

INSTABILIDADE PLÁSTICA EM CILINDRO DE PAREDES FINAS SUJEITO À PRESSÃO INTERNA¹

Anselmo Monteiro Ilkiu²

Resumo

No presente trabalho será apresentado um modelo matemático para a análise da instabilidade plástica de um cilindro de parede fina sujeita a pressão interna, considerando o material com anisotropia normal no estado plano de tensões. As equações foram obtidas com base nas teorias elásticas e plásticas, considerando o critério de escoamento de von Mises no estado plano de tensões, em termos da anisotropia normal e de acordo com os trabalhos realizados por Johnson e Mellor (1973), Chakrabarty (1988) e Al-Qureshi (1999). Para a análise dos resultados, foram consideradas, as propriedades geométricas que definem o corpo cilíndrico, os anéis de reforço, bem como as propriedades do material. Obtendo-se as propriedades geométricas resultantes do corpo cilíndrico, as tensões tangenciais e axiais e a pressão interna na instabilidade plástica.

Palavras-chaves: Instabilidade plástica; Critério de escoamento; Anisotropia.

PLASTIC INSTABILITY IN THIN-WALLED CYLINDER SHELL SUBMITTED TO THE ACTION OF INTERNAL PRESSURE

Abstract

This work will be presented a mathematical model for the analysis of plastic instability in a thin-walled cylinder shell submitted to the action of internal pressure, considering the material with normal anisotropy in the plane state of stress. The model was developed based in the elastic and plastic theories, considering the yielding criterion of von Mises in the plane stress, in terms of the normal anisotropy and according to the work done by Johnson and Mellor (1973), Chakrabarty (1988) and Al-Qureshi (1999). For the analysis of the results were considered, the geometric properties that define the cylindrical body and the material properties. Obtaining the geometric properties of the resulting cylindrical body the hoop stress and axial stress and the internal pressure in the plastic instability.

Key words: Plastic instability; Criterion of yielding; Anisotropy.

¹ Contribuição técnica ao 67º Congresso ABM - Internacional, 31 de julho a 3 de agosto de 2012, Rio de Janeiro, RJ, Brasil.

² Professor Doutor do Departamento de Engenharia Civil da Universidade de Taubaté (Unitau), Taubaté, SP, Brasil.

1 INTRODUÇÃO

Quando uma barra homogênea, dúctil e encruável é sujeita a uma carga de tração simples, a deformação permanece homogênea até que a tensão alcance um determinado valor, além do qual a diminuição na área da seção transversal excede o incremento proporcional correspondente à tensão de escoamento. Neste ponto a carga alcança seu valor máximo e a deformação homogênea torna-se instável e posteriormente o alongamento ocorre pela estricção localizada sob constante diminuição de carga. O limite de resistência à tração do material é baseado nesta máxima carga, embora a fratura real ocorra posteriormente sob condições completamente diferentes, esta resistência é essencialmente uma função da característica de encruamento do material e, portanto de suas propriedades plásticas e não em qualquer sentido de sua resistência intrínseca.

Uma instabilidade dando origem a estricção local pode ocorrer de uma maneira similar no material sujeito ao estado plano de tensões. Essa instabilidade é de importância para determinar o grau de afinamento da espessura que a chapa metálica pode experimentar.

A perda de instabilidade plástica foi analisada principalmente por Swift e apresentada por Johnson e Mellor,⁽¹⁾ Chakrabarty,⁽²⁾ Al-Qureshi,⁽³⁾ Hill,⁽⁴⁾ entre outros. Os referidos pesquisadores assumiram que a perda de instabilidade ocorre quando se atinge a carga máxima que o material suporta e o aumento da deformação é realizado sem a variação correspondente da carga, isto é, a carga se mantém constante. Reconheceram que existem pelo menos duas possibilidades diferentes de instabilidade plástica: estricção difusa e localizada; os resultados teóricos desses casos foram feitos por Hill⁽⁴⁾ e Swift e posteriormente revistos por Keeler e Backofen, conforme apresentado por Al-Qureshi.⁽³⁾

No presente trabalho, será analisado o comportamento da instabilidade plástica de um cilindro de paredes finas, sujeito à pressão interna *p*, considerando a anisotropia normal \overline{R} do material. A anisotropia normal \overline{R} está associada à resistência ao afinamento ou redução da espessura da chapa, fator importante na análise da instabilidade no que se refere à perda da espessura.

