MODELAGEM TERMODINÂMICA DO SISTEMA Ta-B¹

Vanessa Motta Chad² Flávio Ferreira³ Paulino Bacci Fernandes⁴ Gilberto Carvalho Coelho⁵ Carlos Ângelo Nunes⁵

Resumo

No presente trabalho, o sistema Ta–B foi otimizado termodinamicamente com base no método CALPHAD. As fases Ta₃B₂, TaB, Ta₃B₄ e B (boro) foram modeladas como compostos estequimétricos. As fases L (liquido), BCC (tântalo), Ta₂B e TaB₂ foram modeladas como soluções, usando o modelo de sub-redes, com seus termos de excesso descritos pelos polinômios de Redlich–Kister. O procedimento de otimização foi baseado em dados experimentais das temperaturas *liquidus*, dados das transformações invariantes e de entalpia de formação. O diagrama calculado Ta–B reproduz bem os valores experimentais da literatura.

Palavras-chave: Intermetálicos; Diagrama de fases; Propriedades termodinâmicas; Sistema Ta–B.

THERMODYNAMIC MODELING OF THE Ta-B SYSTEM

Abstract

In the present work, the Ta–B system was thermodynamically optimized based on the CALPHAD method. The phases Ta_3B_2 , TaB, Ta_3B_4 and B (boron) were modeled as stoichiometric compounds. The phases L (liquid), BCC (tantalum), Ta_2B and TaB_2 were modeled as solutions, using the sublattices model, with their excess terms described by the Redlich-Kister polynomials. The optimization procedure was based on experimental data of *liquidus* temperatures, data of invariant transformations and enthalpy of formation. The calculated Ta–B diagram reproduces well the experimental values from the literature.

Keywords: Intermetallics; Phase diagrams; Thermodynamic properties; Ta–B System.

¹ Contribuição técnica ao 63° Congresso Anual da ABM, 28 de julho a 1° de agosto de 2008, Santos, SP, Brasil

² Aluna Doutorado – Depto. Eng. Materiais (DEMAR), Escola de Engenharia de Lorena (EEL–USP).

³ Professor – Escola de Engenharia Industrial Metalúrgica de Volta Redonda (TMC–EEIMVR–UFF).

⁴ Aluno Doutorado – Depto. Eng. Materiais (DEMAR), Escola de Engenharia de Lorena (EEL–USP).

⁵ Professor – Depto. Eng. Materiais (DEMAR), Escola de Engenharia de Lorena (EEL–USP).

1 INTRODUÇÃO

O desenvolvimento de novos materiais para altas temperaturas é essencial para gerações futuras de motores de aeronaves e turbinas a gás. Ligas MR–Si–B (MR: metal refratário) são candidatas potenciais porque podem apresentar um bom equilíbrio entre as propriedades necessárias para aplicações em altas temperaturas.^(1,2) A otimização termodinâmica do sistema Ta–B é parte de um projeto de pesquisa, que investiga as relações de fases na região rica de Ta sistema Ta–Si–B.

O diagrama Ta–B atualmente aceito,⁽³⁾ mostrado na Figura 1, é baseado nas propostas de Rudy e Windisch⁽⁴⁾ e Portnoi, Romashov e Salibekov.⁽⁵⁾ No entanto, recentes informações experimentais que modificam o diagrama Ta–B⁽³⁾ foram reportados por Chad *et al.*⁽⁶⁾: (i) a composição do líquido eutético rico em Ta está localizada em 18% at.B ao invés de 23% at.B; (ii) a composição do líquido peritético rico em Ta está localizada em 22,5% at.B ao invés de 27% at.B; (iii) a decomposição eutetóide da fase Ta₂B ocorre em 1925±25°C ao invés de 2.040±30°C. Além disso, investigações experimentais recentes em nosso grupo de pesquisa também mostraram um intervalo de solubilidade a 1500°C para a fase TaB₂ entre 66% e 72% at.B, concordando com os valores informados por Rudy e Windisch,⁽⁴⁾ ao invés de 62 e 72% at.B.⁽³⁾ Todas estas informações são consideradas na presente otimização.

Figura 1: Diagrama de fases do sistema Ta–B.⁽³⁾

Os dados termodinâmicos disponíveis para este sistema são: (i) a entalpia de formação da fase TaB_2 ;⁽⁷⁻⁹⁾ e (ii) a variação de entalpia com a temperatura, H(T)– H(298K), para a fase TaB_2 .⁽¹⁰⁾.

A única otimização do sistema Ta–B disponível na literatura é devido a Kaufman.⁽¹¹⁾ No entanto, algumas considerações podem ser feitas sobre a otimização do Kaufman: (i) todas as fases sólidas foram modeladas como compostos estequiométricos; (ii) Kaufman considerou a composição de Ta₂B em 33,3% at.B e não entre 29% e 31% at.B, como sugerido por Rudy e Windisch⁽⁴⁾ e

Portnoi, Romashov e Salibekov;⁽⁵⁾ (iii) algumas informações experimentais^(12,13) não foram consideradas e; (iv) nos sistema MR–Si–B, estamos utilizando o estado de referência adotado pelo SGTE, que não é compatível com o estado de referência adotado por Kaufman. Assim, o objetivo do presente trabalho é fornecer um novo conjunto de coeficientes termodinâmicos que dêem reproduzam melhor os equilíbrios de fases experimentais e os dados termodinâmicos disponíveis na literatura para o sistema Ta–B.⁽³⁾

2 MODELOS TERMODINÂMICOS

As fases Ta_3B_4 , TaB, Ta_3B_2 e B (boro) foram modeladas como compostos estequiométricos. As fases L (líquido), BCC (tântalo), Ta_2B e TaB_2 foram modeladas como soluções, usando o Formalismo de Energia de Compostos (CEF), com os termos de excesso descritos pelos polinômios de Redlich–Kister.

