 2 explains the meaning of these parameters; note that equivalent radii are 
referred to a contact between a parabolic surface and a plane: the relationship 
among the true radii of curvature and the equivalent ones is the same as in standard 
Hertz’s theory. Roelands pressure-viscosity relationship and Dowson and Higginson 
density-pressure formula are used to compute the dynamic viscosity  and density . 
B will be assumed equal to 2.210-8. 
 

 
Figure 2: Contact ellipse and sketch of the equivalent tooth profile. 

(a) (b) 

ISSN 2179-3956

467



All dimensionless quantities will be defined with respect to the hertian point contact 
solution, as done in Nijenbanning, Venner e Moes(8) for the stationary case. Here, 
since many parameters change during meshing, a reference position for the gear 
system is to be chosen: the pitch point is the natural choice. P is made dimensionless 
dividing by the maximum hertian pressure ph at the pitch point, X and Y are divided 
by the minor half axis a* of the hertian contact ellipse, so the non-dimensionalization 
is as in the following: 
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where t* is to be defined so that the number of parameters is reduced to a minumum. 
The best choice is to obtain equal coefficients for the Couette and the Squeeze term 
inside the Reynolds equation: t  a / um. The resulting dimensionless equations are: 
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where ph* is a correction for the elliptical case and requires the numerical or 
approximated computation of elliptical integrals (see Barbieri(4)). Rx  is the ratio 
between the radius of curvature along the profile in a given position and the value at 
the pitch point; D  is the ratio between Rx

 and Ry  at the pitch point. This set of 

equations is to be completed by an equilibrium equation, if the external load is given 
and the rigid-body approach h0 is to be determined. If the external load is not given, 
the equation of motion is to be solved. In the case of gear application, when contact 
ratio is in the range 1-2, one or two EHL lubricated contact can exist at the same 
time. Figure 3 (a) shows the most general case: static load Tg1/Rb1=Tg2/Rb2 and 
dynamic load due to the rotary inertias of the wheels Ig1 and Ig2 are shared by EHL 
contact 1 and 2.  
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Figure 3: (a) Full model for EHL gear problem; (b) Parameters during contact: f(T) black, Rx
  red, Um 

blue. 
 
The equation of motion on the line of action, for the system in Figure 3 (a) is: 
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where P1 and P2 are the pressure distributions related to the two lubricated contacts, 
Tg1 is constant and mge is the equivalent mass (see Kaharaman(2) for details), given 
by the following formula: 
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With the proposed formulation, the EHL problem is to be solved alternately for one or 
two contacts during meshing: assuming that the load is equally shared by both 
contacts, it is possible to study a simplified problem for only one contact. Eq. (7) is 
the motion equation for only one contact: f(t) is a time varying parameter as in   
Figure 3 (b). The same figure shows value for the other parameters Rx

 and Um 
starting from entering contact (T=0) up to contact exit. 
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Eq. (7) can be made non-dimensional by introducing a dimensionless inertia 
parameter I: 
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where    a / b is the ellipticity ratio at the pitch point and w is the static load at 
the pitch point. It is to note that the aforementioned literature cases, which consider 
only one contact and the equilibrium equation, can be reproduced by letting I=0. The 
only difference is the kind of contact, which is a point contact in the present 

(a) (b) 
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approach, a line contact in literature. Numerical solution of the problem is obtained by 
means of the multilevel technique proposed by Lubrecht(9) for the stationary problem, 
which consists in a multigrid iterative solver for the Reynolds equation, coupled with a 
multilevel fast-integration algorithm for computing the discretized integral in (2). The 
equation of motion is solved iteratively, using an implicit Adam-Bashfort algorithm. 
In order to minimize the number of parameters and to obtain results that are easy to 
compare with literature, it is useful to introduce Moes’ parameters, which are defined 
in Moes and Bosma(10) for the circular stationary case. 
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Using Moes’ parameters, the non stationary problem is fully defined by non 
dimensional inertia I and the time varying parameters Rx

, Um and f (t). 
 
3 RESULTS 

 
A comparison among the static approach, i.e. I=0, and the two proposed dynamic 

models, single or double contact, is presented in this section for the case study 
summarized in                     Table 1.  

