MELHORIA DA QUALIDADE DAS DIMENSÕES DAS CHAPAS PARA LATAS DOS LTF 1 E 2 DA CSN USANDO VIBRAÇÃO E PLANEJAMENTO DE EXPERIMENTOS – CHATTER¹

Ulisses Rocha Gomes² Wilson de Sousa Paulino³ Pedro Corrêa do Amaral Neto⁴ Ricardo Perroni Aquino⁵ Gustavo Leopoldo Gomes⁶ Aloísio Dias Neves⁷ João Carlos Fernandes⁶ Francisco Herilton da Silva⁶ Flávio Geraldo de Oliveira⁶

Resumo

No presente trabalho avaliou-se o comportamento dinâmico dos laminadores de tiras a Frio (1 e 2) da CSN. A fabricação de aços finos para atender a demanda da indústria alimentícia é extremamente exigente nas dimensões e propriedades mecânicas. A laminação é sensível às condições operacionais, portanto a instabilidade pode causar descontrole na espessura, gerando perda de produto. As metodologias adotadas foram: implantação de monitoramento de vibração (*SKF MasCon®*), investigação através de vibração dos equipamentos periféricos e análise estatística utilizando planejamento de experimento (*Designs of experiments - DOE*). Os resultados mostraram que o LTF#1 é excitado na faixa do *chatter* de 3ª oitava, este evento é auto-excitável. O teste de *run up* caracterizou as velocidades críticas. O *DOE* mostrou os parâmetros relevantes do processo. No LTF#2 evidenciou-se *chatter* de 5ª oitava. O teste de *run up* demostrou a causa raiz das baixas freqüências. Os experimentos feitos no LTF#2 demonstraram que as folgas são potencializadas pela velocidade. Conclui-se que monitoramento on-line (*SKF MasCon®*) que interage com os parâmetros através de modelos matemáticos definidos através dos *DOE*'s, garantem a estabilidade da laminação suprimindo o fenômeno do *chatter*.

Palavras-chave: Aços; Chatter; Vibração; Planejamento de experimento; DOE.

IMPROVING THE QUALITY DIMENSIONS OF THE CAN STRIPS TCM 1 AND 2 CSN USING VIBRACIONAIS AND DESIGNS OF EXPERIMENTOS - CHATTER.

Abstract

In the present study were evaluated the dynamic behavior of the temper cold mills (TCM1 and TCM2) of CSN. The manufacture of thin steel to meet the demand of food industry is very demanding on the dimensions and mechanical properties. The process of mill is sensitive to the practiced parameters, so the instability can cause disanag of the thickness, causing loss of product. The methodologies adopted were: implementation of a monitoring of vibration, research through peripheral equipment vibration and statistical analysis using designs of experiments (*DOE*). The results showed that the TCM1 is excited in the chatter of 3rd, this event is self-excited. The *run up* test characterized the criticism speeds. The *DOE* showed the relevant parameters of the process. The TCM2 analysis showed chatter of 5th. The test *run up* showed that the excitation of low frequency is from the drive. The *DOE* TCM2 showed that gaps are increased by the speed. It is concluded that online monitoring that interacted with the parameters through mathematical models defined by the *DOE* guarantee the stability of TCM and removing the phenomenon of chatter. **Key words:** Steel; Chatter; Vibration; Designs of experiments; DOE.

- ⁶ Eng. de Confiabilidade da SKF do Brasil.
- ⁷ Eng. de Campo da SKF do Brasil.

¹ Contribuição técnica ao 63° Congresso Anual da ABM, 28 de julho a 1° de agosto de 2008, Santos, SP, Brasil

² Membro da ABM, M.Sc, PUC-RJ e Eng^o. Metalurgista, UFF, CSN

³ Membro da ABM, M.Sc, Eng. de Confiabilidade da SKF do Brasil

⁴ Membro da ABM, Eng^o. Eletricista, UFF, CSN

⁵ Membro da ABM Eng^o. Vendas da SKF do Brasil.

1 INTRODUÇÃO

O processo de laminação a frio consiste em reduzir a tira para se obter as dimensões especificadas pelo cliente. Durante controle do processo, necessita-se de um pleno conhecimento dos parâmetros que afetam as dimensões da tira.

A instabilidade do processo de laminação causa descontrole da espessura, gerando refugo de produto. De acordo com Robert,⁽¹⁾ o processo de laminação envolve fenômenos dinâmicos que o tornam auto-excitável, promovendo a vibração mecânica.

O *Chatter* é uma condição vibracional indesejável durante o processo de laminação, que degrada a qualidade da tira. Existem casos de *Chatter* que a severidade de vibração atinge níveis que comprometem o equipamento. A Figura 1 apresenta uma árvore de falhas potenciais sobre *chatter* e que são discutidas no projeto.