O CEF, descrito em detalhe por Sundman e Ågren⁽¹⁴⁾ assim como por Hillert,⁽¹⁵⁾ permite uma descrição adequada das propriedades termodinâmicas das fases tomando como base a existência de sub-redes. As sub-redes são basicamente dadas pelas diferentes posições Wyckoff dos átomos na estrutura cristalina da fase. Posições vazias intersticiais também são consideradas como sub-redes se elas podem eventualmente ser ocupadas por átomos, como em soluções intersticiais. Uma referência útil para modelar compostos intermetálicos é a compilação de Villars e Calvert⁽¹⁶⁾ A Tabela 1 mostra os dados das estruturas cristalinas das fases sólidas estáveis no sistema Ta–B, em suas estequiometrias ideais.⁽¹⁷⁾ Uma fase é modelada como um composto estequiométrico quando o intervalo de composição onde ela é estável é muito limitado, por exemplo, perto da sua esteguimetria ideal, e portanto pode-se considerar cada sub-rede sendo ocupada sempre por um único componente. Quando uma fase é estável em um intervalo de composição não desprezível, o conhecimento da estrutura específica de defeito na rede cristalina é essencial para a escolha correta do modelo, que é o caso das fases TaB₂ e Ta₂B no presente trabalho. Em tal caso, uma solução randômica de espécies, que inclui vacâncias, ocorre em pelo menos uma das sub-redes da fase. Compostos extremos (end-members) estáveis ou metaestáveis são formados nos casos limites de ocupação de sub-redes de solução. Considerando-se o caso em que a espécie não é complexa, como constituintes iônicos, a energia de Gibbs para cada fase individual ϕ , G_{m}^{ϕ} , é descrita pelo CEF com a seguinte equação expressa por mol de fórmula unitária⁽¹⁵⁾ (Nota-se abaixo que o sufixo sobrescrito "s" não representa uma potência e seu significado será esclarecido posteriormente):

$$G_{\rm m}^{\phi} = \sum_{\rm s} n^{\rm s} (1 - y_{\rm Va}^{\rm s}) \sum_{i} x_{i}^{o} G_{i}^{\rm stst} + \sum_{\rm end} \Delta_{\rm f}^{o} G_{\rm end}^{\phi} \Pi y_{i}^{\rm s} + RT \sum_{\rm s} n^{\rm s} \sum_{i} y_{i}^{\rm s} \ln(y_{i}^{\rm s}) + {}^{E} G_{\rm m}^{\phi}$$
(1)

podendo ser também escrita na forma⁽¹⁵⁾

$$G_{\rm m}^{\phi} = \sum_{\rm end} {}^{o}G_{\rm end}^{\phi} \Pi y_{i}^{\rm s} + RT \sum_{\rm s} n^{\rm s} \sum_{i} y_{i}^{\rm s} \ln(y_{i}^{\rm s}) + {}^{E}G_{\rm m}^{\phi}$$
(2)

$$\operatorname{com}^{\circ} G_{\mathrm{end}}^{\phi} = \Delta_{\mathrm{f}}^{\circ} G_{\mathrm{end}}^{\phi} + \sum_{i}^{\circ} G_{i}^{\mathrm{stst}} n^{\mathrm{s}}$$
(3)

Os símbolos das equações (1)–(3) têm os seguintes significados:

 n^{s} é o coeficiente estequiométrico da sub-rede "s";

 $y_{v_a}^s$ é a fração de posições de vacância na sub-rede "s";

 x_i é a fração molar do componente "i" no composto;

 ${}^{o}G_{i}^{\text{stst}}$ é a energia livre de Gibbs do componente "i" no estado padrão;

end é um vetor contendo compostos extremos;

 $\Delta_{\rm f}^{o}G_{\rm end}^{\phi}$ é a energia livre de Gibbs de formação dos compostos extremos da fase ϕ ;

 y_i^{s} é a fração de posições do componente "*i*" na sub-rede "s";

 $^{E}G_{\mathfrak{m}}^{\phi}$ é a energia de Gibbs de excesso da fase ϕ .

Fase	Protótipo	Grupo espacial	Símbolo Pearson	Posição Wyckoff	Átomo	x	У	z
BCC	W	Im-3m	cI2	2a	Та	0	0	0
				6b	$ip^{(1)}$	0	0,5	0,5
Ta ₂ B	Al ₂ Cu	I4/mcm	<i>tI</i> 12	8h	Та	0,1661	0,6661	0
				4a	В	0	0	0,25
Ta ₃ B ₂	U_3Si_2	P4/mbm	<i>tP</i> 10	2a	Та	0	0	0
				4g	В	0,389	0,889	0
				4h	Та	0,181	0,681	0,5
TaB	CrB	Стст	oC8	4c	Та	0	0,1453	0,25
				4c	В	0	0,4360	0,25
Ta_3B_4	Ta ₃ B ₄	Immm	<i>oI</i> 14	2c	Та	0,5	0,5	0
				4g	Та	0	0,180	0
				4g	В	0	0,375	0
				4h	В	0	0,444	0,5
TaB_2	AlB ₂	P6/mmm	hP3	la	Та	0	0	0
				2d	В	0,3333	0,6667	0,5
B-Rhom	В	R-3m	hR111	_(2)	В	_	_	_

Tabela '	1:	Dados	das	estruturas	cristalinas	das	fases	sólidas	estáveis	no	sistema	Та–	-B. ⁽¹⁶	i,17)
----------	----	-------	-----	------------	-------------	-----	-------	---------	----------	----	---------	-----	--------------------	-------

⁽¹⁾ ip se refere às posições intersticiais.

