MODELAGEM DO COMPORTAMENTO DO COMPÓSITO CERÂMICA/ARAMIDA NO EMPREGO DE BLINDAGEM BALÍSTICA⁽¹⁾

Marco Fabius de Carvalho Torres ⁽²⁾ Diniz Pereira Gonçalves⁽³⁾ Francisco Cristóvão Lourenço de Melo⁽⁴⁾ Carlos de Moura Neto⁽⁵⁾

Resumo

O presente trabalho propõe um modelo analítico para o estudo do comportamento balístico de uma blindagem mista do tipo cerâmica/aramida. O modelo foi rodado no Matlab V.5, simulando dois impactos: o primeiro de uma munição 0,50 pol. AP sobre uma blindagem de SiC/Twaron; e o segundo de uma munição 7,62x51mm AP sobre uma blindagem de Al₂O₃/*Twaron*. Os resultados são gerados na forma de gráficos e dados dispostos em tabelas, permitindo análises cinéticas do projétil, do alvo (cerâmica) e da base (aramida). Ensaios balísticos foram realizados para determinar a V₅₀. A deflexão máxima referente à simulação de impacto com o SiC/Twaron serve como critério de falha. Para as blindagens que possuem a mesma base, porém diferentes alvos (outros materiais), a V₅₀ pode ser obtida da simulação quando a velocidade de impacto gerar a mesma deflexão do critério de falha e a velocidade final do projétil for nula. Assim, as V₅₀ obtidas dos ensaios balísticos e da simulação podem ser comparadas.

Palavras-chave: Impacto balístico; Blindagem cerâmica/aramida; Modelo analítico.

^{1 60°} Congresso Anual da ABM, Belo Horizonte –MG, 25 a 28 de julho de 2005.

² Pesquisador da Divisão de Materiais do Instituto de Aeronáutica e Espaço - AMR/IAE/CTA.

³ Chefe Adjunto da Divisão de Materiais do Instituto de Aeronáutica e Espaço - AMR/IAE/CTA.

⁴ Pesquisador da Divisão de Materiais do Instituto de Aeronáutica e Espaço - AMR/IAE/CTA.

⁵ Membro da ABM, Professor Adjunto do Instituto Tecnológico de Aeronáutica – ITA/CTA.

INTRODUÇÃO

O conhecimento aprofundado dos mecanismos de penetração durante o impacto é extremamente importante num projeto de blindagem. A representação por simulação matemática dos fenômenos envolvidos durante a penetração é uma ferramenta de projeto bastante valiosa. Podem-se citar como vantagens: redução de custos e de tempo, facilidade de analisar o comportamento de vários tipos de blindagens sob impactos, simulando vários tipos de materiais para diferentes valores de energia cinética do projétil.

A natureza de um impacto sobre uma blindagem pode ser analisada por três métodos: **empírico, analítico e numérico**. No primeiro caso, um grande número de experimentos é realizado e as equações matemáticas são ajustadas aos dados experimentais, para serem representativas do modelo real. Nos outros casos, são adotadas regras que predizem a resposta ao impacto sobre uma blindagem. O método analítico resolve equações básicas da Mecânica, juntamente com as equações constitutivas dos materiais envolvidos, e considera os aspectos físicos principais do evento. Embora o método aparentemente seja simples e eficiente, ele torna-se complicado, pois há a necessidade de se programar. Sua principal vantagem é o fato de poder lidar com rapidez com muitos parâmetros de análise. O modelo numérico é freqüentemente baseado nas integrações das equações do problema governadas pelo tempo, consumindo muito tempo computacional. Seja qual for o método, é importante haver uma convalidação com os valores experimentais obtidos de ensaios reais[1].

No presente trabalho, o método analítico é escolhido por apresentar duas grandes vantagens em comparação respectiva com os métodos empírico e numérico: necessidade de poucos ensaios e de pouco recurso computacional. As blindagens do tipo cerâmicas/compósitos são o foco do trabalho, por ser de grande interesse no setor aeronáutico, devido a seu baixo peso e grande resistência balística.