Robert⁽¹⁾ classificou o chatter em três faixas:

- \succ 5 20 Hz (chatter torcional);
- 128 256 Hz (terceira oitava) e
- 500 700 Hz (quinta oitava).

Figura 1 – Árvore de falhas potenciais do Chatter.⁽²⁾

2 CARACTERIZAÇÃO DO PROBLEMA

Os defeitos são evidenciados pelas marcas no produto laminado, nos cilindros de trabalho e nos encostos (Figura 2). É possível detectá-los através de inspeção visual e/ou auditivo.

Figura 2 – Marcas no cilindro de encosto.

2 OBJETIVOS

- > Identificar as causas do *Chatter* nos LTF#1 e LTF#2
- > Monitorar as condições vibracionais dos Laminadores
- Identificar as interações das condições operacionais com a vibração usando estatística (*Design of experiments - DOE*)

3 DESCRIÇÃO DOS LAMINADORES

A Tabela 1 apresenta as características dos Laminadores de Tiras a Frio n° 1 e 2 da Companhia Siderúrgica Nacional (CSN).

	LTF#1	LTF#2					
Fabricante	Mesta / Hitachi	Mesta / Hitachi					
Tipo	Quadruo Contínuo	Quadruo Contínuo					
Nº de cadeiras	Cinco	Cinco					
Velocidade	1950 mpm	1540 mpm					
Espessura máx./mín.	0.45 / 0.18 mm	0.45 / 0.18 mm					
Largura máx./mín.	1000 / 600 mm	1000 / 600 mm					

Tabela 1 Especificações dos Laminadores

4 METODOLOGIA

4.1 Diagnóstico por Meio de Vibração

A Figura 3.a apresenta a arquitetura de monitoramento on-line (SKF *MasCon*), utilizada para coletar os eventos durante a laminação. A Figura 3.b mostra o instrumento (portátil SKF CMXA 70 GX) utilizado para investigar os equipamentos periféricos (retíficas e redutoras) e o software Machine Analyst[®].

Figura 3 – a) Arquitetura do SKF MasCon[®] e b) coletor portátil SKF CMXA 70 GX.

4.2 Aplicação do Projeto de Experimento de Modo Fatorial 2^K

Para evidenciar os parâmetros operacionais que geram *chatter*, utilizou-se o planejamento de experimento (Figura 4) fatorial com vários fatores (2^{K}) . Foram feitas experimentos com todas as combinações dos níveis de fatores (X_n) e os seus efeitos (B_n) , sem e com replicas, tendo como resposta a vibração (Y) (Eq.-1). Utilizou-se o Software Minitab *R14* (*Design of Experiments – DOE*).

Figura 4 – Modelo adotado pelo DOE.

$$Y = B_o + B_1 X_1 + B_2 X_2 + \cdots$$
 Equação 1

Foram feitos três experimentos combinando-se diferentes parâmetros operacionais, para quantificar a resposta dinâmica do laminador (vibração global ou especifica do equipamento). A tabela 2 mostra as grandezas físicas e as condições aplicadas. Para cada experimento, adotou-se análise aleatória para criar os contrastes.

Tabela 2 Parâmetros dos experimentos

Laminador	Experimentos	Fatores	Condições operacionais*	
LTF#1	Teste-1	tensão 3 / 4 (Kgf/cm ²)	↑	\downarrow
	(full factorial designs 2 ⁴ sem	redução da 1 ^a cadeira (%)	↑	\leftrightarrow
	réplicas)	redução da 5 ^a cadeira (%)	\leftrightarrow	\downarrow
		diâmetro do CT (mm)	intermediário	início
LTF#2	Teste-2	tensão 4 / 5 (Kgf/cm ²)	\leftrightarrow	\downarrow
	(full factorial designs 2 ³ com	redução da 1 ^a cadeira (%)	↑	\downarrow
	réplicas)	redução da 5 ^a cadeira (%)	\leftrightarrow	\downarrow
	Teste-3	tensão 4 / 5 (Kgf/cm ²)	\leftrightarrow	\downarrow
	(full factorial designs 2 ⁴ sem	redução da 1 ^a cadeira (%)	↑	\downarrow
	réplicas)	redução da 5 ^a cadeira (%)	\leftrightarrow	\downarrow
		velocidade (m/min)	1	\leftrightarrow

* Nota: \uparrow severa ou alta; \downarrow baixa e \leftrightarrow média ou intermediária.

