MODELAMENTO TERMODINÂMICO DO SISTEMA BINÁRIO Co-Sm¹

Alexandre Bellegard Farina² Marcos Flávio de Campos³ Flávio Beneduce Neto⁴

Resumo

Obteve-se uma detalhada descrição termodinâmica do sistema binário Co-Sm. Um banco de dados termodinâmicos coerente com os dados experimentais da literatura foi obtido. O modelo de sub-reticulados foi empregado para descrição termodinâmica de todas as fases. A implantação da solubilidade na fase $Co_{17}Sm_2$ foi realizada com sucesso, obtendo-se valores coerentes com os dados da literatura. Um modelo para descrição da solubilidade da fase Co_5Sm está sendo proposto, encontrando-se ainda em fase de implantação. Estimou-se a entalpia de formação da fase Co_5Sm em – 8609J/mol. A curva liquidus do diagrama foi corrigida, utilizando-se dados experimentais mais recentes.

Palavras-Chave: Diagrama de fase; Co-Sm; Modelamento termodinâmico

THERMODYNAMIC MODELING OF THE BINARYSYSTEM Co-Sm

Abstract

A detailed thermodynamic description of binary system Co-Sm was obtained, leading to a thermodynamic database compatible with experimental data from literature. The sub-lattice model was employed for the thermodynamic description of all phases. The solubility of the $Co_{17}Sm_2$ phase was successfully modeled, obtaining values coherent with experimental data from literature. A model for the description of the solubility of Co_5Sm phase has been proposed. The enthalpy of formation of the phase Co_5Sm has been calculated: -8609J/mol. A new model for the liquid phase was adopted in order to improve the description of recent experimental data.

Key words: Phase-diagram; Co-Sm; Thermodynamic modeling.

¹ Contribuição técnica apresentada no 61º Congresso Anual da ABM, de 24 a 27 de julho de 2006, Rio de Janeiro – RJ

² Graduando em Eng. Metalúrgica, PMT/EPUSP, Estagiário do IPT -LMMC. Membro da ABM. (<u>farina@ipt.br</u>)

³ Doutor em Eng. Metalúrgica. Pesquisador do INMETRO. Membro da ABM. (mfcampos@inmetro.gov.br)

⁴ Doutor em Eng. Metalúrgica. Pesquisador do IPT-LMMC. Membro da ABM. (<u>fbene@ipt.br</u>)

1 INTRODUÇÃO

O objetivo do presente trabalho é a descrição termodinâmica do sistema binário Co-Sm. Foi empregado o modelo de sub-reticulados⁽¹⁾ para descrição termodinâmica de todas as fases, referindo-se sempre aos elementos puros no estado padrão de referência (SER). A descrição termodinâmica dos elementos puros foi obtida da literatura e não sofreu modificações⁽²⁾.

A descrição proposta por Su et al⁽³⁾ foi utilizada como referência para a avaliação do sistema binário Co-Sm. Segundo o modelamento realizado por Su et al⁽³⁾, todas as fases intermetálicas foram consideradas, para simplificação, como sendo compostos estequiométricos. Entretanto, na literatura⁽⁴⁻¹¹⁾ há o consenso que as fases intermetálicas Co₁₇Sm₂ e Co₅Sm não são estequiométricas. Isso também é confirmado por medidas recentes da temperatura de Curie^(4,12) em composições próximas às do Co₅Sm estequiométrico através de análise TMA que possibilita grande exatidão para essas medidas⁽¹³⁾. Os valores recentemente medidos de temperatura de Curie^(4,12) estão em excelente concordância com os de Salmans at al⁽¹⁵⁾ medidos na década de 60.

Verificam-se também algumas divergências na comparação entre a curva liquidus calculada com os parâmetros propostos por Su et al⁽³⁾ e dados experimentais^(4,14) da literatura. Pretende-se aprimorar a descrição termodinâmica do sistema Co-Sm, considerando todos esses dados^(4-12,14).

2. DESCRIÇÃO DO SISTEMA BINÁRIO CO-SM

O sistema binário Co-Sm é composto pelas fases α -Sm, β -Sm, γ -Sm, CoSm₃, Co₄Sm₉, Co₂Sm, Co₃Sm, Co₇Sm₂, Co₁₉Sm₅, Co₅Sm, Co₁₇Sm₂, α -Co e β -Co⁽³⁻¹⁵⁾. Estas fases distribuem-se no diagrama de equilíbrio de fases de forma a produzir 12 transformações invariantes envolvendo 3 fases e 4 envolvendo 2 fases. Na Tabela 1 apresentam-se os valores mencionados na literatura⁽⁴⁾ quando da revisão do sistema binário Co-Sm.