 
                    Table 1: Data for the case study 

 
 
Moes’ parameters defined in Moes and Bosna(9) allow to clarify the lubrication 

regime at which the gear pair operates (Figure 4): in the operating range, between 
1000 and 20000 pinion RPM, M is comprised between 1600 and 18000 and L is 
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between 14 and 30. These parameters correspond to the elastic-piezoviscous 
lubrication regime, that means the contact is highly loaded and highly hydrodynamic, 
thus both elasticity and piezo-viscosity cannot be neglected (here Roelands 
formulation is adopted). 
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Figure 4: Parameter dependence over pinion RPM and load level: green - nominal load Tg1; red – 
66% Tg1; blue – 33% Tg1. 

 
Figure 5 presents the results obtained from time integration of equation (8) when 

inertia is artificially set to zero, so that the results can be compared with literature. 
The contact is studied from the entering to the exit; of course it is necessary to define 
initial conditions for pressure and rigid approach h0: here stationary film fluid is 
assumed, thus neglecting the effect of film build-up. Small oscillations in central 
pressure and film thickness can be observed close to the abrupt load variation 
defined in Figure 3 (b); there is not much dependence on the rotating speed of the 
pinion, except for the film thickness: higher rotational speeds produce higher lift force 
and the film thickness increases. 

 

 
Figure 5: Central pressure Pc and minimum Hm (- -) and central Hc (–) film thickness in the static case: 
black - 2500 RPM, red – 7500 RPM, blue – 12500 RPM. 

 
Figure 6 shows the effect of introducing the equivalent inertia in the (8); as before, 

stationary film fluid is assumed as initial condition. It can be seen that the change in 
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f(t), now introduce an oscillation in the fluid pressure and in the film thickness, and 
that the period of this oscillation increases with pinion speed increase. Of course it is 
the relative period to be incremented, because the dynamic of the system is faster, 
so that for pinion rotational speed over 7500 RPM no oscillation can be observed, but 
the fluid cavitates over all the contact. Even though h0 obtained from time integration 
could be assumed as Dynamic Transmission Error, the main limitation of this 
approach is that the simulation cannot be studied after the exit contact, so it is 
necessary to switch back to the two contact problem stated in eq. (5).  

 

 
Figure 6: Central pressure Pc and minimum Hm (- -) and central Hc (–) film thickness in the dynamic, 
one contact case: black - 2500 RPM, red – 7500 RPM. 

 
For the two contact problem, initial conditions are set up at the pitch point, where 

only one pair of teeth is in contact: stationary condition is imposed for contact EHL1 
then contact EHL2 enters at the proper time, inheriting the actual rigid body approach 
h0 computed for EHL1. Later on, EHL1 exits and is then replaced by another 
occurrence of EHL1 so that time simulation can be continued. 

 
Figure 7: Central pressure Pc and central Hc film thickness in the dynamic, two contact case: 15000 
RPM. 

 
Figure 7 displays the results of time integration: black line is contact EHL1, red line 

is contact EHL2. The proposed approach allows to continue the integration after the 
exit of one contact, cavitation on the full contact occurs due the initial condition 
chosen. This analysis can also give reason of the hypothesis of equal load 
subdivision between the contacts: Figure 8 (a) shows the integrals of the two 
pressure distributions during time. Whenever two contacts are active, the load on 
each one is almost the same, so that the simplified one contact approach is only 
affected by the issue of finding proper initial conditions, since it is impossible to follow 
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the contact for a long time. Figure 8 (a) displays the rigid-body approach, which, in 
the proposed model, is a direct measure of the Dynamic Transmission Error. 

 
Figure 8: Integral of pressure; rigid-body approach h0 and its derivative v0, two contact case: 15000 
RPM. 
 
4  DISCUSSION AND CONCLUSION 
 
Different approaches to study the problem of EHL lubrication in spur gear pairs have 
been compared focusing on the dynamic effect. Results from dry dynamic models 
used in literature were taken into account as reference: since in industrial application, 
vibrations and eventually loss of contact occur, EHL models for gear pair cannot 
neglect the inertias of contacting bodies. The analysis shown without inertia presents 
only small oscillations both for pressure and film thickness and these oscillations are 
due to squeeze effect in the film fluid. The effect of gear vibrations is much more 
important, as can be seen solving Newton’s equation instead of the equilibrium 
equation. Nevertheless, this approach is not complete either, because it allows to 
study only one contact, from the enter to the exit, and the result is strongly dependent 
on the initial condition, which are unknown. To obtain proper results, both for studying 
the lubrication condition in gear pairs and to compute the damping effect due to the 
fluid, it is necessary to consider the coupling of two EHL contacts, sharing the same 
rigid-body approach. 
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