5 RESULTADOS E DISCUSSÃO

5.1 Caracterização do Problema nos Laminadores LTF#1 e LTF#2

5.1.1 LTF#1

Observou-se vibração nos sensores dos mancais do cilindro de encosto da 5^ª cadeira do LTF#1 (Figura 5).

Nota-se que as excitações das bandas laterais foram promovidas pela defasagem do cilindro de encosto, enquanto a freqüência portadora encontra-se na faixa do *chatter* de 3ª oitava.

Figura 5 – Espectros a) chatter 3ª oitava; b) bandas laterais - rotação do encosto.

Realizou-se o teste de rampa (run up) no LTF#1 para identificar as velocidades operacionais críticas relacionado-as com as freqüências (Figura 6).

Figura 6 – Espectros em cascata (run up) – a) freqüência destacada caracteriza o *chatter* 3ª oitava; b) freqüência destacada caracteriza o *chatter* 5ª oitava; c) concentração da excitação do lado acionado.

No LTF#1 foram observadas ocorrências de *chatter(s)* de 3^a e 5^a, porém o *chatter* 3^a é significativamente maior (18 vezes) do que *chatter* 5^a. Analisando os dados, caracterizou-se que o *chatter* de 5^a oitava é proveniente das folgas dos mancais da 5^a cadeira do lado do acionamento (Figura 6.c).

5.1.2 LTF#2

Foi evidenciado a ocorrência, predominantemente, de *chatter* de 5^a oitava. A Figura 7 apresenta os espectros coletados através do sensor de vibração instalado no mancal do cilindro de encosto da 5^a cadeira do LTF#2.

Figura 7 – Espectros a) chatter 5ª oitava; b) bandas laterais - rotação do trabalho.

Observa-se a existência de bandas laterais relacionado à rotação do sistema de acionamento ou conjunto dos cilindros de trabalho.

A Figura 8 evidencia a presença de excitações de baixa freqüência (< 20 Hz), indicando anomalias do sistema de acionamento (*chatter* torcional).

Figura 8 – a) Espectro – excitação de freqüências baixas (< 20 Hz) e b) gráfico de tendência (teste run up) caracterizando excitação do lado acionado.

Predomina-se no LTF#1 o *chatter* de 3^ª oitava, causado pelas as condições operacionais. Enquanto no LTF#2 predomina-se o *chatter* de 5^ª oitava causado pelo sistema de acionamento.

5.2 Análise do Delineamento do Experimento (Design of Experiments - DOE)

5.2.1 Teste – 1 (LTF#1)

Examinaram-se os efeitos da tensão entre o vão 3/4, a taxa de redução da 5^ª cadeira, taxa de redução da 1^ª cadeira e o diâmetro do cilindro de trabalho da 4^ª cadeira do Laminador LTF#1. A Tabela 3 apresenta os valores codificados, os parâmetros utilizados e as respostas obtidas na vibração global.

	nem	valutes counicados			valutes uus ratailleuus			viniačan		
Rodada	bobina	Tensão 3/4	Red 5ª Cad	Red 1ª Cad	Diâm. 4ª Cad	Tensão 3/4	Red 5ª Cad	Redo 1ª Cad	Diâm 4ª Cad	RMS
1 ⁸	772663-300	1	.1	-1	-1	13	31	36	447	0,530428
2ª	772663-400	-1	1	1	-1	10	34	39	447	0,648907
3ª	772663-500	1	.1	1	-1	10	31	39	447	0,547488
4 ⁸	772663-100	-1	.1	-1	-1	10	31	36	447	0,632219
5ª	772662-100	1	1	1	-1	13	34	39	447	0,496089
6ª	772662-200	1	.1	1	-1	13	31	39	447	0,588982
7 ⁸	772662-300	1	1	-1	-1	13	34	36	447	0,513373
8ª	772662.400	-1	1	-1	-1	10	34	36	447	0,543555
9ª	772662-500	-1	1	-1	1	10	34	36	454	0,491604
10ª	773721-100	-1	-1	-1	1	10	31	36	454	0,535878
11 ⁸	773721-200	-1	1	1	1	10	34	39	454	0,574618
12ª	773721-300	1	1	1	1	13	34	39	454	0,560433
13ª	773721.400	1	1	-1	1	13	34	36	454	0,604936
14ª	773721-500	-1	-1	1	1	13	31	39	454	0,544998
15ª	773721-600	1	-1	-1	1	13	31	36	454	0,561274
16 ^a	773723-200	-1	.1	1	1	10	31	39	454	0.455201

Tabela	3 0	s valores codificados, o	os p	parâmetros e as respostas	em vibração.
	lán	Valana Cadificadas		Valana das Dastimators	Million - Sin

A Figura 9.a detalha os efeitos padronizados da probabilidade normal. A Figura 9.b apresenta isoladamente os principais efeitos como resposta vibracional (3ª oitava). A Figura 9.c detalha a interação entre os efeitos investigados.