2 MATERIAL E MÉTODO

Considerando um elemento de casca cilíndrico em que r é o raio da superfície média e t é a espessura da parede do cilindro, sujeito a pressão interna p (Figura 1).

Figura 1. Modelo proposto para análise; elemento cilíndrico.

Desprezando o efeito da tensão de cisalhamento na região dos anéis de reforço, as tensões atuantes são obtidas pelas teorias elásticas em cascas cilíndricas e definidas pelas Equações 1 e 2:^(2,5)

$$\sigma_{\theta} = \frac{pr}{t} + v \frac{6fcMo}{t^2}$$
(1)
$$\sigma_{z} = \frac{6fcMo}{t^2} + \frac{N}{2\pi rt}$$
(2)

Sendo $\sigma_{\theta} e \sigma_z$ as tensões circunferêncial e axial, respectivamente, $Mo = p/(2\beta^2)$ o momento fletor na região do anel de reforço, N é a carga axial atuante, *fc* é um fator de cálculo que tem valores de 0 (região fora dos anéis de reforço) e 1 (região dos anéis de reforço) e β é dado pela equação:

$$\beta = \frac{\sqrt[4]{3(1-\nu^2)}}{\sqrt{rt}} = \frac{\chi}{\sqrt{rt}}$$
(3)

Definindo-se uma relação entre a carga axial e a pressão interna *p*, obtêm-se:

$$\varphi = \frac{N}{\pi r^2 p} \tag{4}$$

Considerando *Mo* e as Equações 3 e 4 nas Equações 1 e 2, após a simplificação, tem-se:

$$\sigma_{\theta} = \frac{pr}{t} \left(\frac{\chi^2 + 3fcv}{\chi^2} \right)$$

$$pr \left[\chi^2 \varphi + 6fc \right]$$
(5)

$$\sigma_z = \frac{p_T}{t} \left[\frac{\chi \ \varphi + 0 c}{2\chi^2} \right] \tag{6}$$

Das Equações 5 e 6, obtêm-se a relação:

$$\frac{\sigma_z}{\sigma_\theta} = \frac{\chi^2 \varphi + 6fc}{6fc \, v + 2\chi^2} \tag{7}$$

Desprezando-se as deformações elásticas, por serem muito menores que as deformações plásticas, podem-se adotar as equações de Lévy-Mises em termos da anisotropia normal \overline{R} é definida, conforme apresentada por Chakrabarty⁽²⁾ e Al-Qureshi:⁽³⁾

$$\frac{d\varepsilon_{\theta}}{\sigma_{\theta}\left(1+\overline{R}\right)-\overline{R}\sigma_{z}} = \frac{d\varepsilon_{z}}{\sigma_{z}\left(1+\overline{R}\right)-\overline{R}\sigma_{\theta}} = -\frac{d\varepsilon_{r}}{\sigma_{\theta}+\sigma_{z}} = \frac{d\varepsilon}{2\overline{\sigma}}$$
(8)

Em que $d\varepsilon_{\theta}$, $d\varepsilon_z$ e $d\varepsilon_r$ são as deformações infinitesimais tangenciais, axiais e radiais, respectivamente, sendo $d\overline{\varepsilon}$ a deformação efetiva infinitesimal e $\overline{\sigma}$ a tensão efetiva.

A tensão efetiva é obtida através do critério de escoamento de von Mises em termos da anisotropia normal \overline{R} para o estado plano de tensões, conforme Mellor⁽¹⁾ e Al-Qureshi,⁽³⁾ e definida pela:

$$\overline{\sigma} = \sqrt{\sigma_{\theta}^2 - \frac{2\overline{R}}{1 + \overline{R}}\sigma_{\theta}\sigma_z + \sigma_z^2}$$
(9)