Vários pesquisadores elaboraram modelos matemáticos para descrever o fenômeno durante a penetração entre eles: Cunniff [2] e Navarro [3]. O trabalho de Benloulo [4] é destacado aqui, por apresentar de forma simplificada o comportamento da cerâmica e do projétil no fenômeno de impacto balístico de uma blindagem cerâmica/compósito, onde o fenômeno do impacto é dividido em duas fases: formação do cone cerâmico e penetração no alvo. O trabalho de Morye [5] também é destacado, pois de forma simples identifica os elementos principais que contribuem para a absorção energética da base de compósito.

Morye e colaboradores, estudando três tipos de compósitos: com fibra de polietileno obtida por *gel-spun* [6], com fibras de aramida e com fibras de Nylon-66 [7] identificam dois mecanismos principais de absorção de energia: falha por tração das fibras e deformação elástica do compósito. Em trabalho posterior [5], inclui a inércia do compósito como outro fator importante na absorção de energia.

O modelo analítico aqui desenvolvido altera o modelo sugerido por Benloulo [4], inserindo a equação que governa o movimento do cone de fraturas proposta por Zaera [8], que considera o cone de fratura na cerâmica um sistema de massa variável, devido à variação de altura do cone durante a penetração. Para a base de compósito, o modelo aqui sugerido modifica o trabalho proposto por Morye [5], adequando ao caso específico de uma blindagem mista. Assim, a equação da onda transversal que antes se propagava a partir da vizinhança do raio do projétil, agora é propagada a partir do cone cerâmico.

Os resultados dos modelos propostos podem ser analisados nas simulações gráficas do desempenho da velocidade do projétil obtidos pelo Matlab versão 5.

MATERIAIS E MÉTODOS

Conforme Benloulo [4], a **Primeira Fase** corresponde à formação do cone de fratura, onde a pastilha apresenta a máxima resistência à penetração. Depois, na **Segunda Fase**, o projétil penetra no cone com cerâmica fragmentada e pulverizada, cuja propriedade mecânica é menor do que a cerâmica intacta, e cujo grau de fragmentação varia para cada ponto. A geração de trincas, como as descritas, permite o deslocamento de pequenos fragmentos, facilitando a penetração do projétil[9].

Primeira Fase

Na modelagem do comportamento da cerâmica, admite-se que nessa fase o projétil é erodido sem que haja penetração ($\frac{dx}{dt}$ =0) e movimento da cerâmica. A parte traseira do projétil move-se com uma velocidade V(t) governada pela equação de Tate [10]:

$$M_P \frac{dV}{dt} = -Y_P A_P$$

A perda de massa do projétil é determinada pela condição geométrica do projétil, dada pela equação:

$$\frac{\mathrm{dM}_{\mathrm{P}}}{\mathrm{dt}} = -\rho_{\mathrm{P}} \mathrm{A}_{\mathrm{P}} \mathrm{V}$$

Em que

- A_P é a área da seção transversal do projétil,
- Y_P é a tensão de escoamento dinâmico do projétil,
- ρ_P é a massa específica do projétil.

A massa inicial do projétil e a velocidade de impacto são as condições iniciais para o par de acima.

Segunda Fase

Após a formação do cone de fraturas, o projétil começa a penetração e todo o conjunto que forma a blindagem contribui para a diminuição da velocidade do projétil. A traseira do projétil move-se com uma velocidade V(t), enquanto que a interface cerâmica/projétil move-se com $\frac{dx}{dt}$ e o cone com [$\frac{duo}{dt}$]. As diferenças entre

V(t) e $\frac{dx}{dt}$ fornece a taxa de erosão, enquanto que a velocidade de penetração do

projétil no cone é dado pela diferença entre $\frac{dx}{dt}$ e [$\frac{duo}{dt}$]. As variáveis independentes x e u₀ representam o deslocamento da interface e da base, respectivamente. A

Figura 1 e Figura 2 representam o mecanismo envolvido.

Equação 2

Equação 1

Figura 2. Configuração da 2^ª fase [4]

Equações do projétil

A ponta do projétil poderá escoar ou não, dependendo da velocidade da interface cerâmica/projétil, $\frac{dx}{dt}$. Dessa forma devem ser feitas duas análises.