Ponto Invariante	Reação	X _{Sm}	T(°C)
Fusão Congruente	Líquido → α-Co	0.0000	1495
Eutético	Líquido $\rightarrow \alpha$ -Co + Co ₁₇ Sm ₂	0.0910	1325
Fusão Congruente	Líquido \rightarrow Co ₁₇ Sm ₂	0.1053	1340
Peritético	Co ₁₇ Sm₂ + Líquido → Co₅Sm	0.1667	1300
Eutetóide	$Co_5Sm \rightarrow Co_{17}Sm_2+Co_{19}Sm_5$	0.1667	810
Peritético	Co₅Sm + Líquido → Co₁9Sm₅	0.2083	1260
Peritético	Co ₁₉ Sm₅ + Líquido → Co ₇ Sm ₂	0.2222	1245
Peritético	Co_7Sm_2 + Líquido $\rightarrow Co_3Sm$	0.2500	1200
Peritético	Co₃Sm + Líquido → Co₂Sm	0.3333	1070
Eutético	Líquido → Co₂Sm + Co₄Sm ₉	0.6300	590
Peritético	CoSm₃ + Líquido → Co₄Sm ₉	0.6923	613
Fusão Congruente	Líquido → CoSm ₃	0.7500	700
Eutético	Líquido → CoSm ₃ + α-Sm	0.8260	670
Fusão Congruente	Líquido $\rightarrow \alpha$ -Sm	1.0000	1072

Tabela 1. Transformações invariantes do sistema binário Co-Sm⁽⁴⁾

As fases α -Co e β -Sm apresentam cristalografia hexagonal compacta (HCP), a fase α -Sm apresenta cristalografia romboédrica (RHOMB), a fase γ -Sm apresenta cristalografia cúbica de corpo centrado (BCC) e a fase β -Co apresenta cristalografia cúbica de face centrada (FCC). As fases HCP, FCC e BCC foram modeladas por 2 sub-reticulados, $(Co, Sm)_u (Va)_v$ com números de sítios iguais a $u \in v$. O coeficiente u apresenta valor unitário em todas as fases enquanto que o coeficiente vapresenta os valores 0.5 (HCP), 1 (FCC) e 3 (BCC). O conjunto de equações para descrição da energia livre de Gibbs das fases HCP, FCC e BCC é apresentado na equação 1.

$${}^{\phi}G_{m} = +y_{Co}y_{Va}{}^{0}G_{CoVa}^{\phi} + y_{Sm}y_{Va}{}^{0}G_{SmVa}^{\phi} + \sum_{n=0}^{n}y_{Co}y_{Sm}y_{Va}{}^{n}L_{Co,SmVa}^{\phi}(y_{Co} - y_{Sm})^{n} + RT[u(y_{Co}\ln(y_{Co}) + y_{Sm}\ln(y_{Sm})) + v(y_{Va}\ln(y_{Va}))] + RT\ln((y_{Co}y_{Va}\beta_{0,CoVa}^{\phi} + y_{Sm}y_{Va}\beta_{0,SmVa}^{\phi}) + 1)g(\tau)$$
Equação 1^{i,ii}
$$\tau = \frac{T}{y_{Co}T_{C,CoVa}^{\phi} + y_{Sm}T_{C,SmVa}^{\phi}}$$

A fase RHOMB foi modelada por um único sub-reticulado com número de sítios unitário, $(Co, Sm)_1$. A equação para descrição da energia livre de Gibbs desta fase é apresentada na equação 2.

$$G_{m}^{RHOMB} G_{m} = y_{Sm}^{0} G_{Sm}^{RHOMB} + y_{Co}^{0} G_{Co}^{RHOMB} + RT(y_{Sm} \ln(y_{Sm}) + y_{Co} \ln(y_{Co})) + y_{Sm} y_{Co}^{0} L_{Co,Sm}^{RHOMB}$$
Equação 2

As fases intermetálicas, $(Co)_{u}(Sm)_{v}$, foram modeladas como compostos estequiométricos com exceção das fases $Co_{17}Sm_{2}$ e $Co_{5}Sm$ as quais foram modeladas como compostos com solubilidade. As equações que descrevem as energias livres de Gibbs das fases intermetálicas modeladas como estequiométricas são apresentadas na equação 3.