Substituindo-se a Equação 7 na Equação 9, obtêm-se a tensão efetiva:

$$\overline{\sigma} = \sigma_{\theta} \left[1 - \frac{\overline{R}}{(1+\overline{R})} \frac{\left[\chi^{2}\varphi + 6fc\right]}{\left(3fc\,\nu + \chi^{2}\right)} + \frac{\left[\chi^{2}\varphi + 6fc\right]^{2}}{\left(6fc\,\nu + 2\chi^{2}\right)^{2}} \right]^{\frac{1}{2}} = \sigma_{\theta}\xi$$

$$\xi = \left[1 - \frac{\overline{R}}{(1+\overline{R})} \frac{\left[\chi^{2}\varphi + 6fc\right]}{\left(3fc\,\nu + \chi^{2}\right)} + \frac{\left[\chi^{2}\varphi + 6fc\right]^{2}}{\left(6fc\,\nu + 2\chi^{2}\right)^{2}} \right]^{\frac{1}{2}}$$

$$(10)$$

Sendo:

Considerando as Equações 7 e 10 na Equação 8, obtêm-se as deformações infinitesimais em função da deformação efetivas infinitesimal $d\overline{\varepsilon}$ e da anisotropia normal \overline{R} (Equações 12 a 14).

$$d\varepsilon_{\theta} = \frac{d\overline{\varepsilon}}{2\xi} \left\{ (1+\overline{R}) - \frac{\overline{R} [\chi^{2} \varphi + 6fc]]}{(6fc \nu + 2\chi^{2})} \right\}$$
(12)
$$d\varepsilon_{z} = \frac{d\overline{\varepsilon}}{2\xi} \left\{ -\overline{R} + \frac{(1+\overline{R}) [\chi^{2} \varphi + 6fc]]}{(6fc \nu + 2\chi^{2})} \right\}$$
(13)
$$d\varepsilon_{r} = -\frac{d\overline{\varepsilon}}{2\xi} \left\{ 1 + \frac{[\chi^{2} \varphi + 6fc]]}{(6fc \nu + 2\chi^{2})} \right\}$$
(14)

Sendo: $d\varepsilon_r$ a deformação infinitesimal na espessura, $d\varepsilon_{\theta}$ a deformação infinitesimal tangencial e $d\varepsilon_z$ a deformação infinitesimal axial.

Na região em que ocorre a instabilidade plástica, a pressão p e a carga axial N atingem os valores máximos, sendo assim, dp = dN = 0.

Derivando a equação Equação 10, para as condições de instabilidade plástica, tem-se:

$$d\overline{\sigma} = \xi d\sigma_{\theta} + \sigma_{\theta} \chi^{2} \frac{\left\{ fc \left[6 + 6\overline{R}(1-\nu) \right] + \chi^{2} \left[\varphi - \overline{R}(2-\varphi) \right] \right\}}{4\xi \left(1 + \overline{R} \right) \left(\chi^{2} + 3fc \nu \right)^{2}} d\varphi$$
(15)

Sendo:

Substituindo-se a Equação 16 na Equação 15, tem-se:

$$d\overline{\sigma} = \xi \sigma_{\theta} \left(-\frac{dt}{t} + \frac{dr}{r} \right) + \sigma_{\theta} \chi^{2} \frac{\left\{ fc \left[6 + 6\overline{R}(1-\nu) \right] + \chi^{2} \left[\varphi - \overline{R}(2-\varphi) \right] \right\}}{4\xi \left(1 + \overline{R} \right) \left(\chi^{2} + 3fc \nu \right)^{2}} (-2\varphi) \frac{dr}{r}$$
(17)

Dividindo pela Equação 10, tem-se:

$$\frac{d\overline{\sigma}}{\overline{\sigma}} = \left(\frac{dr}{r} - \frac{dt}{t}\right) - \varphi \chi^2 \frac{\left\{fc\left[6 + 6\overline{R}(1-\nu)\right] + \chi^2\left[\varphi - \overline{R}(2-\varphi)\right]\right\}}{2\xi^2\left(1+\overline{R}\right)\left(\chi^2 + 3fc\nu\right)^2} \frac{dr}{r}$$
(18)