Primeiro caso: $\frac{dx}{dt}$ <V(t). Existe uma zona onde o projétil é erodido. Aplicando a equação de Tate e Aleksevskii [10-11]

$$Y_{P} + \frac{1}{2}\rho_{P}\left(V - \frac{dx}{dt}\right)^{2} = Y_{c}' + \frac{1}{2}\rho_{c}\left(\frac{dx}{dt} - \frac{duo}{dt}\right)^{2}$$
Equação 3

na qual Y_c['] é a tensão dinâmica da cerâmica fraturada.

A desaceleração do projétil é dada pela equação de Tate [10]:

$$M_{P}(t) \frac{dV}{dt} = -Y_{P}A_{P}$$

sendo $V(t_1) = V_1$.

A velocidade inicial dessa fase coincide com a velocidade final da primeira fase. A perda de massa é dada por:

$$\frac{dM_{P}}{dt} = -\rho_{P}A_{P}\left(V - \frac{dx}{dt}\right)$$
 Equação 5

sendo $M_P(t_1)=M_{P1}$, que é a massa do projétil na primeira fase.

Segundo caso: $\frac{dx}{dt}(t) = V(t)$. A interface e o projétil possuem a mesma

velocidade. Nesse caso, o projétil não mais se deforma; então as equações de Tate e de perda de massa não se aplicam. Dois subcasos são considerados:

Subcaso 1: A velocidade do cone é menor do que o projétil. Dessa forma, o projétil penetra na cerâmica até que o cone é completamente erodido. A equação de Newton governa esse subcaso:

$$M_{P2} \frac{dV}{dt} = -Y'_C A_P.$$

Equação 6

Subcaso 2: O cone não é completamente erodido. Nesse caso, partículas de cerâmicas atingem velocidade igual ao projétil, formando um conjunto com o projétil. A contribuição da energia cinética das partículas em comparação com a energia cinética do projétil é desprezada, em virtude do diminuto tamanho das mesmas.

Equação 4

Modelamento das equações cerâmicas

No final da primeira fase, o cone move-se sujeito à resultante entre a força exercida pelo projétil, que empurra a cerâmica, e a força exercida pelo compósito, que impede o movimento da cerâmica, conforme representação na Figura 1.

Zaera [8] aplicou a variação do momento linear na direção do sistema[Figura 3] e propôs a seguinte equação para o movimento do cone de fraturas:

$$\begin{split} Y_{c}^{'}\pi \frac{D_{P}^{2}}{4} &- \sigma_{a}\pi R_{cc}^{2} = \pi \rho_{c}h_{cc} \Bigg[\frac{d^{2}x}{dt^{2}} \Bigg(\frac{D_{P}^{2}}{16} + \frac{R_{cc}^{2}}{12} + \frac{D_{P}R_{c}}{16} \Bigg) + \frac{d^{2}uo}{dt^{2}} \Bigg(\frac{D_{P}^{2}}{48} + \frac{R_{cc}^{2}}{4} + \frac{D_{P}R_{c}}{12} \Bigg) \Bigg] \\ &+ \pi \rho_{c} \frac{dh_{cc}}{dt} \Bigg[\frac{dx}{dt} \Bigg(\frac{7D_{P}^{2}}{48} + \frac{5R_{cc}^{2}}{12} \Bigg) - \frac{duo}{dt} \Bigg(\frac{D_{P}^{2}}{16} + \frac{13R_{cc}^{2}}{12} + \frac{D_{P}R_{cc}}{12} \Bigg) \Bigg] \\ &+ \pi \rho_{c}h_{cc} \frac{dR_{c}}{dt} \Bigg[\frac{dx}{dt} \Bigg(\frac{D_{P}}{12} + \frac{R_{cc}}{6} \Bigg) + \frac{duo}{dt} \Bigg(\frac{D_{P}}{6} + \frac{R_{cc}}{2} \Bigg) \Bigg] \end{split}$$
Equação 7

em que:

- D_P representa o diâmetro do projétil;
- R_{CC} o raio da base do cone de fratura na cerâmica;
- σ_α a tensão entre a base do cone e o compósito;
- ρ_C a massa específica da cerâmica;
- h_{CC} a altura do cone cerâmico;
- $\frac{dx}{dt}$ a velocidade da interface do projétil com a cerâmica ;e
- $\frac{duo}{dt}$ a velocidade da base do compósito.