$${}^{\phi}G_{m} = +y_{Co}y_{Sm}{}^{0}G_{Co:Sm}^{\phi} + RT[u(y_{Co}\ln(y_{Co})) + v(y_{Sm}\ln(y_{Sm}))] + RT\ln((y_{Co}y_{Sm}\beta_{0;Co:Sm}^{\phi}) + 1)g(\tau) \quad com \ \tau = \frac{T}{y_{Co}y_{Sm}T_{C;Co:Sm}^{\phi}}$$
Equação 3

As fases intermetálicas $Co_{17}Sm_2 e Co_5Sm$ foram modeladas como compostos com solubilidade. A fase $Co_{17}Sm_2$ apresenta somente solubilidade de Sm enquanto que a fase Co_5Sm apresenta solubilidade de Sm e de Co. Partindo-se do modelo de composto estequiométrico, $(Co)_u(Sm)_v$, verifica-se que como há substituição de parte do Co por Sm (solubilidade de Sm), o primeiro sub-reticulado deve representar tal fato. A recíproca também é válida para a solubilidade de Co da fase Co_5Sm . Deste modo, as fases $Co_{17}Sm_2$ e Co_5Sm foram modeladas^(16,17) respectivamente por: $(Co, Sm)_{17}(Sm)_2$ e $(Co, Sm)_5(Co, Sm)_1$. A equação que descreve a energia livre destas fases é apresentada na equação 4.

$$se \ \tau \le 1: g(\tau) = 1 - \left[\frac{79\tau^{-1}}{140p} + \frac{474}{497} \left(\frac{1}{p} - 1\right) \left(\frac{\tau^3}{6} + \frac{\tau^9}{135} + \frac{\tau^{15}}{600}\right) \right] / \left[\frac{518}{1125} + \frac{11692}{15975} \left(\frac{1}{p} - 1\right) \right]$$

ii
$$se \ \tau > 1: g(\tau) = -\left[\frac{\tau^{-5}}{10} + \frac{\tau^{-15}}{315} + \frac{\tau^{25}}{1500}\right] / \left[\frac{518}{1125} + \frac{11692}{15975} \left(\frac{1}{p} - 1\right) \right]$$

$$p = 0.28 \ (fases HCP e FCC) \qquad p = 0.40 \ (fase BCC)$$

 $^{{}^{}i} y_{i}^{j}$ Representa o número de sítios ocupados pelo elemento *i* no sub-reticulado *j*.

$${}^{\phi}G_{m} = +y_{Co}^{1}y_{Sm}^{2}{}^{0}G_{Co.Sm} + y_{Co}^{1}y_{Co}^{2}{}^{0}G_{Co.Co} + y_{Sm}^{1}y_{Sm}^{2}{}^{0}G_{Sm:Sm} + y_{Sm}^{1}y_{Co}^{2}{}^{0}G_{Sm:Co}$$

$$+ \sum_{n=0}^{n} y_{Co}^{1}y_{Sm}^{1}y_{Sm}^{2}{}^{n}L_{Co,Sm:Sm}(y_{Co}^{1} - y_{Sm}^{1})^{n}$$

$$+ \sum_{n=0}^{n} y_{Co}^{1}y_{Sm}^{1}y_{Co}^{2}{}^{n}L_{Co,Sm:Co}(y_{Co}^{1} - y_{Sm}^{1})^{n}$$

$$+ \sum_{n=0}^{n} y_{Co}^{1}y_{Sm}^{2}y_{Co}^{2}{}^{n}L_{Co,Sm:Co}(y_{Co}^{2} - y_{Sm}^{2})^{n}$$

$$+ \sum_{n=0}^{n} y_{Co}^{1}y_{Sm}^{2}y_{Co}^{2}{}^{n}L_{Sm:Sm,Co}(y_{Sm}^{2} - y_{Co}^{2})^{n}$$

$$+ \sum_{n=0}^{n} y_{Sm}^{1}y_{Sm}^{2}y_{Co}^{2}{}^{n}L_{Sm:Sm,Co}(y_{Sm}^{2} - y_{Co}^{2})^{n}$$

$$+ RT[u(y_{Co}^{1}\ln(y_{Co}^{1}) + y_{Sm}^{1}\ln(y_{Sm}^{1})) + v(y_{Co}^{2}\ln(y_{Co}^{2}) + y_{Sm}^{2}\ln(y_{Sm}^{2}))]$$

$$+ RT\ln((y_{Co}^{1}y_{Sm}^{2}{}^{0}\beta_{0Co:Sm}) + 1)g(\tau)$$

$$\tau = \frac{T}{y_{Co}^{1}y_{Sm}^{2}{}^{0}T_{C;Co:Sm} + y_{Co}^{1}y_{Sm}^{2}y_{Sm}^{2}{}^{0}T_{C;Co,Sm:Sm} + y_{Co}^{1}y_{Co}^{2}y_{Sm}^{2}{}^{0}T_{C;Co:Co,Sm} + ...}$$

