

INSTABILIDADE PLÁSTICA EM CILINDRO DE PAREDES FINAS SUJEITO À PRESSÃO INTERNA – ESTUDO DE CASO*

Anselmo Monteiro Ilkiu¹

Resumo

No presente trabalho será apresentado um modelo matemático para a análise da instabilidade plástica de um cilindro de parede fina sujeita a pressão interna, considerando o material com anisotropia normal \overline{R} no estado plano de tensões. As equações foram obtidas, com base nas teorias elásticas e plásticas, considerando o critério de escoamento de von Mises no estado plano de tensões em termos da anisotropia normal, e de acordo com os trabalhos realizados por Johnson & Mellor [1], Chakrabarty [2] e Al-Qureshi [3].

Palavras-chave: Instabilidade plástica; Critério de escoamento; Anisotropia.

PLASTIC INSTABILITY IN THIN-WALLED CYLINDER SHELL SUBMITTED TO THE ACTION OF INTERNAL PRESSURE

Abstract

This work will be presented a mathematical model for the analysis of plastic instability in a thin-walled cylinder shell submitted to the action of internal pressure, considering the material with normal anisotropy in the plane state of stress. The model was developed based in the elastic and plastic theories, considering the yielding criterion of von Mises in the plane stress, in terms of the normal anisotropy and according to the work done by Johnson & Mellor [1], Chakrabarty [2] and Al-Qureshi [3]. For the analysis of the results were considered, the geometric properties that define the cylindrical body and the material properties. Obtaining the geometric properties of the resulting cylindrical body the hoop stress and axial stress and the internal pressure in the plastic instability.

Keywords: Plastic instability; Criterion of yielding; Anisotropy.

¹ Engenheiro Mecânico, Doutor em Ciências dos Materiais, Professor Assistente Doutor, Departamento de Engenharia Civil, Universidade de Taubaté, Taubaté, SP - Brasil.

A perda de instabilidade plástica foi analisada principalmente por Swift e apresentada por Johnson e Mellor [1], Chakrabarty [2], Al-Qureshi [3], Hill [4], entre outros. Os referidos pesquisadores assumiram que a perda de instabilidade ocorre quando se atinge a carga máxima que o material suporta e o aumento da deformação é realizado sem a variação correspondente da carga, isto é, a carga se mantém constante. Reconheceram que existem pelo menos duas possibilidades diferentes de instabilidade plástica: estricção difusa e localizada; os resultados teóricos desses casos foram feitos por Hill [4] e Swift e posteriormente revistos por Keeler e Backofen, conforme apresentado por Al-Qureshi [3].

No presente trabalho, será analisado o comportamento da instabilidade plástica de um cilindro de paredes finas, sujeito à pressão interna *p*, considerando a anisotropia normal \overline{R} do material. A anisotropia normal \overline{R} está associada à resistência ao afinamento ou redução da espessura da chapa.

2 MATERIAIS E MÉTODOS

Considerando um elemento de casca cilíndrico em que r é o raio da superfície média e t é a espessura da parede do cilindro, sujeito a pressão interna p, conforme representado na Fig.1.

Figura 1 – Modelo proposto para análise; Elemento cilíndrico.

Desprezando o efeito da tensão de cisalhamento na região dos anéis de reforço, as tensões atuantes são obtidas pelas teorias elásticas em cascas cilíndricas e definidas pelas [2][5]:

$$\sigma_{\theta} = \frac{pr}{t} + v \frac{6fcMo}{t^2} \qquad \mathbf{e} \qquad \sigma_z = \frac{6fcMo}{t^2} + \frac{N}{2\pi rt}.$$
(1)(2)

Sendo $\sigma_{\theta} e \sigma_{z}$ as tensões circunferencial e axial, respectivamente, $Mo = p/(2\beta^{2})$ o momento fletor na região do anel de reforço, N é a carga axial atuante, *fc* é um fator de cálculo que tem valores de 0 (região fora dos anéis de reforço) e 1 (região dos anéis de reforço) e β é dado pela equação:

$$\beta = \frac{\sqrt[4]{3(1-\nu^2)}}{\sqrt{rt}} = \frac{\chi}{\sqrt{rt}} \,. \tag{3}$$