Verifica-se que $d_{\mathcal{E}_r} = dt/t$ e $d_{\mathcal{E}_{\theta}} = dr/r$. Portanto, substituindo-se as Equações 12 e 14 na Equação 17 e simplificando, tem-se:

$$\frac{d\overline{\sigma}}{\overline{\sigma}} = \frac{d\overline{\varepsilon}}{4\xi^{3}} \left\langle \frac{\varphi \chi^{2} \left\{ 6 fc \left[\overline{R}(1-\nu) - \nu \right] - \chi^{2} \left[2 + \overline{R}(2-\varphi) \right] \right\} \left\{ 6 fc \left[1 + \overline{R}(1-\nu) \right] - \chi^{2} \left[\overline{R}(2-\varphi) - \varphi \right] \right\} + 2\left[(1+\overline{R}) \left(3 fc \nu + \chi^{2} \right)^{3} + \frac{\xi^{2} \left\{ 6 fc \left[1 + 2\nu - \overline{R}(1-\nu) \right] + \chi^{2} \left[(4+\varphi) + \overline{R}(2-\varphi) \right] \right\} - 2\left[(1+\varphi) + \overline{R}(2-\varphi) \right] \right\}}{3 fc \nu + \chi^{2}} \right\rangle$$
(19)

Das teorias de instabilidade plástica, tem-se a seguinte condição:

$$\frac{d\overline{\sigma}}{d\varepsilon} = \frac{\overline{\sigma}}{z} = \overline{\sigma}\lambda$$
(20)

Sendo *z* a subtangente, verificada na construção de Considere e apresentado por Mellor⁽¹⁾ e Chakrabarty.⁽²⁾ Sendo $\lambda = 1/z$ dado pela Equação 21.

$$\lambda = \frac{1}{4\xi^{3}} \left\langle \frac{\varphi \chi^{2} \left\{ 6 fc \left[\overline{R}(1-\nu) - \nu \right] - \chi^{2} \left[2 + \overline{R}(2-\varphi) \right] \right\} \left\{ 6 fc \left[1 + \overline{R}(1-\nu) \right] - \chi^{2} \left[\overline{R}(2-\varphi) - \varphi \right] \right\}}{2\left(1 + \overline{R} \right) \left(3 fc \nu + \chi^{2} \right)^{3}} + \frac{\xi^{2} \left\{ 6 fc \left[1 + 2\nu - \overline{R}(1-\nu) \right] + \chi^{2} \left[(4+\varphi) + \overline{R}(2-\varphi) \right] \right\}}{3 fc \nu + \chi^{2}} \right\rangle$$

$$(21)$$

Para um material metálico que sofre encruamento durante a deformação plástica, a curva de tensão-deformação efetiva no ensaio de tração simples, pode ser traduzida pela equação empírica de H.W.Swift apresentada por Al-Qureshi:⁽³⁾

$$\overline{\sigma} = K \left(\varepsilon_0 + \overline{\varepsilon} \right)^{\eta}. \tag{22}$$

Em que *K* é a constante de tensão para a deformação efetiva $\mathcal{E} = 1$; \mathcal{E}_0 é a deformação inicial devido a trabalhos anteriores e η é o coeficiente de encruamento que pode ter valores compreendidos entre $\eta = 0$ para um material perfeitamente plástico, até $\eta = 1$ para um material elástico. Na maioria dos metais o coeficiente de encruamento η tem valores entre 0,1 e 0,5.

Derivando a Equação 22, tem-se:

$$d\overline{\sigma} = K\eta \left(\varepsilon_0 - \overline{\varepsilon}\right)^{\eta - 1} d\overline{\varepsilon}$$
(23)

Dividindo a Equação 23 pela Equação 22, após as simplificações, tem-se:

$$\frac{d\sigma}{d\overline{\varepsilon}} = \frac{\eta.\sigma}{\left(\varepsilon_0 + \overline{\varepsilon}\right)} \tag{24}$$

Igualando as Equações 20 e 24, obtêm-se a deformação efetiva na instabilidade plástica, para o cilindro de paredes finas, sujeito à pressão interna *p*.

$$\overline{\varepsilon} = \frac{\eta}{\lambda} - \varepsilon_0$$

A tensão tangencial na instabilidade plástica é obtida da Equação 10, para a tensão efetiva $\overline{\sigma}$ dada pela Equação 22 resultando que:

$$\sigma_{\theta} = \frac{K}{\xi} \left(\frac{\eta}{\lambda}\right)^{\eta} \tag{26}$$

A tensão axial na instabilidade plástica é obtida da Equação 7, resultando que:

$$\sigma_{z} = \left[\frac{\chi^{2}\varphi + 6fc}{2\chi^{2} + 6fc\nu}\right] \frac{K}{\xi} \left(\frac{\eta}{\lambda}\right)^{\eta}$$
(27)