Verifica-se na equação 4 que não foi utilizado um parâmetro de segunda ordem (por exemplo: ${}^{1}\beta_{0Co,Sm:Sm}$) para descrição do momento magnético destes compostos. Tal fato deve-se a inexistência de dados na literatura que comprovem que estes intermetálicos apresentem mais de um estado magnético, o que justificaria o uso deste parâmetro⁽¹⁸⁾. No entanto, a variação da temperatura de Curie foi avaliada nestas fases^(4,12) e verifica-se que esta varia com a composição justificando, portanto, o uso de um parâmetro de interação (${}^{0}T_{CCO,Sm:Sm}$).

3 DADOS EXPERIMENTAIS

Os dados experimentais utilizados para a otimização do sistema binário Co-Sm consistiram de dados de entalpia de formação⁽¹⁰⁾, solubilidade da fase Co₅Sm^(4-6,10), solubilidade da fase Co₁₇Sm₂^(4,5,10), solubilidade da fase α -Co^(4,5,10), temperatura de Curie^(4,12) e dados da curva liquidus⁽⁸⁾ medidos com DTA^(4,14).

4 PROCEDIMENTO DE OTIMIZAÇÃO

A otimização dos parâmetros termodinâmicos do sistema binário Co-Sm foi realizada com uso do programa PARROT, parte do pacote ThermoCalc⁽¹⁹⁾. Inicialmente as fases intermetálicas tiveram suas descrições mantidas da otimização realizada por Su et al⁽³⁾.

O processo de otimização consistiu de três partes: (a) correção da liquidus (b) implantação da solubilidade e (c) correção dos invariantes dos demais compostos estequiométricos. A correção da curva liquidus foi realizada através da correção do parâmetro de interação de segunda ordem (${}^{1}L_{Co,Sm}^{Liquido}$). A implantação da solubilidade das fases Co₁₇Sm₂ e Co₅Sm foi realizada em duas etapas. Inicialmente, somente a fase Co₁₇Sm₂ foi avaliada, mantendo-se a fase Co₅Sm como estequiométrica. Em

seguida, a fase Co_5Sm teve sua solubilidade avaliada. Quando esta etapa foi realizada verificou-se que a avaliação da solubilidade da fase Co_5Sm conduz a diversas instabilidades no programa de otimização. Avalia-se que sejam necessários

mais dados⁽²⁰⁾ de entalpia ou de atividade química para possibilitar uma análise mais precisa da solubilidade, assim, a fase Co_5Sm foi mantida como estequiométrica⁽³⁾. Dada a alteração da liquidus, algumas fases intermetálicas necessitaram de correção. Esta correção é justificada, embora tenha sido realizada com poucos dados experimentais, em função dos parâmetros destas fases terem sido otimizados com menor quantidade de dados termoquímicos^(3,8-11).

Após a otimização, os valores dos transformações invariantes, bem como da temperatura de Curie, entalpias de formação e solubilidade foram avaliados. A qualidade da otimização foi também avaliada através do emprego do erro quadrático médio da otimização, dado calculado pelo programa PARROT.

5 Resultados e Discussão

Na Tabela 2 são apresentados os parâmetros termodinâmicos otimizados neste trabalho para o sistema binário Co-Sm.