Definindo-se uma relação entre a carga axial e a pressão interna *p*, obtêm-se:

$$\varphi = \frac{N}{\pi r^2 p} \,. \tag{4}$$

Considerando Mo e as Eqs.(3) e (4) nas Eqs.(1) e (2), após a simplificação, tem-se:

$$\sigma_{\theta} = \frac{pr}{t} \left(\frac{\chi^2 + 3fc \nu}{\chi^2} \right) \quad \mathbf{e} \quad \sigma_z = \frac{pr}{t} \left[\frac{\chi^2 \varphi + 6fc}{2\chi^2} \right]$$
(5)(6)

Das Eqs.(5) e (6), obtêm-se a relação:

$$\frac{\sigma_z}{\sigma_\theta} = \frac{\chi^2 \varphi + 6 fc}{6 fc \nu + 2\chi^2}.$$
(7)

Desprezando-se as deformações elásticas, por serem muito menores que as deformações plásticas, podem-se adotar as equações de Lévy-Mises em termos da anisotropia normal \overline{R} é definida, conforme apresentada por Chakrabarty [2] e Al-Qureshi [3]:

$$\frac{d\varepsilon_{\theta}}{\sigma_{\theta}(1+\overline{R})-\overline{R}\sigma_{z}} = \frac{d\varepsilon_{z}}{\sigma_{z}(1+\overline{R})-\overline{R}\sigma_{\theta}} = -\frac{d\varepsilon_{r}}{\sigma_{\theta}+\sigma_{z}} = \frac{d\varepsilon}{2\overline{\sigma}}.$$
(8)

Em que $d\varepsilon_{\theta}$, $d\varepsilon_z$ e $d\varepsilon_r$ são as deformações infinitesimais tangenciais, axiais e radiais, respectivamente, sendo $d\overline{\varepsilon}$ a deformação efetiva infinitesimal e $\overline{\sigma}$ a tensão efetiva. A tensão efetiva é obtida através do critério de escoamento de von Mises em termos da anisotropia normal \overline{R} para o estado plano de tensões, conforme Mellor[1] e Al-Qureshi[3], e definida pela:

$$\overline{\sigma} = \sqrt{\sigma_{\theta}^2 - \frac{2\overline{R}}{1+\overline{R}}\sigma_{\theta}\sigma_z + \sigma_z^2}.$$
(9)

Substituindo-se a Eq.(7) na Eq.(9), obtêm-se a tensão efetiva:

$$\overline{\sigma} = \sigma_{\theta} \left[1 - \frac{\overline{R}}{\left(1 + \overline{R}\right)} \frac{\left[\chi^2 \varphi + 6fc\right]}{\left(3fc \, \nu + \chi^2\right)} + \frac{\left[\chi^2 \varphi + 6fc\right]^2}{\left(6fc \, \nu + 2\chi^2\right)^2} \right]^{\frac{1}{2}} = \sigma_{\theta} \xi \,. \tag{10}$$

Sendo: $\xi = \left[1 - \frac{\overline{R}}{(1+\overline{R})} \frac{[\chi^2 \varphi + 6fc]}{(3fc \nu + \chi^2)} + \frac{[\chi^2 \varphi + 6fc]^2}{(6fc \nu + 2\chi^2)^2}\right]^{\frac{1}{2}}.$ (11)

Considerando as Eqs.(7) e (10) nas Eqs.(8), obtêm-se as deformações infinitesimais em função da deformação efetivas infinitesimal $d\varepsilon$ e da anisotropia normal \overline{R} , conforme as equações a seguir:

ISSN 1516-392X

$$d\varepsilon_{\theta} = \frac{d\overline{\varepsilon}}{2\xi} \left\{ \left(1 + \overline{R}\right) - \frac{\overline{R} \left[\chi^2 \varphi + 6 fc\right]}{\left(6 fc \nu + 2\chi^2\right)} \right\}.$$
(12)

$$d\varepsilon_{z} = \frac{d\overline{\varepsilon}}{2\xi} \left\{ -\overline{R} + \frac{\left(1 + \overline{R}\right)\left[\chi^{2}\varphi + 6fc\right]}{\left(6fc\,v + 2\chi^{2}\right)} \right\}.$$
(13)

$$d\varepsilon_r = -\frac{d\overline{\varepsilon}}{2\xi} \left\{ 1 + \frac{\left[\chi^2 \varphi + 6fc\right]}{\left(6fc \, \nu + 2\chi^2\right)} \right\}.$$
(14)

Sendo: $d\varepsilon_r$ a deformação infinitesimal na espessura, $d\varepsilon_{\theta}$ a deformação infinitesimal tangencial e $d\varepsilon_z$ a deformação infinitesimal axial.

Na região em que ocorre a instabilidade plástica, a pressão p e a carga axial N atingem os valores máximos, sendo assim, dp = dN = 0.

Derivando a equação Eq.(10), para as condições de instabilidade plástica, tem-se:

$$d\overline{\sigma} = \xi d\sigma_{\theta} + \sigma_{\theta} \chi^{2} \frac{\left\{ fc \left[6 + 6\overline{R}(1-\nu) \right] + \chi^{2} \left[\varphi - \overline{R}(2-\varphi) \right] \right\}}{4\xi \left(1 + \overline{R} \right) \left(\chi^{2} + 3 fc \nu \right)^{2}} d\varphi.$$
(15)

Sendo: $d\sigma_{\theta} = \sigma_{\theta} \left(-\frac{dt}{t} + \frac{dr}{r} \right)$ e $d\varphi = -\frac{2Ndr}{\pi r^3 p} = -2\varphi \frac{dr}{r}$ (16)(17)

Substituindo-se as Eqs.(16) e (17) na Eq.(15), tem-se:

$$d\overline{\sigma} = \xi \sigma_{\theta} \left(-\frac{dt}{t} + \frac{dr}{r} \right) + \sigma_{\theta} \chi^{2} \frac{\left\{ fc \left[6 + 6\overline{R}(1-\nu) \right] + \chi^{2} \left[\varphi - \overline{R}(2-\varphi) \right] \right\}}{4\xi \left(1 + \overline{R} \right) \left(\chi^{2} + 3fc \nu \right)^{2}} \left(-2\varphi \right) \frac{dr}{r}.$$
 (18)

Dividindo pela Eq.(10), tem-se:

$$\frac{d\overline{\sigma}}{\overline{\sigma}} = \left(\frac{dr}{r} - \frac{dt}{t}\right) - \varphi \chi^2 \frac{\left\{fc\left[6 + 6\overline{R}(1-\nu)\right] + \chi^2\left[\varphi - \overline{R}(2-\varphi)\right]\right\}}{2\xi^2 \left(1 + \overline{R}\right) \left(\chi^2 + 3fc\nu\right)^2} \frac{dr}{r}.$$
(19)

Verifica-se que $d_{\mathcal{E}_r} = dt/t$ e $d_{\mathcal{E}_{\theta}} = dr/r$. Portanto, substituindo-se as Eqs.(12) e (14) na Eq.(18) e simplificando, tem-se:

$$\frac{d\overline{\sigma}}{\overline{\sigma}} = \frac{d\overline{\varepsilon}}{4\xi^{3}} \left\langle \frac{\varphi \chi^{2} \left\{ 6 fc \left[\overline{R}(1-\nu) - \nu \right] - \chi^{2} \left[2 + \overline{R}(2-\varphi) \right] \right\} \left\{ 6 fc \left[1 + \overline{R}(1-\nu) \right] - \chi^{2} \left[\overline{R}(2-\varphi) - \varphi \right] \right\}}{2\left(1 + \overline{R} \right) \left(3 fc \nu + \chi^{2} \right)^{3}} + \frac{\xi^{2} \left\{ 6 fc \left[1 + 2\nu - \overline{R}(1-\nu) \right] + \chi^{2} \left[(4+\varphi) + \overline{R}(2-\varphi) \right] \right\}}{3 fc \nu + \chi^{2}} \right\rangle \right\rangle$$

$$(20)$$

Das teorias de instabilidade plástica, tem-se a seguinte condição:

$$\frac{d\sigma}{d\varepsilon} = \frac{\sigma}{z} = \frac{\sigma}{\sigma}\lambda.$$
(21)