As deformações tangenciais e na espessura são obtidas das Equações 12 e 14, respectivamente.

$$\varepsilon_{\theta} = \ln \frac{r_i}{r} = \frac{1}{2\xi} \left\{ \left(1 + \overline{R} \right) - \frac{\overline{R} \left[\chi^2 \varphi + 6fc \right]}{\left(6fc \, \nu + 2\chi^2 \right)} \right\} \left(\frac{\eta}{\lambda} - \varepsilon_0 \right)$$

$$\varepsilon_r = \ln \frac{t_i}{t} = -\frac{1}{2\xi} \left\{ 1 + \frac{\left[\chi^2 \varphi + 6fc \right]}{\left(6fc \, \nu + 2\chi^2 \right)} \right\} \left(\frac{\eta}{\lambda} - \varepsilon_0 \right)$$
(28)
$$(28)$$

Sendo r_i o raio médio na instabilidade plástica e t_i a espessura na instabilidade plástica. Resolvendo a Equação 28 e a Equação 29 em r e t, tem-se:

$$r_{i} = r \exp\left\langle\frac{1}{2\xi}\left\{\left(1+\overline{R}\right) - \frac{\overline{R}\left[\chi^{2}\varphi + 6fc\right]}{\left(6fc\,\nu + 2\chi^{2}\right)}\right\}\left(\frac{\eta}{\lambda} - \varepsilon_{0}\right)\right\rangle$$

$$t_{i} = t \exp\left\langle-\frac{1}{2\xi}\left\{1 + \frac{\left[\chi^{2}\varphi + 6fc\right]}{\left(6fc\,\nu + 2\chi^{2}\right)}\right\}\left(\frac{\eta}{\lambda} - \varepsilon_{0}\right)\right\rangle$$
(30)
(31)

A pressão interna p_i na instabilidade plástica é obtida através das Equações 5 e 26, para $r = r_i$ e $t = t_i$ dados pela Equação 31 e pela Equação 31, respectivamente.

$$p_{i} = \frac{t_{i}}{r_{i}} \frac{\chi^{2}}{\left(\chi^{2} + 3fcv\right)} \frac{K}{\xi} \left(\frac{\eta}{\lambda}\right)^{\eta}$$
(32)

3 RESULTADOS

Para a análise teórica foram considerados os seguintes materiais:^(1,2)

Tabela	a 1. Materiais							
Ítem	Descrição	E	ν	η	K	Y	$\sigma_{máx}$	_
_		[GPa]			[MPa]	[MPa]	[MPa]	R
1	Aço CArbono SAE 1008	210	0,30	0,25	520	180	320	1,00
2	Aço Carbono ASTM A36	210	0,30	0,22	620	250	400	1,00
3	Liga de Alumínio 6061 T6	70	0,33	0,10	433	270	310	1,00
4	Liga de Alumínio 7075 T6	72	0,33	0,10	740	480	550	1,00

(25)

1516-3923

Em que *E* é o módulo de elasticidade; *v* o coeficiente de Poisson; η o coeficiente de encruamento; *K* a constante de tensão; Y a tensão de escoamento e $\sigma_{máx}$ a tensão máxima obtidas no ensaio de tração simples.

Para a geometria do cilindro foram consideradas as seguintes dimensões:

- raio médio inicial do cilindro r = 100,0 [mm];
- espessura inicial t = 1,0 [mm];
- considerou-se que a deformação inicial $\varepsilon_0 = 0,00$.

Nos gráficos representados adota-se a seguinte nomenclatura: S1p e S2p são as tensões circunferências e axiais na instabilidade plástica e S1e e S2e são as tensões circunferências e axiais no limite elástico.

Os dados teóricos foram substituídos nas equações desenvolvidas no presente trabalho, obtendo-se os seguintes resultados:

3.1 Aço Carbono SAE 1008

			Instab		Limite E	lástico					
φ	ε _{efet}	σ_{efet}	r _i	t _i	σ_{θ}	σ_{z}	p _i	p _i	σ_{θ}	σ_{z}	σ_{efet}
		[MPa]	[mm]	[mm]	[MPa]	[MPa]	[kPa]	[kPa]	[MPa]	[MPa]	[MPa]
0,0	0,183	340	107,1	0,834	310	364	1561	826	164	193	180
0,2	0,187	342	106,4	0,832	300	372	1519	799	158	196	180
0,4	0,196	346	105,9	0,826	293	382	1477	769	152	199	180
0,6	0,207	351	105,5	0,819	286	391	1437	737	147	201	180
0,8	0,220	356	105,0	0,810	280	401	1397	706	141	203	180
1,0	0,235	362	104,5	0,801	274	410	1358	675	136	204	180

Tabela 2. Resultados na região dos aneis de reforço

Figura 2. Tensões na região dos anéis de reforço.