 Tabela 2. Parâmetros termodinâmicos otimizados para o sistema binário Co-Sm

Parâmetros Termodinâmicos (J/mol)					
$^{1}L_{Co,Sm}^{Liquido} = +30031.716 - 32.015736 \cdot T$					
${}^{0}L_{co,Sm:Va}^{BCC} = +10000$					
${}^{0}G_{CoSm}^{Col9Sm5} - 19 \cdot {}^{0}H_{Co}^{HCP} - 5 \cdot {}^{0}H_{Sm}^{RHOMB} = 19 \cdot {}^{0}G_{Co:Va}^{HCP} + 5 \cdot {}^{0}G_{Sm}^{RHOMB} - 484091 + 371.847 \cdot T - 28.698 \cdot T \cdot \ln(T)$					
${}^{0}G_{Co:Sm}^{Co2Sm} - 2 \cdot {}^{0}H_{Co}^{HCP} - 1 \cdot {}^{0}H_{Sm}^{RHOMB} = 2 \cdot {}^{0}G_{Co:Va}^{HCP} + 1 \cdot {}^{0}G_{Sm}^{RHOMB} - 58711 + 17.529 \cdot T$					
${}^{0}G_{CoSm}^{Co3Sm} - 3 \cdot {}^{0}H_{Co}^{HCP} - 1 \cdot {}^{0}H_{Sm}^{RHOMB} = 3 \cdot {}^{0}G_{Co:Va}^{HCP} + 1 \cdot {}^{0}G_{Sm}^{RHOMB} - 77990 + 23.733 \cdot T$					
${}^{0}G_{\text{CoSm}}^{\text{CoSm2}} - 7 \cdot {}^{0}H_{\text{Co}}^{\text{HCP}} - 2 \cdot {}^{0}H_{\text{Sm}}^{\text{RHOMB}} = 7 \cdot {}^{0}G_{\text{CoVa}}^{\text{HCP}} + 2 \cdot {}^{0}G_{\text{Sm}}^{\text{RHOMB}} - 173579 + 54.046 \cdot \text{T}$					
${}^{0}L_{\text{Co,Sm:Va}}^{\text{HCP}} = +10000$					
${}^{0}G_{Co:Sm}^{CoSSm} - 5 \cdot {}^{0}H_{Co}^{HCP} - 1 \cdot {}^{0}H_{Sm}^{RHOMB} = 5 \cdot {}^{0}G_{Co:Va}^{RCP} + 1 \cdot {}^{0}G_{Sm}^{RHOMB} - 94261 + 25.897 \cdot T$					
${}^{^{0}}G_{_{Co:Sm}}^{^{Co17Sm2}} - 17 \cdot {}^{^{0}}H_{_{Co}}^{^{HCP}} - 2 \cdot {}^{^{0}}H_{_{Sm}}^{^{RHOMB}} = 17 \cdot {}^{^{0}}G_{_{Co:Va}}^{^{HCP}} + 2 \cdot {}^{^{0}}G_{_{Sm}}^{^{RHOMB}} - 269276 + 90.523 \cdot T$					
${}^{0}\mathbf{G}_{\mathrm{Sm:Sm}}^{\mathrm{Co17Sm2}} - 19 \cdot {}^{0}H_{\mathrm{Sm}}^{\mathrm{RHOMB}} = +19 \cdot {}^{0}\mathbf{G}_{\mathrm{Sm}}^{\mathrm{RHOMB}} + 1009424.1$					
${}^{0}L_{\text{Sm:Sm}}^{\text{Co17Sm2}} = -109712.04 - 359.12428 \cdot \text{T}$					
$^{1}L_{Co,Sm:Sm}^{Co17Sm2} = +1000$					

Na Tabela 3 são apresentadas as propriedades magnéticas das fases do sistema binário Co-Sm. Com exceção das fases HCP, FCC e BCC, que tiveram suas descrições provenientes de Dinsdale⁽²⁾, as demais fases tiveram suas descrições provenientes de Su et al.⁽³⁾ (momentos magnéticos e temperatura de Curie).

Tabela 3 Prop	oriedades mad	néticas das	fases do	sistema	binário (Co-Sm
	pricuauco mag		10303 00	Sistema	billiano (00-011

Fase	Co ₂ Sm	Co₃Sm	Co ₇ Sm ₂	Co ₁₉ Sm ₅	Co₅Sm	Co ₁₇ Sm2	FCC	HCP	BCC
Tc (K)	226.7	590	713	830	1020	1195	1396	1396	1450
β ₀ (μ ₀)	1.32	3.1	9.1	26.5	7.30	23.2	1.35	1.35	1.35

Na Tabela 4 são apresentados os parâmetros termodinâmicos obtidos da literatura para descrição das fases do sistema Co-Sm.