Sendo *z* a subtangente, verificada na construção de Considere e apresentado por Mellor [1] e Chakrabarty [2]. Sendo $\lambda = 1/z$ dado pela equação:

$$\lambda = \frac{1}{4\xi^{3}} \left\langle \frac{\varphi \chi^{2} \left\{ 6 fc \left[\overline{R}(1-\nu) - \nu \right] - \chi^{2} \left[2 + \overline{R}(2-\varphi) \right] \right\} \left\{ 6 fc \left[1 + \overline{R}(1-\nu) \right] - \chi^{2} \left[\overline{R}(2-\varphi) - \varphi \right] \right\} + 2\left(1+\overline{R}\right) \left\{ 3 fc \nu + \chi^{2} \right\}^{3} + \frac{\xi^{2} \left\{ 6 fc \left[1 + 2\nu - \overline{R}(1-\nu) \right] + \chi^{2} \left[(4+\varphi) + \overline{R}(2-\varphi) \right] \right\} - 2\left(1+\overline{R}\right) \left\{ 3 fc \nu + \chi^{2} \right\} \right\}}{3 fc \nu + \chi^{2}} \right\rangle.$$

$$(22)$$

Para um material metálico que sofre encruamento durante a deformação plástica, a curva de tensão-deformação efetiva no ensaio de tração simples, pode ser traduzida pela equação empírica de H.W.Swift apresentada por Al-Qureshi [3]:

$$\overline{\sigma} = K \left(\varepsilon_0 + \overline{\varepsilon} \right)^{\eta}.$$
(23)

Em que *K* é a constante de tensão para a deformação efetiva $\overline{\varepsilon} = 1$; ε_0 é a deformação inicial devido a trabalhos anteriores e η é o coeficiente de encruamento que pode ter valores compreendidos entre $\eta = 0$ para um material perfeitamente plástico, até $\eta = 1$ para um material elástico, onde neste caso K = E que é o modulo de elasticidade do material. Na maioria dos metais o coeficiente de encruamento η tem valores entre 0,1 e 0,5.

Derivando a Eq.(23), tem-se:

$$d\overline{\sigma} = K\eta \left(\varepsilon_0 - \overline{\varepsilon}\right)^{\eta-1} d\overline{\varepsilon} .$$
(24)

Dividindo a Eq.(24) pela Eq.(23), após as simplificações, tem-se:

$$\frac{d\overline{\sigma}}{d\overline{\varepsilon}} = \frac{\eta.\overline{\sigma}}{\left(\varepsilon_0 + \overline{\varepsilon}\right)}.$$
(25)

Igualando as Eqs.(21) e (25), obtêm-se a deformação efetiva na instabilidade plástica, para o cilindro de paredes finas, sujeito à pressão interna *p*.

$$\overline{\varepsilon} = \frac{\eta}{\lambda} - \varepsilon_0 \quad . \tag{26}$$

A tensão tangencial na instabilidade plástica é obtida da Eq.(10), para a tensão efetiva $\overline{\sigma}$ dada pela Eq.(23) resultando que:

$$\sigma_{\theta} = \frac{K}{\xi} \left(\frac{\eta}{\lambda}\right)^{\eta}.$$
(27)

A tensão axial na instabilidade plástica é obtida da Eq.(7), para σ_{θ} dada pela Eq.(27) resultando que:

ISSN 1516-392>

$$\sigma_{z} = \left[\frac{\chi^{2}\varphi + 6fc}{2\chi^{2} + 6fc\nu}\right] \frac{K}{\xi} \left(\frac{\eta}{\lambda}\right)^{\eta}.$$
(28)

As deformações tangenciais e na espessura são obtidas das Eqs.(12) e (14), respectivamente.