⁽²⁾ Posições Wyckoff e suas coordenadas foram intencionalmente suprimidas para a fase B-Rhom. A lista completa pode ser encontrada em Bolmgren, Lundström e Tergenius.⁽¹⁷⁾

Os somatórios são executados para vetores cujos elementos são sub-redes (*s*), componentes (*i*) ou compostos extremos (*end*), e o produto Πy_i^s contem as frações de posições correspondentes aos componentes presentes em cada composto extremo. Os compostos extremos são formados quando cada sub-rede é ocupada por um único componente. Portanto, o primeiro termo do lado direito da Eq. (2) descreve uma superfície de referência em que as energias de interação entre componentes vizinhos em diferentes sub-redes são essencialmente consideradas. O

segundo termo do lado direito da Eq. (2) leva em conta a entropia ideal da mistura, sob a suposição de mistura randômica dos componentes dentro das sub-redes. O termo de excesso leva em conta as energias de interação entre diferentes componentes nas sub-redes, que são dados por parâmetros de interação (L_{xs}^{ϕ}). Uma expressão geral para o termo de excesso é dada em Sundman e Ågren.⁽¹⁴⁾ Para o presente trabalho, é suficiente considerar as energias de interação de "soluções de excesso" formadas sob a consideração da mistura randômica de diferentes componentes "*i*1" e "*i*2" em cada sub-rede enquanto as outras sub-redes são ocupadas por um único componente "*i*". Usando polinômios de Redlich–Kister para os parâmetros de interação,⁽¹⁸⁾ o termo de excesso pode ser descrito por:

$${}^{E}G_{m}^{\phi} = \sum_{xs} \Pi y_{i}^{s} \sum_{\nu} {}^{\nu}L_{xs}^{\phi} (y_{i1}^{s} - y_{i2}^{s})^{\nu}$$
(4)

onde ${}^{\nu}L_{xs}^{\phi}$ é o parâmetro de interação de ordem " ν ". O primeiro somatório é executado para um vetor cujos elementos são todos "soluções de excesso" (*xs*) e o produto Πy_i^s contem as frações de posições correspondentes aos componentes presentes em cada "solução de excesso".

2.1 Energia de Gibbs para Componentes Puros

A dependência da energia de Gibbs com a temperatura de cada elemento puro é descrita por uma equação da forma geral: ${}^{o}G_{\rm m}^{\phi} - H_{i}^{\rm SER} = a + bT + cT \ln(T) + dT^{2} + eT^{3} + fT^{-1}$ (5) onde $H_{i}^{\rm SER}$ é a entalpia do elemento estável "*i*" a 298,15 K.

2.2 Fase Líquida

A fase líquida foi modelada como uma solução de uma única sub-rede substitucional. Portanto, as frações de posições na Eq. (2) são equivalentes às frações molares e os compostos extremos são coincidentes com os elementos puros, por exemplo, ${}^{o}G_{end1}^{L} = {}^{o}G_{Ta}^{L}$ e ${}^{o}G_{end2}^{L} = {}^{o}G_{B}^{L}$, levando à seguinte expressão para sua energia de Gibbs:

$$G_{\rm m}^{\rm L} = x_{\rm Ta}^{\ o} G_{\rm Ta}^{\rm L} + x_{\rm B}^{\ o} G_{\rm B}^{\rm L} + RT[x_{\rm Ta} \ln(x_{\rm Ta}) + x_{\rm B} \ln(x_{\rm B})] + x_{\rm Ta} x_{\rm B}[{}^{0}L_{\rm Ta,B}^{\rm L} + {}^{1}L_{\rm Ta,B}^{\rm L}(x_{\rm B} - x_{\rm Ta}) + {}^{2}L_{\rm Ta,B}^{\rm L}(x_{\rm B} - x_{\rm Ta})^{2}]$$
(6)

2.3 Fase BCC

A estrutura cúbica de corpo centrado (BCC) pode ser modelada como uma fase com duas sub-redes, ou seja, uma sub-rede correspondente à posição Wyckoff 2a (substitutional) e outra correspondente às posições intersticiais octaédricas 6b. Para manter a compatibilidade dentro das bases de dados termodinâmicos, este modelo é normalmente adotado ainda que nenhuma solução intersticial seja formada no sistema específico. Na fase BCC do sistema Ta–B, os átomos de B ocupam as posições intersticiais.⁽¹⁹⁾ Portanto, o modelo (Ta)(B,Va)₃ foi escolhido levando à seguinte expressão para sua energia de Gibbs:

$$G_{\rm m}^{\rm BCC} = y_{\rm Ta}^{\rm s1} y_{\rm Va}^{\rm s2} \, {}^{o} G_{\rm Ta:Va}^{\rm BCC} + y_{\rm Ta}^{\rm s1} y_{\rm B}^{\rm s2} \, {}^{o} G_{\rm Ta:B}^{\rm BCC} + 3RT[y_{\rm B}^{\rm s2} \ln(y_{\rm B}^{\rm s2}) + y_{\rm Va}^{\rm s2} \ln(y_{\rm Va}^{\rm s2})] + + y_{\rm B}^{\rm s2} \, y_{\rm Va}^{\rm s2} [{}^{o} L_{\rm Ta:B,\rm Va}^{\rm BCC} + {}^{1} L_{\rm Ta:B,\rm Va}^{\rm BCC} (y_{\rm B}^{\rm s2} - y_{\rm Va}^{\rm s2}) + ...]$$

$$(7)$$

onde ${}^{o}G_{\text{Ta:Va}}^{\text{BCC}}$ e ${}^{o}G_{\text{Ta:B}}^{\text{BCC}}$ correspondem aos compostos extremos e são descritos por:

$${}^{o}G_{\text{Ta:Va}}^{\text{BCC}} = {}^{o}G_{\text{Ta}}^{\text{BCC}}$$

$${}^{o}G_{\text{Ta:B}}^{\text{BCC}} = {}^{o}G_{\text{Ta}}^{\text{BCC}} + 3 {}^{o}G_{\text{B}}^{\text{Rhom}} + \Delta_{\text{f}}^{o}G_{\text{Ta:B}}^{\text{BCC}}$$
(8)

A fase BCC é descrita dentro dos limites $(Ta)(Va)_3 e (Ta)(B)_3$, correspondem ao Ta-BCC puro, quando a sub-rede intersticial está vazia, e ao composto metaestável TaB₃-BCC, quando a sub-rede intersticial é completamente preenchida com átomos de B.