Parâmetros Termodinâmicos (J/mol)				
$ {}^{0}\mathbf{G}_{Co}^{\text{Liquido}} - {}^{0}H_{Co}^{\text{HCP}} = {}^{0}\mathbf{G}_{Co:Va}^{\text{HCP}} + 15085.037 - 8.391932 \cdot T - 2.19801 \cdot 10^{-21} \cdot T^{7} $ 298.15 < T < 1768	(2)			
$= {}^{0}G_{C_{0}:V_{a}}^{HCP} + 161351.056 - 9.683796 \cdot T - 9.3488 \cdot 10^{30} \cdot T^{-9} \qquad 1768 < T < 6000$				
${}^{0}\mathbf{G}_{Sm}^{\text{Liquido}} - {}^{0}H_{Sm}^{\text{RHOMB}} = {}^{0}\mathbf{G}_{Sm}^{\text{RHOMB}} + 3468.783 + 20.117456 \cdot \mathrm{T} - 11.6968284 \cdot \mathrm{T} \cdot \ln(\mathrm{T})$	(21)			
$-0.032418177 \cdot T^{2} + 4.544272 \cdot 10^{-6} \cdot T^{3} + 23528 \cdot T^{-1} 298.15 < T < 1190$				
$= {}^{0}G_{Sm}^{RHOMB} - 11728.229 + 273.487076 \cdot T - 50.208 \cdot T \cdot \ln(T) \qquad 1190 < T < 1345$				
$={}^{0}G_{Sm}^{RHOMB} + 11327.85 - 8.707299 \cdot T 1345 < T < 6000$				
	(3)			
$L_{co,Sm}^{+} = -93096 + 52.546 \cdot 1$	(3)			
${}^{0}G_{Co:Va}^{RCC} - {}^{0}H_{Co}^{HCP} = {}^{0}G_{Co:Va}^{RCP} + 2938 - 0.7138 \cdot T$	(2)			
${}^{0}G_{Sm:Va}^{BCC} - {}^{0}H_{Sm}^{RHOMB} = -4368.72 + 55.972523 \cdot T - 16.9298494 \cdot T \cdot \ln(T) - 0.025446016 \cdot T^{2}$	(2)			
$+ 3.579527 \cdot 10^{-6} \cdot T^{3} + 94209 \cdot T^{-1} $ 298.14 < T < 1190				
$= -15957.862 + 253.121044 \cdot T - 46.9445 \cdot T \cdot \ln(T) \qquad 1190 < T < 1345$				
$= +111191.653 - 624.680805 \cdot T + 71.6856914 \cdot T \cdot \ln(T)$				
$-0.047314968 \cdot T^{2} + 3.329865 \cdot 10^{-6} \cdot T^{3} - 24870276 \cdot T^{-1} - 1345 < T < 6000$				
${}^{0}G_{CoSm}^{CoISm3} - 1 \cdot {}^{0}H_{Co}^{HCP} - 3 \cdot {}^{0}H_{Sm}^{RHOMB} = 1 \cdot {}^{0}G_{Co:Va}^{RHO} + 3 \cdot {}^{0}G_{Sm}^{RHOMB} - 44248 - 129.148 \cdot T + 20.18 \cdot T \cdot \ln(T)$	(3)			
${}^{0}G_{CoSm}^{Co4Sm9} - 4 \cdot {}^{0}H_{Co}^{HCP} - 9 \cdot {}^{0}H_{Sm}^{RHOMB} = 4 \cdot {}^{0}G_{CoVa}^{HCP} + 9 \cdot {}^{0}G_{Sm}^{RHOMB} - 202447 + 79.99 \cdot T$	(3)			
${}^{0}\mathbf{G}_{\text{Co:Va}}^{\text{FCC}} - {}^{0}\boldsymbol{H}_{\text{Co}}^{\text{HCP}} = {}^{0}\mathbf{G}_{\text{Co:Va}}^{\text{HCP}} + 427.59 - 0.615248 \cdot \mathrm{T}$	(2)			
$^{0}G_{Sm:Va}^{FCC} - ^{0}H_{Sm}^{HCP} = ^{0}G_{Sm:Va}^{RHOMB} + 5000$	(3)			
${}^{0}L_{Co,Sm:Va}^{FCC} = +28955.0$	(3)			
${}^{0}G_{C_{0}\cdot V_{a}}^{HCP} - {}^{0}H_{C_{0}}^{HCP} = +310.241 + 133.36601 \cdot \text{T} - 25.0861 \cdot \text{T} \cdot \ln(\text{T}) - 0.002654739 \cdot \text{T}^{2}$	(2)			
$-1.7348 \cdot 10^{-7} \cdot T^{-3} + 72527 \cdot T^{-1}$ 298.14 < T < 1768.00				
$= -17197.666 + 253.28374 \cdot T - 40.5 \cdot T \cdot \ln(T) + 9.3488 \cdot 10^{30} \cdot T^{.9} - 1768.00 < T < 6000.00$				
${}^{0}G_{Sm:Va}^{HCP} - {}^{0}H_{Sm}^{RHOMB} = {}^{0}G_{Sm}^{RHOMB} + 69.9774069491 \cdot T$	(3)			
${}^{0}G_{Sm}^{RHOMB} - {}^{0}H_{Sm}^{RHOMB} = -3872.013 - 32.10748 \cdot T - 1.6485 \cdot T \cdot ln(T) - 0.050254 \cdot T^{2}$	(2)			
$+1.010345 \cdot 10^{-5} \cdot T^{3} - 82168 \cdot T^{-1}$ 298.14 < T < 700.00				
$= -50078.215 + 627.869894 \cdot \text{T} - 102.665 \cdot \text{T} \cdot \ln(\text{T}) + .0474522 \cdot \text{T}^{2}$				
$-7.538383 \cdot 10^{-6} \cdot T^{3} + 3861770 \cdot T^{-1} \qquad 700.00 < T < 1190.00$				
$= +289719.819 - 2744.50976 \cdot T + 381.41982 \cdot T \cdot \ln(T) - 0.254986338 \cdot T^{2}$				
$+2.7512152 \cdot 10^{-5} \cdot T^{3} - 40102102 \cdot T^{-1}$ 1190.00 < T < 1345.00				
$= -23056.079 + 282.194375 \cdot T - 50.208 \cdot T \cdot \ln(T) \qquad 1345.00 < T < 2100.00$				
${}^{0}G_{Co}^{RHOMB} - {}^{0}H_{Co}^{HCP} = {}^{0}G_{Co}^{HCP} + 5000$	(3)			
$^{0}L_{Co,Sm}^{RHOMB} = +1000000$	(3)			