$$\varepsilon_{\theta} = \ln \frac{r_i}{r} = \frac{1}{2\xi} \left\{ \left(1 + \overline{R} \right) - \frac{\overline{R} \left[\chi^2 \varphi + 6 fc \right]}{\left(6 fc \, \nu + 2\chi^2 \right)} \right\} \left(\frac{\eta}{\lambda} - \varepsilon_0 \right).$$
⁽²⁹⁾

$$\varepsilon_r = \ln \frac{t_i}{t} = -\frac{1}{2\xi} \left\{ 1 + \frac{\left[\chi^2 \varphi + 6fc\right]}{\left(6fc \nu + 2\chi^2\right)} \right\} \left(\frac{\eta}{\lambda} - \varepsilon_0 \right).$$
(30)

Sendo r_i o raio médio na instabilidade plástica e t_i a espessura na instabilidade plástica. Resolvendo a Eq.(29) e a Eq.(30) em r e t, tem-se:

$$r_{i} = r \exp\left\langle\frac{1}{2\xi}\left\{\left(1+\overline{R}\right) - \frac{\overline{R}\left[\chi^{2}\varphi + 6fc\right]}{\left(6fc\nu + 2\chi^{2}\right)}\right\}\left(\frac{\eta}{\lambda} - \varepsilon_{0}\right)\right\rangle.$$
(31)

$$t_{i} = t \exp\left\langle -\frac{1}{2\xi} \left\{ 1 + \frac{\left[\chi^{2} \varphi + 6fc\right]}{\left(6fc \nu + 2\chi^{2}\right)} \right\} \left(\frac{\eta}{\lambda} - \varepsilon_{0} \right) \right\rangle.$$
(32)

A pressão interna p_i na instabilidade plástica é obtida através das Eqs.(5) e (27), para $r = r_i$ e $t = t_i$ dados pela Eq.(31) e pela Eq.(32), respectivamente.

$$p_{i} = \frac{t_{i}}{r_{i}} \frac{\chi^{2}}{\left(\chi^{2} + 3fc\nu\right)} \frac{K}{\xi} \left(\frac{\eta}{\lambda}\right)^{\eta}.$$
(33)

3 RESULTADOS E DISCUSSÃO

Tabela 1 - Materiais

Para a análise teórica foram considerados os seguintes materiais [1,2]:

Tabel								
Ítem	Descrição	E	ν	η	К	Y	$\sigma_{\text{máx}}$	\overline{R}
		[GPa]			[MPa]	[MPa]	[MPa]	Λ
1	Aço CArbono SAE 1008	210	0,30	0,25	520	180	320	1,00
2	Aço Carbono ASTM A36	210	0,30	0,22	620	250	400	1,00
3	Liga de Alumínio 6061 T6	70	0,33	0,10	433	270	310	1,00
4	Liga de Alumínio 7075 T6	72	0,33	0,10	740	480	550	1,00

Em que E é o módulo de elasticidade; v o coeficiente de Poisson; η o coeficiente de encruamento; K a constante de tensão; Y a tensão de escoamento e σ_{max} a tensão máxima obtidas no ensaio de tração simples.

Para a geometria do cilindro foram consideradas as seguintes dimensões:

Raio médio inicial do cilindror = 100,0 [mm]Espessura inicialt = 1,0 [mm]Considerou-se que a deformação inicial $\varepsilon_0 = 0,00.$

Nos gráficos representados nas Figs.2 a 5 a seguir, adotam-se a seguinte nomenclatura: S1p e S2p são as tensões circunferências e axiais na instabilidade plástica e S1e e S2e são as tensões circunferências e axiais no limite elástico.