2.4 Fase Ta₂B

A fase Ta₂B exibe uma estrutura tetragonal (*tl*12, grupo espacial *l*4/*mcm*, protótipo Al₂Cu) com duas sub-redes, onde átomos de Ta e B ocupam as posições Wyckoff 8h e 4a, respectivamente. Como mencionado anteriormente, esta fase apresenta um intervalo de homogeneidade (29% a 31% at.B) que não inclui a estequiometria ideal 2:1 (33,3% at.B). Considerando que não há nenhuma informação na literatura sobre a estrutura de defeitos desta fase e que seu intervalo de estabilidade ocorre só no lado rico em Ta (<33,3 % at.B), é razoável supor que a estrutura de defeito da rede seja relacionada a vacâncias nas posições de B. Portanto, o modelo (Ta)₂(B,Va)₁ foi adotado para a fase Ta₂B no presente trabalho, com sua energia de Gibbs descrita pela seguinte equação:

$$G_{\rm m}^{\rm Ta_2B} = y_{\rm Ta}^{\rm s1} y_{\rm B}^{\rm s2} {}^{o} G_{\rm Ta;B}^{\rm Ta_2B} + y_{\rm Ta}^{\rm s1} y_{\rm Va}^{\rm s2} {}^{o} G_{\rm Ta;Va}^{\rm Ta_2B} + RT \left[y_{\rm B}^{\rm s2} \ln(y_{\rm B}^{\rm s2}) + y_{\rm Va}^{\rm s2} \ln(y_{\rm Va}^{\rm s2}) \right] + {}^{E} G_{\rm Ta;B,Va}^{\rm Ta;B}$$
(9)

onde os compostos extremos são descritos por:

$${}^{o}G_{\text{Ta:B}}^{\text{Ta}_{2}\text{B}} = 2 \, {}^{o}G_{\text{Ta}}^{\text{BCC}} + {}^{o}G_{\text{B}}^{\text{Rhom}} + \Delta_{\text{f}}^{o}G_{\text{Ta:B}}^{\text{Ta}_{2}\text{B}}$$

$${}^{o}G_{\text{Ta:Va}}^{\text{Ta}_{2}\text{B}} = 2 \, {}^{o}G_{\text{Ta}}^{\text{BCC}} + {}^{o}G_{\text{Va}} + \Delta_{\text{f}}^{o}G_{\text{Ta:Va}}^{\text{Ta}_{2}\text{B}}$$
(10)

e o termo de excesso é dado por:

$${}^{E}G_{\text{Ta:B,Va}}^{\text{Ta_2B}} = y_{\text{B}}^{\text{s2}} y_{\text{Va}}^{\text{s2}} \left[{}^{0}L_{\text{Ta:B,Va}}^{\text{Ta_2B}} + {}^{1}L_{\text{Ta:B,Va}}^{\text{Ta_2B}} (y_{\text{B}}^{\text{s2}} - y_{\text{Va}}^{\text{s2}}) + \dots \right]$$
(11)

Assim, a fase Ta_2B é descrita entre os compostos extremos Ta-hP3 (metaestável) e Ta_2B quando a segunda sub-rede é ocupada unicamente por vacâncias ou átomos de B, respectivamente.

2.5 Fase TaB₂

A fase TaB₂ exibe uma estrutura hexagonal (*hP*3, grupo espacial *P*6/*mmm*, protótipo AlB₂) com duas sub-redes, com átomos de Ta e B ocupando posições Wyckoff 1a e 2d, respectivamente. Como mencionado anteriormente, esta fase mostra um intervalo extenso de homogeneidade (66% a 72% at.B). Post, Glaser e Moskowitz⁽²⁰⁾ compararam as características estruturais de vários diboretos e propuseram vacâncias em ambas as posições de Ta e B como mecanismos de defeito para explicar o intervalo de homogeneidade observado nestes compostos. Esta estrutura de defeitos de rede foi confirmada experimentalmente como sendo a

razão dos intervalos de homogeneidade da fase NbB₂ no sistema Nb–B⁽²¹⁾ e do diboreto de molibdênio estabilizado por Zr.⁽²²⁾ Recentemente, a mesma estrutura de defeito de rede foi usada com êxito no modelo termodinâmico da fase NbB₂.⁽²³⁾ Portanto, o modelo (Ta,Va)₁(B,Va)₂ foi adotado para a fase TaB₂ no presente trabalho com sua energia de Gibbs descrita pela seguinte equação:

$$G_{\rm m}^{\rm TaB_2} = y_{\rm Ta}^{\rm s1} y_{\rm B}^{\rm s2} {}^{o} G_{\rm Ta:B_2}^{\rm TaB_2} + y_{\rm Ta}^{\rm s1} y_{\rm Va}^{\rm s2} {}^{o} G_{\rm Ta:Va}^{\rm TaB_2} + y_{\rm Va}^{\rm s1} y_{\rm B}^{\rm s2} {}^{o} G_{\rm Va:B}^{\rm TaB_2} + y_{\rm Va}^{\rm s1} y_{\rm Va}^{\rm s2} {}^{o} G_{\rm Va:Va}^{\rm TaB_2} + RT \{ [y_{\rm Ta}^{\rm s1} \ln(y_{\rm Ta}^{\rm s1}) + y_{\rm Va}^{\rm s1} \ln(y_{\rm Va}^{\rm s1})] + 2 [y_{\rm B}^{\rm s2} \ln(y_{\rm B}^{\rm s2}) + y_{\rm Va}^{\rm s2} \ln(y_{\rm Va}^{\rm s2})] \} + {}^{E} G_{\rm Ta,Va:B,Va}^{\rm TaB_2}$$
(12)

onde compostos extremos são descrito por:

$${}^{o}G_{\text{Ta:B}_{2}}^{\text{TaB}_{2}} = {}^{o}G_{\text{Ta}}^{\text{BCC}} + 2 {}^{o}G_{\text{B}}^{\text{Rhom}} + \Delta_{\text{f}}^{o}G_{\text{Ta:B}_{2}}^{\text{TaB}_{2}}$$

$${}^{o}G_{\text{Ta:Va}}^{\text{TaB}_{2}} = {}^{o}G_{\text{Ta}}^{\text{BCC}} + 2 {}^{o}G_{\text{Va}} + \Delta_{\text{f}}^{o}G_{\text{Ta:Va}}^{\text{TaB}_{2}}$$

$${}^{o}G_{\text{Va:B}}^{\text{TaB}_{2}} = {}^{o}G_{\text{Va}} + 2 {}^{o}G_{\text{B}}^{\text{Rhom}} + \Delta_{\text{f}}^{o}G_{\text{Va:B}}^{\text{TaB}_{2}}$$

$${}^{o}G_{\text{Va:Va}}^{\text{TaB}_{2}} = {}^{o}G_{\text{Va}} + 2 {}^{o}G_{\text{Va}} + \Delta_{\text{f}}^{o}G_{\text{Va:B}}^{\text{TaB}_{2}}$$
(13)

e o termo de excesso:

$${}^{E}G_{\text{Ta,Va:B,Va}}^{\text{TaB}_{2}} = y_{\text{Ta}}^{\text{s1}} y_{\text{Va}}^{\text{s1}} y_{\text{B}}^{\text{s2}} {}^{0}L_{\text{Ta,Va:B}}^{\text{TaB}_{2}} + y_{\text{Ta}}^{\text{s1}} y_{\text{Va}}^{\text{s1}} y_{\text{Va}}^{\text{s2}} {}^{0}L_{\text{Ta,Va:Va}}^{\text{TaB}_{2}} + y_{\text{Ta}}^{\text{s1}} y_{\text{Va}}^{\text{s2}} y_{\text{Va}}^{\text{s2}} {}^{0}L_{\text{Ta,Va:Va}}^{\text{TaB}_{2}} + y_{\text{Ta}}^{\text{s1}} y_{\text{B}}^{\text{s2}} y_{\text{Va}}^{\text{s2}} {}^{0}L_{\text{Ta,B}_{2}}^{\text{TaB}_{2}} + y_{\text{Va}}^{\text{s1}} y_{\text{B}}^{\text{s2}} y_{\text{Va}}^{\text{s2}} {}^{0}L_{\text{Va;B},\text{Va}}^{\text{TaB}_{2}} + y_{\text{Va}}^{\text{s1}} y_{\text{S}}^{\text{s2}} y_{\text{Va}}^{\text{s2}} {}^{0}L_{\text{Va;B},\text{Va}}^{\text{s3}} + y_{\text{Va}}^{\text{s3}} y_{\text{S}}^{\text{s2}} y_{\text{Va}}^{\text{s2}} y_{\text{S}}^{\text{s2}} y_{\text{S}}^{\text{s2}} + y_{\text{Va}}^{\text{s3}} y_{\text{S}}^{\text{s3}} y_{\text{S}}^{\text{s3}} + y_{\text{Va}}^{\text{s3}} y_{\text{S}}^{\text{s3}} y_{\text{S}}^{\text{s3}} y_{\text{S}}^{\text{s3}} + y_{\text{Va}}^{\text{s3}} y_{\text{S}}^{\text{s3}} y_{\text{S}}^{\text{s3}} + y_{\text{S}}^{\text{s3}} y_{\text{S}}^{\text{s3}} y_{\text{S}}^{\text{s3}} + y_{\text{S}}^{\text{s3}} y_{\text{S}}^{\text{s3}} y_{\text{S}}^{\text{s3}} y_{\text{S}}^{\text{s3}} + y_{\text{S}}^{\text{s3}} y_{\text{S}}^{\text{s3}} y_{\text{S}}^{\text{s3}} + y_{\text{S}}^{\text{s3}} y_{\text{S}}^{\text{s3}} y_{\text{S}}^{\text{s3}} y_{\text{S}}^{\text{s3}} + y_{\text{S}}^{\text{s3}} y_{\text{S}}^{\text{s3$$

Nas Eqs. (13), ${}^{o}G_{\text{Ta:Va}}^{\text{TaB}_2}$ corresponde à energia de Gibbs do Ta puro com estrutura hexagonal *hp*3 e ${}^{o}G_{\text{Va:B}}^{\text{TaB}_2}$ ao dobro daquela do B nesta mesma estrutura. A energia de Gibbs do composto extremo com vacâncias em ambas as sub-redes da fase TaB₂ é considerada ser zero (${}^{o}G_{\text{Va:Va}}^{\text{TaB}_2} = 0$).

2.6 Fases Estequiométricas

As estruturas cristalinas dos boretos estequiométricos sugerem para seus modelos o uso de múltiplas sub-redes: (i) para Ta_3B_2 , $(Ta)_2(B)_4(Ta)_4$; (ii) para TaB, $(Ta)_4(B)_4$; (iii) para Ta_3B_4, $(Ta)_2(B)_4(Ta)_4(B)_4$. No entanto, no presente trabalho, posições ocupadas pelo mesmo elemento foram consideradas ser energeticamente equivalentes, reduzindo suas descrições para duas sub-redes, usando os menores inteiros como índices estequiométricos. Assim, as energias de Gibbs dos boretos estequimétricos são descritas pelas seguintes equações:

Ta₃B₂

$$G_{\rm m}^{\rm Ta_3B_2} = 3 \,\,^o G_{\rm Ta}^{\rm BCC} + 2 \,\,^o G_{\rm B}^{\rm Rhom} + \Delta_{\rm f}^{\,o} G_{\rm Ta;B_2}^{\rm Ta_3B_2} \tag{15}$$

ТаВ

$$G_{\rm m}^{\rm TaB} = {}^{o}G_{\rm Ta}^{\rm BCC} + {}^{o}G_{\rm B}^{\rm Rhom} + \Delta_{\rm f}^{o}G_{\rm Ta:B}^{\rm TaB}$$
(16)