Razão entre a carga axial e a pressão interna.

Figura 3. Pressão interna na região dos anéis de reforço.

Tabela 3.	Resultados	fora da	região	dos	aneis	de i	reforço

			Instab		Limite E	lástico					
φ	ε _{efet}	σ_{efet}	r _i	t _i	σ_{θ}	σ _z	pi	pi	σ_{θ}	σ_{z}	σ_{efet}
		[MPa]	[mm]	[mm]	[MPa]	[MPa]	[kPa]	[kPa]	[MPa]	[MPa]	[MPa]
0,0	0,167	332	118,1	0,920	332	0	2588	1402	180	0	180
0,2	0,159	328	117,2	0,912	344	34	2681	1470	189	19	180
0,4	0,153	325	116,2	0,905	355	71	2762	1530	196	39	180
0,6	0,148	323	115,2	0,897	363	109	2827	1577	203	61	180
0,8	0,145	321	114,3	0,890	368	147	2868	1608	206	83	180
1,0	0,144	321	113,3	0,882	370	185	2882	1619	208	104	180

Figura 4. Tensões fora da região dos anéis de reforço.

Razão entre a carga axial e a pressão interna.

3.2 Aço Carbono ASTM A36

<u>Tabela 4</u> .	Resultados	na	região	dos	anei	s de	reforço

			Instab	Limite Elástico							
φ	ε _{efet}	σ_{efet}	r _i	t _i	σ_{θ}	σ _z	pi	pi	σ_{θ}	σ_{z}	σ_{efet}
		[MPa]	[mm]	[mm]	[MPa]	[MPa]	[kPa]	[kPa]	[MPa]	[MPa]	[MPa]
0,0	0,161	415	106,2	0,853	378	444	1963	1183	228	268	250
0,2	0,165	417	105,6	0,850	366	454	1907	1144	219	272	250
0,4	0,172	421	105,2	0,845	356	465	1853	1100	211	276	250
0,6	0,182	426	104,8	0,839	347	476	1800	1055	204	279	250
0,8	0,194	432	104,4	0,831	339	487	1748	1011	196	281	250
1,0	0,207	438	104,0	0,823	331	497	1697	968	189	283	250

Figura 6. Tensões na região dos anéis de reforço.

Razão entre a carga axial e a pressão interna.

Figura 7. Pressão interna na região dos anéis de reforço.

			Instab	Limite Elástico							
φ	$\epsilon_{efet} \sigma_{efet} r_i t_i \sigma_{\theta} \sigma_z p_i$							pi	σ_{θ}	σ_{z}	σ_{efet}
		[MPa]	[mm]	[mm]	[MPa]	[MPa]	[kPa]	[kPa]	[MPa]	[MPa]	[MPa]
0,0	0,147	406	115,8	0,929	406	0	3262	2006	250	0	250
0,2	0,140	402	115,0	0,923	422	42	3384	2103	262	26	250
0,4	0,134	399	114,1	0,916	435	87	3491	2189	273	55	250
0,6	0,130	396	113,3	0,909	446	134	3576	2257	281	84	250
0,8	0,128	394	112,4	0,902	452	181	3630	2301	287	115	250
1,0	0,127	394	111,6	0,896	455	227	3649	2317	289	144	250

Tabela 5. Resultados fora da região dos aneis de reforço

Figura 8. Tensões fora da região dos anéis de reforço.

10

Figura 9. Pressão interna fora da região dos anéis de reforço.