Os dados teóricos foram substituídos nas equações desenvolvidas no presente trabalho, obtendo-se os seguintes resultados:

1. Aço Carbono SAE 1008:

Apresentando as tensões e as pressões internas em gráficos, tem-se:

Tab.2 - Resultados - Aço Carbono SAE 1008:											
	Instabilidade Plástica								Limite Elástico		
φ	ε _{efet}	σ_{efet}	r _i	ti	σ_{θ}	σ _z	pi	pi	σ_{θ}	σ _z	
		[MPa]	[mm]	[mm]	[MPa]	[MPa]	[kPa]	[kPa]	[MPa]	[MPa]	
0,0	0,183	340	107,1	0,834	310	364	1561	826	164	193	
0,2	0,187	342	106,4	0,832	300	372	1519	799	158	196	
0,4	0,196	346	105,9	0,826	293	382	1477	769	152	199	
0,6	0,207	351	105,5	0,819	286	391	1437	737	147	201	
0,8	0,220	356	105,0	0,810	280	401	1397	706	141	203	
1,0	0,235	362	104,5	0,801	274	410	1358	675	136	204	

Figura 2 – a) Tensões circunferências e axiais; b) Pressão interna.

2. Aço Carbono ASTM A36:

Tab.3 - Resultados - Aço Carbono A36

	Instabilidade Plástica								Limite Elástico		
φ	ε _{efet}	σ_{efet}	r _i	ti	σ_{θ}	σ _z	pi	рі	σ_{θ}	σ _z	
		[MPa]	[mm]	[mm]	[MPa]	[MPa]	[kPa]	[kPa]	[MPa]	[MPa]	
0,0	0,161	415	106,2	0,853	378	444	1963	1183	228	268	
0,2	0,165	417	105,6	0,850	366	454	1907	1144	219	272	
0,4	0,172	421	105,2	0,845	356	465	1853	1100	211	276	
0,6	0,182	426	104,8	0,839	347	476	1800	1055	204	279	
0,8	0,194	432	104,4	0,831	339	487	1748	1011	196	281	
1,0	0,207	438	104,0	0,823	331	497	1697	968	189	283	

Apresentando as tensões e as pressões internas em gráficos, tem-se:

ISSN 1516-392X

Figura 4 – a) Tensões circunferências e axiais; b) Pressão interna.

3. Liga de Alumínio 6061 T6:

I ab.4 - Resultados - Liga de Aluminio 6061 16:											
Instabilidade Plástica									Limite Elástico		
φ	ε _{efet}	σ_{efet}	r _i	ti	$\sigma_{ heta}$	σ _z	pi	рі	σ_{θ}	σ_{z}	
		[MPa]	[mm]	[mm]	[MPa]	[MPa]	[kPa]	[kPa]	[MPa]	[MPa]	
0,0	0,072	333	102,9	0,931	309	353	1739	1411	250	286	
0,2	0,076	335	102,7	0,928	300	361	1685	1360	242	291	
0,4	0,080	336	102,6	0,925	291	368	1632	1310	233	296	
0,6	0,084	338	102,4	0,922	282	375	1580	1262	225	299	
0,8	0,088	340	102,2	0,919	273	380	1530	1216	217	302	
1,0	0,092	341	102,0	0,916	265	385	1481	1173	210	305	

Apresentando as tensões e as pressões internas em gráficos, tem-se:

Figura 4 – a) Tensões circunferências e axiais; b) Pressão interna.

4. Liga de Alumínio 7075 T6:

	Instabilidade Plástica								Limite Elástico		
φ	ε _{efet}	σ_{efet}	r _i	ti	σ_{θ}	σ _z	pi	рі	σ_{θ}	σ _z	
		[MPa]	[mm]	[mm]	[MPa]	[MPa]	[kPa]	[kPa]	[MPa]	[MPa]	
0,0	0,072	569	102,9	0,931	527	603	2972	2508	445	509	
0,2	0,076	572	102,7	0,928	512	617	2880	2418	430	518	
0,4	0,080	575	102,6	0,925	497	630	2789	2329	415	526	
0,6	0,084	578	102,4	0,922	482	640	2701	2244	400	532	
0,8	0,088	580	102,2	0,919	467	650	2615	2163	386	537	
1,0	0,092	583	102,0	0,916	452	658	2531	2085	372	542	

Tab.5 - Resultados - Liga de Alumínio 7075 T6:

Apresentando as tensões e as pressões internas em gráficos, tem-se:

Figura 5 – a) Tensões circunferências e axiais; b) Pressão interna.