Figura 9 – a) Probabilidade normal dos efeitos significativos; b) efeitos principais x vibração e c) o diâmetro CT tem a maior interação com demais efeitos.

Os gráficos de topografia (Figura 10) apresentam as combinações entre as variações de diâmetro com os demais fatores, bem como os níveis de vibração.

A combinação do aumento do diâmetro da 4ª cadeira com a diminuição da tensão entre os vãos causou a diminuição dos níveis de vibração na faixa de 3ª oitava. A Figura 10.c apresenta os níveis de vibração global com diferentes diâmetros de cilindros de trabalho, que operaram em uma campanha de cilindro de encosto.

Figura 10 – a) Diâmetro CT 4^a cadeira X Redução da 5^a cadeira X vibração e b) Diâmetro CT 4^a cadeira X tensão 3/4 cadeiras X vibração e c) Diâmetro CT 4^a cadeira X vibração global.

O aumento do arco de contato promove o deslocamento da força máxima para o início da mordida, minimizando o efeito do amortecimento negativo.

Propõe-se o modelo estatístico ajustado (Eq. 2) para o LTF#1, utilizando-se o princípio da análise de variância.

$$\hat{y} = 32,9 - 0,164A - 0,89B + 0,0024C - 0,072D + 0,00037AD + 0,002BD$$
 Equação 2

5.2.2 Testes – 2 e 3 (LTF#2)

Inicialmente, foram examinados os efeitos da tensão 4/5, taxa de redução da 5^ª cadeira e taxa de redução da 1^ª cadeira, e posteriormente foi incluída a velocidade. Para os testes 2 e 3 obtivemos dados similares à Tabela 3.

Figura 12 – Probabilidade normal - efeitos significativos a) sem influência da velocidade b) com influência da velocidade.

Comparando o teste 2 com 3, pode-se dizer que a velocidade introduz energia no sistema e potencializa a vibração. Os fatores (Figura 12.b) que se mostraram mais significativos estão relacionados à falta de rigidez.

Figura 13 – a) Efeitos principais (destaque é a velocidade) e b) Aumento da velocidade de processo também aumenta a vibração.

O acréscimo da redução e da tensão 4/5, de forma combinada com o aumento da velocidade, implicam no aumento dos níveis de vibração. Geralmente, situações semelhantes, discutidas na literatura são provenientes de folgas mecânicas dos conjuntos.

Propõe-se o modelo estatístico ajustado (Eq. 3) para LTF#2, utilizando-se o princípio da análise de variância.

```
\hat{y} = 9.007 - 0.26A + 0.0014B - 0.06C - 0.016D + 0.0005AD - 0.0000002BD + 0.0012CD - 0.000004ACD Equação 3
```

6 CONCLUSÕES

O LTF#1 entra em ressonâncias (na faixa de 200 Hz) severamente e instantânea em 3ª oitava, a freqüência fundamental encontra-se modulada ao encosto.

Através das técnicas do DOE, constatou-se que o LTF#1 é sensível, predominantemente, ao efeito do diâmetro de trabalho da 4ª cadeira (amortecimento negativo) e também ao efeito da tensão 3/4.

O LTF#1 é excitado na freqüência 672,5 Hz e a freqüência fundamental 15 Hz, que corresponde à rotação do cilindro de trabalho da 5ª cadeira. Trata-se de folga lateral do conjunto de trabalho ou força de excitação do acionamento.

O LTF#2 é excitado na faixa de 5ª oitava (550 a 680 Hz) devido falta de rigidez no interior da cadeira combinado com as forças externas provenientes do acionamento. A freqüência fundamental que se trata do sistema de acionamento.

O LTF#2 entra em ressonância nas freqüências de 177,5 Hz e 186,25 Hz que referem-se a 3ª oitava com maior excitação do lado acionado.

Através dos testes de DOE, constatou-se que o LTF#2 vibra em função do aumento da velocidade, caracterizando folga no interior da cadeira, potencializada pelo acionamento.

REFERÊNCIAS

- 1 Roberts, WL."Four-high Mill Stand Chatter of the Fifth-Octave Mode," Iron and Steel Engineer, October 1978, Vol. 55, No.10, 41-47.
- 2 Paulino, WS; Hansen BL; Pellegrini, H; Novaes, GO; Lago, AS e Barros, LCM "Análise e Determinação Experimental do Comportamento Vibratório do Laminador de Encruamento – Chatter" Congresso Brasileiro de Manutenção – Set. (2006).