Ta₃B₄

 $G_{\rm m}^{{\rm Ta}_3{\rm B}_4} = 3 \ ^o G_{\rm Ta}^{\rm BCC} + 4 \ ^o G_{\rm B}^{\rm Rhom} + \Delta_{\rm f}^{\, o} G_{\rm Ta;B_4}^{\rm Ta;B_4}$ (17)

3 O PROCEDIMENTO DE OTIMIZAÇÃO (RESULTADOS E DISCUSSÃO)

Os parâmetros ${}^{n}L_{ij}^{\phi}$ nas Eqs. (6), (7), (11) e (14) (ϕ = L, BCC, TaB₂ ou Ta₂B) assim como a energia de formação de Gibbs dos compostos extremos nas Eqs. (8), (10) e (13) e dos compostos estequiométricos nas Eqs. (15)–(17) são descritos de acordo com a Eq. (5). Seus coeficientes *a* e *b* correspondem às variáveis ajustáveis no procedimento de otimização (Tabela 2).

As descrições usadas para as energias de Gibbs dos elementos puros em seus estados estáveis e metaestáveis foram extraídas da base de dados SSOL do SGTE⁽²⁴⁾ e são dadas no Apêndice.

Para as energias de Gibbs de formação dos compostos estequiométricos, só os coeficientes *a* e *b* da Eq. (5) foram usados. Isto corresponde à adoção da regra de Neumann–Kopp, a qual descreve a capacidade térmica de uma fase como sendo a soma das capacidades térmicas de seus componentes, proporcionalmente a seus coeficientes estequiométricos na fase. A Figura 2 compara as medidas de entalpia, [H(T)–H(298K)], feitas por Bolgar et al.⁽¹⁰⁾ para a fase TaB₂ (símbolos) com valores calculados pela regra de Neumann–Kopp (linha contínua) indicando que esta regra descreve bem os dados de entalpia deste boreto.

O presente processo de otimização foi baseado principalmente em dados de temperaturas *liquidus*, transformações invariantes e limites de solubilidade da fase TaB₂, medidos por Rudy e Windisch,⁽⁴⁾ com as modificações relacionadas às reações invariantes sugeridas por Chad *et al.*⁽⁶⁾. Os valores experimentais para a entalpia de formação de TaB₂ informados por Kirpichev *et al.*⁽⁷⁾ e Meschel e Kleppa⁽⁸⁾ são –186,575 kJ/mol de fase e –159,900 kJ/mol de fase, respectivamente. De experimentos de evaporação de TaB₂, Leitnaker *et al.*⁽⁹⁾ calcularam que o calor de formação deste boreto deve ser de menor magnitude que –190,340 kJ/mol de fase, em conformidade com os valores medidos por Kirpichev *et al.*⁽⁷⁾ e Meschel e Kleppa.⁽⁸⁾. O processo de otimização foi executado considerando a média dos valores medidos^(7,8) (–173,237 kJ/mol de fase) para a entalpia de formação de TaB₂.

Figura 2: Comparação entre as medidas de H(T)–H(298) (kJ/mol de fase)⁽¹⁰⁾ e os valores de capacidade térmica calculados pela regra de Neumann–Kopp.

O modelo (Ta)₁(B,Va)₃ escolhido para BCC conduz à definição do composto extremo TaB₃ com sua energia de Gibbs de formação dada por $\Delta_f^o G_{TaB}^{BCC}$ na Eq. (8).

Para o Ta₂B, o modelo (Ta)₂(B,Va)₁ também conduz à definição do composto extremo Ta (puro) com estrutura Ta₂B (*t*/12), com sua energia de Gibbs de formação dada por $\Delta_{\rm f}^{\,o}G_{\rm Ta,Va}^{\rm Ta,B}$ na Eq. (10). Nenhuma informação experimental está disponível para esses compostos metaestáveis. Um valor positivo de 5000 J/mol de átomos é freqüentemente usado⁽²⁵⁾ para as energias de Gibbs de formação de tais compostos metaestáveis. Assim, os valores de 20000 J/mol de fase e 10000 J/mol de fase foram adotados aqui para $\Delta_{\rm f}^{\,o}G_{\rm Ta,B}^{\rm BCC}$ e $\Delta_{\rm f}^{\,o}G_{\rm Ta,Va}^{\rm Ta,B}$, respectivamente.

O modelo (Ta,Va)₁(B,Va)₂, escolhido para a descrição de TaB₂, conduz aos quatro compostos extremos dados na Eq. (13). A energia de Gibbs do composto extremo com ambas as sub-redes vazias foi considerada ser zero ($\Delta_{\rm f}^{o}G_{\rm Va:Va}^{\rm TaB_2}$ = 0). As descrições para o Ta-*hp*3 e o B-*hp*3 foram adotadas para os parâmetros $\Delta_f^o G_{Ta}^{TaB_2}$ e $\Delta_{\rm f}^{o}G_{\rm Va:B}^{\rm TaB_2}$, respectivamente. Os coeficientes *a* e *b* para o composto extremo $\Delta_{\rm f}^{o}G_{\rm Ta:B}^{\rm TaB_2}$ são variáveis ajustáveis no presente trabalho. A energia de Gibbs de TaB₂ é determinada pela superfície de referência definida por seus quatro compostos extremos⁽¹⁵⁾, corrigida pelo termo de excesso. Durante a otimização, foi verificada a estabilização do TaB₂ na composição estequiométrica e em sua vizinhança, o que é desejável, mas também próximo a composições correspondentes a uma estrutura cristalina TaB₂ guase vazia com razão Ta:B de aproximadamente 1:2. Para resolver este problema, foi atribuído arbitrariamente o valor fixo de 200 kJ/mol de fase para cada um dos parâmetros de excesso ${}^{0}L_{Ta,Va:Va}^{TaB_2}$ e ${}^{0}L_{Va:B,Va}^{TaB_2}$. Os coeficientes para os ${}^{0}L_{\mathrm{Ta,Va:B}}^{\mathrm{TaB}_{2}}$ e ${}^{0}L_{Ta:B,Va}^{TaB_{2}}$, permaneceram como outros dois parâmetros de excesso, variáveis ajustáveis no presente trabalho.