Observa-se nos gráficos (a) representados nas Figs.2 a 5, os limites das tensões circunferenciais e axiais na região elástica e no início da instabilidade plástica. Dentro da região limite o material está em uma região admissível a salvo de falha. Lembrando que as tensões circunferenciais e axiais na instabilidade plástica são, tensões verdadeiras em função da área efetiva, sendo assim o valor máximo das tensões circunferenciais estão acima da tensão máxima do material obtido do ensaio de tração simples.

Nos gráficos (b) representados nas Figs.2 a 5, estão apresentadas as variações das pressões internas no limite elástico e na instabilidade plástica, verificando-se que com o aumento da carga axial há uma diminuição da pressão interna em ambos os casos. Para uma condição crítica de sobre carga, a pressão interna deve estar entre as curvas do limite elástico e da instabilidade plástica, região da estricção difusa, não deve atingir a curva de instabilidade plástica que é o início da estricção localizada.

Nos gráficos (a) das tensões circunferências e axiais representados nas Figs.2 a 5, as tensões no limite elástico são, obviamente, menores do que as tensões verificadas para a instabilidade plástica lembrando que, acima do limite elástico na região plástica, o material sofre encruamento pela deformação plástica e qualquer variação na geometria poderá alterar significativamente a resposta das tensões causando uma falha repentina do cilindro.

podemos identificar dois comportamentos básicos em função do coeficiente de encruamento: a) Um coeficiente de encruamento elevado significa uma ductilidade elevada,

permitindo níveis mais elevados de deformação plástica, condição que é favorável, para cilindros que venham a sofrer grandes variações da pressão interna, podendo ultrapassar o limite elástico devido a uma sobre carga.

b) Para os materiais que suportam pequenas deformações plásticas, apresentando um coeficiente de encruamento reduzido, em que a tensão de escoamento está bem próxima da tensão máxima, as curvas da pressão não apresentam margem de segurança para uma sobre carga no cilindro. Nestes casos a pressão interna, deve sempre ser menor do que a pressão obtida para o limite elástico.

A partir da pressão na instabilidade plástica, no início na estricção localizada, iniciase rapidamente o processo de ruptura, os casos de falhas ocorrem com a pressão interna aplicada neste limite de pressão.

Com a variação do coeficiente φ , ocorre a surgimento de uma componente de tensão axial que será composta com a tensão de membrana, no caso de instabilidade plástica a tensão efetiva aumenta com o aumento de φ . No limite elástico, a tensão efetiva será igual à tensão de escoamento do material Y.

Foram considerados os materiais com anisotropia normal R=1 que é a condição normal encontrada na indústria de maneira geral.

4 CONCLUSÃO

Considerando os resultados teóricos, verifica-se que as equações apresentadas podem ser utilizadas para a análise limite de cilindro de parede fina sujeito à pressão interna com carga axial, condições que podem ser observadas em condutos forçados, vasos de pressão e componentes de estruturas hidráulicas, quando estão sujeita a sobre cargas além dos limites previstos em projeto.

É importante salientar que na região dos componentes montados no cilindro, surgem tensões secundárias que são devido aos momentos fletores, esforços cortantes e esforços normais localizados, estas tensões devem ser consideradas na análise das tensões atuantes e devem ser analisadas separadamente.

Agradecimentos

Agradeço à Universidade de Taubaté pelo apoio, para a apresentação deste trabalho.

REFERÊNCIAS

- 1 Johnson, W. & Mellor, P.B., Engineering Plasticity. London: VON NOSTRAND; 1973.
- 2 Chakrabarty, J., Theory of Plasticity. Third edition: Elsevier BH; 2006 .
- 3 Al-Qureshi, H.A., Processos e Mecanismos da Conformação dos Metais. São José dos Campos Instituto Tecnológico da Aeronáutica; 1991.
- 4 Hill, R., The Mahematical Theory of Plasticity: Clarendon Press; 1950.
- 5 Timoshenko, S.P. and Woinowsky-Krieger, S., Theory of Plates and Shells. Second edition. New York: McGraw-Hill; 1959.
- 6 Wagoner, R.H. and Chenot, J.L., Fundamentals of Metal Forming. John Wiley & Sons; 1997.