Figura 3. Esforços atuantes em todo conjunto projétil/cerâmica/compósito[9].

Modelagem do compósito

A base em compósito retarda o projétil diminuindo sua energia cinética. Diferentes mecanismos atuam para a absorção da energia cinética, tais como: falha por tração das fibras, deformação elástica do compósito, delaminação interlaminar, deformação da base, cisalhamento entre as camadas do compósito e inércia do compósito. Entre os fatores que controlam a energia de absorção estão as propriedades de tração da fibra, da matriz, o arranjo das fibras no compósito e a

resistência interfacial. A compreensão desses fatores é essencial para o desenvolvimento de um modelo que prediz a absorção de energia de impactos balísticos para compósitos poliméricos.

Sobre as hipóteses adotadas para o modelo de Morye [5], somente a primeira sofre alteração para adequar a condição de blindagem mista (cerâmica/compósito); as demais permaneceram inalteradas. As hipóteses adotadas são:

- 1. depois do segundo caso da segunda fase o projétil é rígido e permanece indeformável no restante do impacto;
- 2. a energia resultante para vencer a força de atrito entre o projétil e compósito é desprezível, assim como o calor gerado;
- 3. o mecanismo de falha do compósito é uniforme através da espessura: isso é confirmado com fotos de alta velocidade;e

4. a energia absorvida na delaminação é desprezada.

Desenvolvendo o modelo, tem-se a energia total à qual o compósito é submetido, dada por:

Equação 8

em que:

- E_{TF} = energia absorvida na falha por tração das fibras primárias;
- E_{ED} = energia absorvida na deformação elástica das fibras secundárias;e
- E_{KE} = energia cinética do cone formado na base do compósito.

A descrição das expressões de energia do lado direito da Equação 8 foram modificadas do trabalho de Morye [5] para o caso da blindagem mista.

Resumidamente ,a Equação 8 pode ser reescrita como:

$$\frac{1}{2} \left(M_{CC} \left(\frac{duo}{dt} \right)^2 + M_p \left(\frac{dx}{dt} \right)^2 \right) = \frac{\pi E \varepsilon_0^2 T}{(R_{CF} - R_{CC})^2} \left[\frac{R_{CF}^4}{12} - \frac{R_{CC}^2 R_{CF}^2}{2} + \frac{2R_{CC}^3 R_{CF}}{3} - \frac{R_{CC}^4}{4} \right] + \frac{1}{2} \pi R_{CF}^2 T \rho \left(\frac{duo}{dt} \right)^2 + 8E_C R_{CC} R_{CF} T$$

em que:

- R_{CF} é o raio da base do cone do compósito;
- T é a espessura do compósito;
- E_C é a energia absorvida por unidade de volume devido à falha do compósito;
- ε_o é a deformação máxima da fibra;e
- M_{CC} é a massa do cone cerâmico.

Dados de entrada para a simulação

Os valores de entrada para a simulação são as propriedades da cerâmica e do compósito, materiais constituintes da blindagem, e do projétil. Algumas propriedades das cerâmicas e do projétil são estimadas seguindo modelos da literatura [12,13], outras de resultados experimentais e outras arbitradas.

Incertezas com relação às propriedades da cerâmica e do compósito obrigam que o modelo analítico seja calibrado às condições do ensaio de homologação do painel SiC/*Twaron*. Nesse ensaio foi utilizada uma munição calibre 0,50 pol. NATO tipo perfurante contra um alvo de SiC com 15mm de espessura e uma base em aramida com 20 camadas de tecidos. A V₅₀ obtida no ensaio foi de 607m/s e seu valor utilizado no modelo como velocidade de impacto sobre a blindagem.

O modelo analítico proposto adota como critério de falha a deformação da base, por ser o último elemento da blindagem composta a falhar. Em termos de projeto, a adoção desse critério de falha traz uma vantagem visível: blindagens com

menor dano colateral ocasionado por uma deformação profunda no painel blindado, entre eles: ferimentos internos em pessoas no caso de coletes, rompimentos de cabos ou estrago por deformação de qualquer objeto próximo da parede protegida pela blindagem - no caso de uma aeronave prejudicar o corredor de ejeção do acento. Dessa forma, com o programa de simulação calibrado,obtém-se o valor da deformação da base (20 camadas de *Twaron*) que é o valor para a falha para a simulação das blindagens de alumina com o mesmo tipo de base.