O diagrama de fase calculado é mostrado em Figura 3, onde uma boa concordância entre os valores experimentais e calculados pode ser observada. Os coeficientes otimizados das funções energia livre de Gibbs para as fases do sistema são apresentados na Tabela 2.

O valor calculado para a entalpia de formação de TaB₂ (-161,867 kJ/mol de fase) reproduz bem a média dos valores experimentais (-173,237 kJ/mol de fase, média de ⁽⁷⁾ e ⁽⁸⁾), ajustando-se melhor ao valor medido por Meschel e Kleppa.⁽⁸⁾

Figura 3: Diagrama de fases do sistema binário Ta-B otimizado.

			Coefic	ientes
Fase	Modelo	Parâmetro	Α	b
L	(Ta,B)	${}^{0}L^{ m L}_{ m Ta,B}$	-142389	+22,53
BCC	(Ta)(B,Va) ₃	$\Delta^{\it o}_{ m f} G^{ m BCC}_{ m Ta:B}$	+20000	
		${}^{0}L_{\mathrm{Ta:B,Va}}^{\mathrm{BCC}}$	-12200	-3,0
Ta₂B	(Ta) ₂ (B,Va) ₁	$\Delta_{ m f}^{\it o}G_{ m Ta_2B}^{ m Ta_2B}$	-91472	-1,79
		$\Delta^{\it o}_{ m f} G^{ m Ta_2B}_{ m Ta:Va}$	+10000	
		${}^{0}L_{\mathrm{Ta:B,Va}}^{\mathrm{Ta_2B}}$	+36542	
Ta ₃ B ₂	(Ta) ₃ (B) ₂	$\Delta^{\it o}_{ m f} G^{ m Ta_3B_2}_{ m Ta:B}$	-197777	+1,49
ТаВ	(Ta) ₁ (B) ₁	$\Delta^{\it o}_{ m f} G^{ m TaB}_{ m Ta:B}$	-98976	+1,2
Ta ₃ B ₄	(Ta) ₃ (B) ₄	$\Delta^{\it o}_{ m f} G^{{ m Ta}_3{ m B}_4}_{{ m Ta}:{ m B}}$	-370984	+11,98
TaB ₂	(Ta,Va)(B,Va) ₂	$\Delta^{\it o}_{ m f} G^{ m TaB_2}_{ m Ta:B}$	-173455	+10,58
		$\Delta^{o}_{ m f}G^{ m TaB_2}_{ m Ta:Va}$	+12000	+2,4
		$\Delta^{\it o}_{ m f} G^{ m TaB_2}_{ m Va:B}$	+100416	-19,412
		${}^{0}L_{\mathrm{Ta},\mathrm{Va}:\mathrm{B}}^{\mathrm{TaB}_{2}}$	-109386	+24,97
		${}^{0}L_{\mathrm{Ta:B,Va}}^{\mathrm{TaB}_{2}}$	+247782	
		${}^{0}L_{\mathrm{Ta,Va:Va}}^{\mathrm{TaB}_{2}}$	+200000	
		$^{0}L_{\mathrm{Va:B,Va}}^{\mathrm{TaB}_{2}}$	+200000	

Apêndice – Energia de Gibbs dos elementos puro em seus estados estáveis e metaestáveis.

$^{o}G_{\text{Ta}}^{\text{BCC}}$ =	-7285.889 +119.139858 T -23.7592624 T ln(T)	
	$-0.002623033 T^{2} + 1.70109 10^{-7} T^{3} - 3293 T^{-1}$	(298 < <i>T</i> < 1300)
	$\begin{array}{l} -22389.955 + 243.886767 - 41.1370887 \ln(7) \\ +0.0061675727^{2} - 6.5513610^{-7}7^{3} + 24295867^{-1} \\ +229382.886 - 722.597227 + 78.52447527 \ln(7) \end{array}$	(1300 < <i>T</i> < 2500)
	$\begin{array}{c} -0.017983376 \ T^{2} + 1.95033 \ 10^{-7} \ T^{3} - 93813648 \ T^{-1} \\ -963392.734 \ + 2773.7774 \ T - 337.227976 \ T \ln(T) \end{array}$	(2500 < T < 3258)
	+0.039791303 T^2 –9.74251 10 ⁻⁷ T^3 +509949511 T^{-1}	(3258 < T < 6000)
${}^{o}G_{\rm B}^{\rm Rhom}$ =	–7735.284 +107.111864 T –15.6641 T ln(T)	
	$-0.006864515 T^{2} + 6.18878 10^{-7} T^{3} + 370843 T^{-1}$ -16649.474 + 184.801744 T - 26.6047 T ln(T)	(298.13 < <i>T</i> < 1100)
	$-7.9809 \ 10^{-4} T^2 - 2.556 \ 10^{-8} T^3 + 1748270 \ \tilde{T}^{-1}$	(1100 < <i>T</i> < 2348)
	-30007.382 + 231.330244 + -31.3957527 + 10(1) -0.00159488 T^2 +1.34719 10 ⁻⁷ T^3 +11205883 T^{-1}	(2348 < T < 3000)
	$-21530.653 + 222.396264 T - 31.4 T \ln(T)$	(3000 < T < 6000)
$^{o}G_{\mathrm{Ta}}^{\mathrm{L}}$ =	+21649.235 +111.545352 T -23.7592624 T ln(T)	
	$-0.002623033 T^{2}$ +1.70109 $10^{-7} T^{3}$ -3293 T^{-1} +44244.377 -66.840037 T +0.6988726 T ln(T)	(298 < <i>T</i> < 1000)
	$-0.012638738 T^{2} + 6.35857 10^{-7} T^{3} - 3613900 T^{-1}$	(1000 < <i>T</i> < 3258)
	-6389.794 +258.024683 T -41.84 T ln(T)	(3258 < T < 6000)
$^{o}G_{\mathrm{B}}^{\mathrm{L}}$ =	+48458.559 –20.268025 <i>T</i> + ^{<i>o</i>} <i>G</i> ^{Rhom} _B	(298.13 < T < 500)
	+41119.703 +82.101722 T -14.9827763 T ln(T)	
	$-0.007095669 T^{2} + 5.07347 10^{-7} T^{3} + 335484 T^{-1}$	(500 < <i>T</i> < 2348)
	$+28842.012 +200.94731 T -31.4 T \ln(T)$	(2348 < 7 < 3000)
	+50372.665 –21.448954 $T + {}^{o}G_{\rm B}^{\rm Knom}$	(3000 < T < 6000)
$^{o}G_{\mathrm{Ta}}^{\mathrm{HCP}}$ =	+12000 +2.4 T + ${}^{o}G_{Ta}^{BCC}$	(298.13 < T < 6000)
$^{o}G_{\mathrm{B}}^{\mathrm{HCP}}$ =	+50208 –9.706 T + ^o G _B ^{Rhom}	(298.13 < T < 6000)