Tabela 4. Parâmetros obtidos da literatura para descrição do sistema binário Co-Sm

Na Figura 1, é apresentado o diagrama de equilíbrio de fases calculado com os parâmetros apresentados nas Tabelas 2, 3 e 4. Na Figura 2, verifica-se que a solubilidade de Sm calculada para a fase $Co_{17}Sm_2$ é coerente com os dados da literatura. Campos e Landgraf⁽⁴⁾ mostram que a solubilidade proposta por Meyer-Liautaud et al⁽¹⁰⁾ para a fase $Co_{17}Sm_2$ estava superestimada. Em relação à fase Co_5Sm , a solubilidade não foi modelada pelos motivos mencionados no item 4 deste texto, porém verifica-se que há muitos dados conflitantes na literatura a respeito da solubilidade desta fase⁽³⁻¹¹⁾. A existência da solubilidade da fase Co_5Sm foi primeiramente reportada por Buschow et al⁽⁶⁾, e artigos subseqüentes não questionaram a solubilidade desta fase. Entre outros dados também passíveis de serem questionados, a literatura⁽⁴⁾ propõe que a composição do líquido na reação peritética de formação da fase Co_5Sm está deslocado de cerca de 0.7% at. Sm em

relação à estequiometria da fase, e também que o patamar eutetóide $Co_5Sm \rightarrow Co_{17}Sm_2 + Co_{19}Sm_5$ está deslocado de cerca de 50°C, sendo que não se pode descartar a possibilidade de erros experimentais⁽²⁰⁾ nesses casos.

O estudo da solubilidade de Sm na fase Co₅Sm é experimentalmente difícil, pois tipicamente ocorre perda de Sm nos tratamentos térmicos, devido tanto à alta pressão de vapor do Sm quanto à grande tendência à oxidação do Sm. A avaliação da solubilidade da fase Co₅Sm pode ser realizada com precisão através da medição da variação da temperatura de Curie⁽⁴⁾, no entanto há poucos resultados disponíveis para a quantidade de parâmetros necessários à descrição desta fase (equação 4).

Figura 3. Entalpia de formação dos compostos no sistema Co-Sm

A Figura 3 compara as medidas experimentais de entalpia de formação dos compostos na região rica em Co com os valores calculados no presente trabalho. Poucos trabalhos avaliaram a entalpia de formação dos compostos do sistema Co-Sm^(10,22), o que se reflete na pouca disponibilidade de dados experimentais bem como na baixa confiabilidade destes. Dentre os dados utilizados para otimização, Su et al⁽³⁾ atribuíram pouco valor aos dados de entalpia de formação, posição contrária à adotada neste trabalho. Ao se avaliar os dados disponíveis para otimização do sistema Co-Sm verifica-se que sua maioria consiste em dados de transformações invariantes, e de solubilidade das fases $Co_{17}Sm_2 e Co_5Sm$. Tal fato leva ao cálculo de parâmetros com pouco embasamento na termodinâmica e muito na matemática. Como foi atribuído um peso maior aos dados de entalpia de formação, podem ser verificadas pequenas diferenças (inferiores a 5°C) na Figura 2 para as temperaturas dos transformações invariantes.