A cinética do impacto e as propriedades mecânicas do projétil, da cerâmica e do compósito são utilizadas como dados de entrada para a simulação.

Projétil	7,62x51 mm AP	0,50 pol. NATO
Velocidade de impacto - V _S (m/s) ^(a)	-	607,00
Massa - M _P (g) ^(a)	9,74	45,00
Dureza Vickers (HV) ^(a)	817,50	817,50
Tensão dinâmica de escoamento - Y _p (GPa) ^(b)	2,82	2,82
Massa específica - ρ_P (g/cm ³) ^(a)	8,41	8,41
Raio da seção transversal - R _P (mm) ^(a)	3,81	6,35

Tabela 1. Valores de entrada da simulação referente ao projétil

(a) Obtido no Laboratório. (b) Valor sugerido por Tabor [12].

Cerâmicas

O pó de carbeto de silício foi fornecido pela empresa alemã STARCK. A sinterização ocorreu a 1900°C, com rampa de aquecimento constante, atingindo sua temperatura máxima em 4 horas e mantendo num patamar constante durante 60 minutos, decrescendo livremente em seguida. Foram utilizados 5% de YAG na composição do SiC como aditivo de sinterização. Já a alumina sinterizada foi fornecida pela empresa Engecer.

Tabela 2. Valores de entrada da simulação referente à cerâmica.

Material	$Al_2O_3^{(e)}$	SiC
Espessura da cerâmica e (mm)	10,00	15,00 ^(a)
Massa específica $\rho_{\rm C}$ (g/cm ³)	3,840	3,150 ^(a)
Módulo de Young E ₁ (GPa)	-	410 ^(b)
Dureza Vickers (HV)	-	2050 ^(a)
Tensão dinâmica de escoamento Y _c (GPa)	7,50	5,86 ^(c)
Tensão dinâmica de escoamento da cerâmica fraturada $ Y_{C}^{'}({\mbox{GPa}}) $	2,82	2,82 ^(e)
Velocidade da onda na cerâmica u _{cerâmica} (m/s)	10000	11409 ^(d)

(a) Obtido no Laboratório. (b) Literatura [14]. (c) Literatura [15]. (d) Literatura [13]. (e) Literatura [4]

Compósito de Aramida

O tecido utilizado para a base do compósito foi um *Twaron* T750 com 20 camadas cujos valores do módulo de Young, massa específica e elongação até o rompimento foram obtidos do catálogo do fabricante, Teijin.

 Tabela 3. Valores de entrada da simulação referente ao compósito

Massa específica da fibra p _{fibra} (g/cm ³) ^(a)	1,440
Massa específica do compósito ρ_{comp} (g/cm ³) ^(a)	1,97961
Módulo de Young da fibra E (GPa) ^(a)	67
Elongação até o rompimento ε_{0} (%) ^(a)	3,70
Energia absorvida devido à falha do compósito/volume Ec (MJ/m ³) ^(b)	45,86
Espessura do compósito T (mm) ^(c)	13
Módulo de cisalhamento transversal G _T (MPa) ^(d)	28,7

(a) Catálogo do fabricante, Teijin. (b) $E_c = \frac{1}{2} E \cdot \epsilon_o^2$ (c) Obtido no Laboratório. (d) Literatura [5].

Resultados e discussões

A Figura 4 representa um gráfico de velocidade x tempo da parte traseira do projétil, base de compósito e da interface projétil/cerâmica para o painel de SiC/*Twaron*. A **primeira fase** ocorre nos primeiros 7,8885 s, quando a velocidade do projétil decai sem haver penetração. Observa-se no gráfico que as velocidades da base e da interface são nulas.