Agradecimentos

Os autores agradecem o apoio financeiro da FAPESP (#00/11620-0) e CNPQ (#141497/03-3).

REFERÊNCIAS

- 1 BEWLAY, B.P.; JACKSON, M.R.; ZHAO, J.-C.; SUBRAMANIAN, P.R. Metallurgical and Materials Transactions A, v. 34, p. 2043-2052, 2003.
- 2 MITRA, R. International Materials Reviews, v. 51, n. 1, p. 13-64, 2006.
- 3 OKAMOTO, H. Journal of Phase Equilibria, v. 3, p. 394-395, 1993.
- 4 RUDY, E.; WINDISCH, S.T. Ternay phase equilibria in transition metal-boroncarbon-silicon system, AFML-TR-65-2, part I, vol. X. OH: Wright-Patterson Air Force Base; 1966.
- 5 PORTNOI, K.I.; ROMASHOV, V.M.; SALIBEKOV, S.E. Soviet Powder Metallurgy and Metal Ceramics, v. 11, p.925-927, 1971.
- 6 CHAD, V.M.; RAMOS, E.C.T.; COELHO, G.C.; NUNES, C.A.; SUZUKI, P.A.; FERREIRA, F.; ROGL, P. Journal of Phase Equilibria and Diffusion, v. 27, p. 452-455,2006.

- 7 KIRPICHEV, E.P.; RUBTSOV, YU. I.; SOROKINA, T.V.; PROKUDINA, V.K. Russian Journal of Physical Chemistry, v. 8, p. 1128-1130, 1979.
- 8 MESCHEL, S.V.; KLEPPA, O.J. Journal of Chemical Physics, v. 2, p. 349-354, 1993.
- 9 LEITNAKER, J.M.; BOWMAN, M.G.; GILLES, P.W. Journal of the Eletrochemical Society, v. 6, p. 568-572, 1961.
- 10 BOLGAR, A.S.; LYASHCHENKO, A.B.; KLOCHKOV, L.A.; BLINDER, A.V.; MURATOV, V.B. Journal of Less-Common Metals, v. 117, p. 303-306, 1986.
- 11 KAUFMAN, L. CALPHAD, v. 3, p. 243-259, 1991.
- 12 NOWOTNY, H.; BENESOVSKY, F.; KIEFFER, R. Zeitschrift für Metallkunde, v. 7, p. 417-423, 1959.
- 13 KIESSLING R. Acta Chemica Scandinavica, v. 3, p. 603-615, 1949.
- 14 SUNDMAN, B.; ÅGREN, J. Journal of Physics and Chemistry of Solids, v. 42, p. 297-301, 1981.
- 15 HILLERT, M. Journal of Alloy and Compounds, v. 320, p. 161-176, 2001.
- 16 VILLARS, P; CALVERT, L.D. (Editors) Pearson's handbook of crystallographic data for intermetallic phases. 2nd ed., 1991, 4 vols. Materials Park, OH: ASM International; 1991.
- 17 BOLMGREN, H.; LUNDSTRÖM, T.; TERGENIUS, L.-E. Journal of the Less-Common Metals, v. 16, p. 341-45, 1990.
- 18 REDLICH, O., KISTER A.T. Journal of Industrial and Engineering Chemistry, v. 40, p. 345-348, 1948.
- 19 KIESSLING, R. Acta Chemica Scandinavica, v. 3, p. 603-615, 1949.
- 20 POST, B.; GLASER, F.; MOSKOWITZ, D. Acta Metallurgica, v. 2, p. 20-25, 1954.
- 21 NUNES, C.A.; KACZOROWSKI D.; ROGL, P.; BALDISSERA, M.R.; SUZUKI, P.A.; COELHO, G.C.; GRYTSIV, A.; ANDRÉ, G.; BOUREÉ, F.; OKADA, S. Acta Materialia, v. 53, p. 3679-3687, 2005.
- 22 MUZZY, L.E.; AVDEEV, M.; LAWES, G.; HAAS, M.K.; ZANDBERGEN, H.W.; RAMIREZ, A.P.; JORGENSEN, J.D.; CAVA, R.J. Physica C, v. 382, p. 1531-65, 2002.
- 23 PEÇANHA, R.M.; FERREIRA, F.; COELHO, G.C.; NUNES, C.A.; SUNDMAN, B. Intermetallics, v. 15, p. 999-1005, 2007.
- 24 SGTE Solution Database, Version 1992, provided by Thermo-Calc Software AB, Stockholm, Sweden (www.thermocalc.se).
- 25 NETO, J.G.C.; FRIES, S.G.; LUKAS, H.L. CALPHAD, v. 3, p. 219-228, 1993.