6 SUMÁRIO E CONCLUSÕES

Um banco de dados termodinâmicos coerente com dados experimentais da literatura foi obtido. A implantação da solubilidade na fase $Co_{17}Sm_2$ foi realizada com sucesso, obtendo-se valores coerentes com os dados da literatura. Um modelo para descrição da solubilidade da fase Co_5Sm foi proposto, encontrando-se ainda em fase de implantação. A curva liquidus foi corrigida, utilizando-se recentes dados experimentais. Estimou-se a entalpia de formação do composto Co_5Sm em – 8609J/mol.

REFERÊNCIAS

- 1 HILLERT, M., STAFFANSON, L-L. Acta Chem, Scand. 24. (197), pp. 3618-3626.
- 2 DINSDALE, A. T. CALPHAD 15 (1991), pp. 317-425
- 3 SU, X. ZHANG, W., LIU, G. DU, Z. J. Alloys and Comp. 267 (1998) pp. 149-153.
- 4 CAMPOS, M. F. de, LANDGRAF, F. J. G. J. Phase Equilibria v.21, n.5, pp. 443-446, OCT 2000.
- 5 GE, W. Q. WU, C. H. CHUANG, Y. C. Z. Metallkd 84(3) (1993), pp 165.
- 6 BUSCHOW, K. H. J., van der GOOT, A. S. J. Less-commom metals 14 (1968), pp. 323.
- 7 WILLIAMS, K. L., BARTLETT, R. W. JORGENSEN P. J. J. Less-common metals, 37 (1974), pp. 174.
- 8 OKAMOTO, H. J. Phase Equilibria, v. 16 n. 4 (1995) pp. 367-368.
- 9 LIHL, F. EHOD, J. R. KIRCHMAYR, H. R. WOLF, H. D. Acta Physica Austríaca 30, (1969), pp. 164-175.
- 10 MEYER-LIAUTAUD, F. ALLIBERT, C. H. CASTANET, R. Journal of Less-Common Metals, 127 (1987) pp. 243-250.
- 11 NAGEL, H. Tyssen EEldest Techn. Ber. V.6, pp. 5-14, 1980.
- 12 CAMPOS, M. F. de; LANDGRAF, F. J. G.; SAITO, N. H.; ROMERO, S. A.; NEIVA, A. C.; MISSELL, F. P.; MORAIS, E. de; GAMA, S.; OBRUCHEVA, E. V.; JALNIN, B. V. Journal of Applied Physics, v. 84, p. 368-373, 1998.
- 13 MORAIS, E. de, GAMA, S., URBANO, A., GARCIA, G. A. CABRAL, F. A. 0. IEEE Trans. Magn. 32 (1996), pp. 4929-4931.
- 14 CAMPOS, M. F. de; SAITO, N. H.; LANDGRAF, F. J. G.; ROMERO, S. A.; NEIVA, A. C.; VILLAS-BOAS, V.; MISSELL, F. P. In: INTERNATIONAL WORKSHOP ON RARE-EARTH MAGNETS AND THEIR APPLICATIONS. 15., Dresden, Germany, 1998. Proceedings...p. 127-136, 1998.
- 15 SALMANS, L., STRNAT, K.J., HOFFER, G. Tech. Rept. No. AFML-TR-68-159, Air Force Materials Lab, Wright-Patterson Air Force Base, Ohio, 1968 (unpublished).
- 16 DUPIN, N. Thè se pour obtenir le titre deDocteur, lÍnstitut National Polytechnique de Grenoble, 30 Mars 1992.
- 17 SAUNDERS, N. MIODOWINIK, A. P. CALPHAD Calculation of Phase Diagrams – A Comprehensive Guide. Pergamon Press, 1998.
- 18 HILLERT, M., JARL, M. CALPHAD 2 (1978) pp. 227-238
- 19 Manual do ThermoCalc v. Q. (Disponível em http://www.thermocalc.se).
- 20 FERRO, R. CACCIAMANI, G., BORZONE, G., Intermetallics, 11 (2003), pp. 1081-1094
- 21 ZINKEVICH, M. N. MATTERN, A. HANDSTEIN, O. GUTFLEISCH. J. Alloys and Compounds. 339 (2002), pp. 118-139.
- 22 SHILOV, A.L., Zh. Fiz. Xhim. 61(5) (1987) pp. 1384.