Na **segunda fase**, a velocidade da interface projétil/cerâmica cresce superior à velocidade da base. Ambas aumentam com o tempo, enquanto que a velocidade do projétil decai. A diferença entre a velocidade da interface e da base é responsável pela penetração na cerâmica, enquanto que a diferença entre a velocidade da parte traseira do projétil e da interface é responsável pela erosão do projétil. O **primeiro caso** dessa fase termina por volta de 38,39 s ,quando o projétil deixa de ser erodido, em termos da velocidade significa que a velocidade da parte traseira do projétil e da interface são iguais. O **segundo caso** termina em 54,83 s quando a base atinge a mesma velocidade da interface.

A **fase final** da penetração, ou **falha**, termina em 69,86 s, quando a base sofre uma deformação igual ou superior à falha determinada durante a calibração do programa. Nessa fase, a base é a única responsável pela absorção da energia cinética do projétil, conforme Equação 8.

Alvo cerâmico	Al ₂ O ₃	SiC
V ₅₀ (m/s)	774	607
Perda de massa do projétil (%)	35,88	25,74
Término da 1 ^ª Fase (μs)	6,000	7,8885
Término da 2ª Fase 1º caso (μṣ)	25,3582505	38,389868
Término da 2ª Fase 2º caso (μṣ	33,528925	54,829722
Término da Falha (μṣ)	64,761198	69,864773
Deformação da base (mm)	7,3711	7,3730

Tabela 4. Resultados obtidos da simulação de diferentes tipos de cerâmicas

Ensaios Balísticos

Na Tabela 6 ,os valores simulados de V_{50} são comparados com os valores obtidos nos ensaios balísticos, de acordo com cada tipo de material: painel blindado de alumina e de carbeto de silício.

Tabela 5.
 Especificação do painel blindado alumina/aramida[16]

Painel	Especificação	Espessura (mm)	Densidade de Área
IAE-AMR-BLDG-4037	Alumina 96%	10,6	45,8

Tabela 6. Comparação da V₅₀ obtida pela simulação e pelos ensaios balísticos

usera en comparação da v ₅₀ obtida pola cimaração o poloc cincarco bancaceo		
Alvo cerâmico	Al ₂ O ₃ IAE-AMR/BLDG 4037 [17]	SiC IAE-AMR/BLDG 3784 [18]
Projétil	7,62x51mm AP	0,50 pol AP
V ₅₀ simulado (m/s)	774,0	607,0
V ₅₀ ensaiado (m/s)	757,2	607,3
V ₅₀ simulado (m/s) V ₅₀ ensaiado (m/s)	774,0 757,2	607,0 607,3

Conclusões

Representar por meios analíticos fenômenos que ocorrem em microssegundos, onde grandes tensões são geradas, é sempre complicado. Assim acontece com os fenômenos balísticos. Compreendendo que a proposta do modelo é oferecer uma ferramenta qualitativa para desenvolvimento de projetos em blindagem, então verifica-sena tabela 6 que o papel do modelo é cumprido, visto que o valor simulado da V₅₀ para a blindagem de Alumina/Twaron fica próximo do valor ensaiado.

Observa-se que a hipótese adotada como critério de falha é consistente. Naturalmente, é necessário que se façam outros estudos com outros tipos de cerâmicas e compósitos, e verificar os desvios entre o valor simulado e ensaiado para espessuras diferentes da cerâmica e do compósito.

REFERÊNCIAS

- 1 NAVARRO, C. Simplified modelling of the ballistic behaviour of fabrics and fibre-reinforced polymeric matrix composites. In: KIM, J. K.; YU, T. X. Impact response and dynamic failure of composites and laminate materials: part 1 - Impact damage and ballistic impact. Switzerland: Trans Tech Publications, 1998. (Key Engineering Materials, v. 141-143). p. 384.
- 2 CUNNIFF, Philip M. An analysis of the system effects in woven fabrics under ballistic impact. **Textile Research Journal**, v. 62, n. 9, p. 495-509, Sept. 1992.
- 3 NAVARRO, C.; RODRIGUEZ, J.; CORTES, R. Analytical modelling of composite panels subjected to impact loading. **Journal De Physique IV**, v. 4, C8, p.515-520, Sept. 1994.
- 4 BENLOULO, S. Chocron; SÁNCHEZ-GÁLVEZ, V. A new analytical model to simulate impact onto ceramic/composite armors. **International Journal of Impact Engineering**, v. 21, n. 6, p. 461-471, Jul. 1998.