3.3 Liga de Alumínio 6061 T6

			Instab		Limite E	lástico					
φ	٤ _{efet}	σ_{efet}	r _i	ti	σ_{θ}	σ _z	pi	pi	σ_{θ}	σ _z	σ_{efet}
		[MPa]	[mm]	[mm]	[MPa]	[MPa]	[kPa]	[kPa]	[MPa]	[MPa]	[MPa]
0,0	0,072	333	102,9	0,931	309	353	1739	1411	250	286	270
0,2	0,073	333	102,6	0,930	299	360	1685	1364	242	291	270
0,4	0,077	335	102,5	0,928	289	367	1632	1316	233	296	270
0,6	0,081	337	102,3	0,924	281	373	1580	1267	225	299	270
0,8	0,086	339	102,1	0,920	273	379	1530	1219	217	302	270
1,0	0,092	341	102,0	0,916	265	385	1481	1173	210	305	270

Figura 10 – Tensões na região dos anéis de reforço.

Tabela 7 - Resultados fora da reg	ião dos aneis de reforço
-----------------------------------	--------------------------

			Instab	Limite Elástico							
φ	ε _{efet}	σ_{efet}	r _i	ti	σ_{θ}	σ _z	pi	p _i	$\sigma_{ heta}$	σ _z	σ_{efet}
		[MPa]	[mm]	[mm]	[MPa]	[MPa]	[kPa]	[kPa]	[MPa]	[MPa]	[MPa]
0,0	0,067	330	106,9	0,967	330	0	2988	2443	270	0	270
0,2	0,064	329	106,5	0,964	345	34	3118	2561	283	28	270
0,4	0,061	327	106,2	0,961	357	71	3232	2666	295	59	270
0,6	0,059	326	105,8	0,958	367	110	3323	2749	304	91	270
0,8	0,058	326	105,5	0,954	374	149	3381	2802	310	124	270
1,0	0,058	326	105,1	0,951	376	188	3402	2821	312	156	270

Figura 12 – Tensões fora da região dos anéis de reforço.

Figura 13 – Pressão fora da região dos anéis de reforço.

3.4 Liga de Alumínio 7075 T6

	Instabilidade Plástica							Limite Elástico				
φ	ε _{efet}	σ_{efet}	r _i	t _i	σ_{θ}	σ _z	pi	p _i	σ_{θ}	σ _z	σ_{efet}	
		[MPa]	[mm]	[mm]	[MPa]	[MPa]	[kPa]	[kPa]	[MPa]	[MPa]	[MPa]	
0,0	0,072	569	102,9	0,931	527	603	2972	2508	445	509	480	
0,2	0,073	570	102,6	0,930	510	615	2880	2426	430	518	480	
0,4	0,077	572	102,5	0,928	495	627	2790	2340	415	526	480	
0,6	0,081	575	102,3	0,924	480	638	2701	2253	400	532	480	
0,8	0,086	579	102,1	0,920	466	648	2615	2167	386	537	480	
1,0	0,092	583	102,0	0,916	452	658	2531	2085	372	542	480	

Figura 14 – Tensões na região dos anéis de reforço.

Figura 15 – Pressão na região dos anéis de reforço.

Tabela 9 - Resultados fora da região dos aneis de refor	ÇO
---	----

	Instabilidade Plástica							Limite Elástico				
φ	٤ _{efet}	σ_{efet}	r _i	ti	σ_{θ}	σ _z	pi	p _i	σ_{θ}	σ _z	σ_{efet}	
		[MPa]	[mm]	[mm]	[MPa]	[MPa]	[kPa]	[kPa]	[MPa]	[MPa]	[MPa]	
0,0	0,067	564	106,9	0,967	564	0	5107	4343	480	0	480	
0,2	0,064	562	106,5	0,964	589	59	5329	4553	503	50	480	
0,4	0,061	560	106,2	0,961	611	122	5524	4739	524	105	480	
0,6	0,059	558	105,8	0,958	628	188	5679	4887	540	162	480	
0,8	0,058	557	105,5	0,954	639	255	5779	4982	551	220	480	
1,0	0,058	556	105,1	0,951	642	321	5813	5015	554	277	480	

Figura 16 – Tensões fora da região dos anéis de reforço.

Figura 17 – Pressão fora da região dos anéis de reforço.

4 COMENTÁRIOS

Observam-se nos gráficos das tensões, os limites das tensões circunferenciais e axiais na região elástica e no início da instabilidade plástica. Dentro da região limite o material está, teoricamente, em uma região admissível a salvo de falha. Lembrando que as tensões na instabilidade plástica são tensões verdadeiras, em função da área efetiva, sendo assim o valor máximo das tensões circunferenciais estão acima da tensão máxima do material obtido do ensaio de tração simples.

Nos gráficos das pressões, estão apresentadas as variações das pressões internas no limite elástico e na instabilidade plástica, verificando-se que com o aumento da carga axial há uma diminuição da pressão interna em ambos os casos. Para uma condição crítica de sobre carga, a pressão interna deve estar entre as curvas do limite elástico e da instabilidade plástica, região da estricção difusa, não deve atingir a curva de instabilidade plástica que é o início da estricção localizada.

Os limites apresentados para as condições de contorno assumidas, devem ser analisados com cuidado, tendo em vista que um equipamento industrial é fabricado com diversos componentes, como bocas de visitas, válvulas, ramificações, bifurcações, etc., componentes que são concentradores de tensões alterando a composição das tensões atuantes nestas regiões.

Nos gráficos, as tensões no limite elástico são, obviamente, menores do que as tensões verificadas para a instabilidade plástica lembrando que, acima do limite elástico na região plástica, o material sofre encruamento pela deformação plástica e qualquer variação na geometria poderá alterar significativamente a resposta das tensões causando uma falha repentina.

O coeficiente de encruamento é um parâmetro que descreve de maneira adequada à ductilidade do material, ou seja, a sua aptidão para a deformação plástica, podemos identificar dois comportamentos básicos em função do coeficiente de encruamento:

a) Um coeficiente de encruamento elevado significa uma ductilidade elevada, permitindo níveis mais elevados de deformação plástica, condição que é favorável, para cilindros que venham a sofrer grandes variações da pressão interna, podendo ultrapassar o limite elástico devido a uma sobre carga.

b) Para os materiais que suportam pequenas deformações plásticas onde o coeficiente de encruamento é reduzido, a tensão de escoamento está bem próxima

da tensão máxima, as curvas da pressão não apresentam margem de segurança para uma sobre carga no cilindro. Nestes casos a pressão interna, deve sempre ser menor do que a pressão obtida para o limite elástico.

A partir da pressão na instabilidade plástica, no início na estricção localizada, iniciase rapidamente o processo de ruptura, os casos de falhas ocorrem com a pressão interna aplicada neste limite de pressão.

Com a variação do coeficiente φ (razão entre a carga axial e a pressão interna), ocorre a surgimento de uma componente de tensão axial que será composta com a tensão de membrana, no caso de instabilidade plástica a tensão efetiva aumenta com o aumento de φ . No limite elástico, a tensão efetiva será igual à tensão de escoamento do material Y.

Foram considerados os materiais com anisotropia normal R = 1 que é a condição normal encontrada na indústria de maneira geral. Desprezou-se o efeito da tensão de cisalhamento na região dos anéis de reforço, para simplificar o modelo de análise, levando-se em consideração que sua influência na tensão efetiva é menor que 2% no resultado final.

5 CONCLUSÃO

Considerando os resultados teóricos, verifica-se que as equações apresentadas podem ser utilizadas para a análise limite de cilindro de parede fina sujeito à pressão interna com carga axial, condições que podem ser observadas em condutos forçados, vasos de pressão e componentes de estruturas hidráulicas, quando estão sujeita a sobre cargas além dos limites previstos em projeto.

É importante salientar que na região dos componentes montados no cilindro, surgem tensões secundárias que são devido aos momentos fletores, esforços cortantes e esforços normais localizados, estas tensões devem ser consideradas na análise das tensões atuantes e devem ser analisadas separadamente.

Agradecimentos

Agradecemos à Universidade de Taubaté.

REFERÊNCIAS

- 1 Johnson, W. & Mellor, P.B., "Engineering Plasticity" VON NOSTRAND (1973).
- 2 Chakrabarty, J.,"Theory of Plasticity" McGRAW-HILL (1988).
- 3 Al-Qureshi, H.A., "Processos e Mecanismos da Conformação dos Metais" ITA Instituto Tecnológico da Aeronáutica – (1991).
- 4 Hill, R. The Mathematical Theory of Plasticity, Clarendon Press (1950).
- 5 Timoshenko, S.P. and Woinowsky-Krieger, S., "Theory of Plates and Shells" McGRAW-HILL (1959).