- 5 MORYE, S. S. et al. Modelling of the energy absorption by polymer composites upon ballistic impact. **Composites Science and Technology**, v. 60, n. 14, p. 2631-2642, 2000.
- 6 MORYE, S. S., et al. A comparison of the properties of hot compacted gel-spun polyethylene fibre composites with conventional gel-spun polyethylene fibre composites. Composites part A: Applied Science and Manufacturing, v.30, n. 5, p. 649-660, 1999.
- 7 MORYE, Shantaram Suryakant. High performance polymer composites for ballistic protection. PhD thesis, The University of Leeds, November 1998.
- 8 ZAERA, R.; SÁNCHEZ-GÁLVEZ, V. Analytical modelling of normal and oblique ballistic impact on ceramic/metal lightweight armours. **International Journal of Impact Engineering**, v. 21, n. 3, p. 133-148, Mar. 1998.
- 9 ZAERA, R., et al. Modelling of the adhesive layer in mixed ceramic/metal armours subjected to impact. Composites Part A Applied Science and Manufacturing, v. 31, n. 8, p. 823-833, 2000.
- 10 TATE, A. A theory for the deceleration of long rods after impact. Journal of the Mechanics and Physics of Solids, v. 15, n.6 387-399, 1967.
- 11 ALEKSEEVSSKII, V. P. Penetration of a rod into a target at high velocity, combustion, explosion and shock waves, vol. 2. New York: Faraday Press, 1996.
- 12 TABOR, D. The Hardness of Metals. Oxford: Clarendon Press, 1951.
- 13 GRAY, W.; LANKFORD, J. Composite Armor. In: KELLY, Anthony (Ed.). Concise Encyclopedia of Composite Materials. Oxford: Pergamon Press, 1989.
- 14 SHAFFER, P. T. B. Engineering properties of carbides In: AMERICAN SOCIETY FOR METALS INTERNATIONAL. **Ceramics and Glasses**. Metals Park: ASM International, 1991. p. 804-811. (Engineered materials handbook; v. 4).
- 15 GONÇALVES, D. P. Análise e investigação de impactos em blindagem composta cerâmica/metal, 2000. 95 f. Dissertação. (Mestrado em Ciência) Instituto Tecnológico de Aeronáutica, São José dos Campos.
- 16 SILVA, K. P. A. Análise de vulnerabilidade de aeronaves de asas rotativas. 2004. 65 f. TG (Trabalho de Graduação em Engenharia Aeronáutica) – Instituto Tecnológico de Aeronáutica, São José dos Campos.
- 17 GONÇALVES, Diniz Pereira. Relatório de resultados dos ensaios balísticos dos painéis de blindagem IAE-AMR/BLDG 4032, 4033, 4034, 4035, 4036 e 4037. São José dos Campos: IAE, 2004. 15 p.
- 18 Gonçalves, Diniz Pereira. Relatório de resultados dos ensaios balísticos dos painéis de blindagem IAE-AMR/BLDG 3783, 3784 e 3785. São José dos Campos: IAE, 2004. 23 p.

MODELING BEHAVIOUR OF A COMPOSITE CERAMIC/ARAMIDA IN A ARMOR SYSTEM

Abstract

An analytical model for the ballistic behaviour of a ceramic/aramida armor is proposed in this paper. Two simulations are performed using Mathlab 5: the first using 0.50-inch armor piercing (AP) projectiles on a SiC/Twaron armor and the second one using 7,62x51mm AP projectiles on a Al₂O₃/Twaron armor. The results are obtained in the form of graphics and the data are compiled in a table form, allowing kinetic analyses of projectile, target (ceramic) and the base (aramida). Ballistic impacts were performed to determine V₅₀. The maximum deflexion (simulated) for the impact with SiC/Twaron is used as failure criterion. For the same base armor, but different targets (different material), the V₅₀ can be obtained from the simulation when the impact velocity produces the same deflexion of the failure criterion and for zero final velocity of the projectile. Therefore, the obtained V₅₀ from the ballistic tests and from the simulations can be compared.

Key-words: Ballistic impact; Ceramic/aramida armor; Analytical model.