

42nd Steelmaking Seminar - International

15 a 18 de maio de 2011 / May 15th - 18th, 2011

ISSN 1982-9345

MODELO DE CARGA FRIA DO FEA - UHP - 50 T¹

Fernando Souza Cândido² Servio Romulo Medeiros Passos³ Breno Tiago de Souza Albuquerque⁴ Noraldo Hipólito Guimarães Gomes⁵ Eduardo Sergio Coelho⁶

Resumo

A carga metálica e a energia elétrica constituem os principais itens de custo da operação de um Forno Elétrico a Arco. Por este motivo, torna-se essencial introduzir no processo uma ferramenta de supervisão capaz de calcular e aperfeiçoar o mix de sucata em relação a custo, contaminantes, impurezas e densidade. Baseado no modelo de energia e na ferramenta Solver do Excel a equipe técnica e operacional desenvolveu e avaliou um modelo, que otimiza a escolha do mix de sucata, permitindo realizar os cálculos necessários para os operadores produzir a corrida com parâmetros de processo controlados. Além disso, permite a gestão econômica do estoque de metálicos na Aciaria. O trabalho mostra o caminho percorrido para atingir estes objetivos, bem como, os resultados das simulações de diferentes graus de aços.

Palavras-chave: Otimizador de sucata; Energia; Oxigênio; Custo.

EAF COLD CHARGE MODEL

Abstract

Scrap and electric energy are both the major cost items of the EAF operation. Because of this becomes essential to introduce in process a supervision tool able to calculate and optimize the scrap mix in relation to cost, contaminants, impurities and density. Based in a thermal model and using Excel Solver tool the technical and operational team, developed and evaluated, one adapted model version that solves the question of choosing the best the scrap mix, allowing the EAF operators to performer the calculation requirements to produce a heat in the EAF with process parameters controlled. Besides it allows the economic metallic management in Melting Shop. This paper shows the way to achieve those goals and the results obtained with the programmed simulations of heats with different metallic charge requirements.

Key words: Scrap optimizer; Energy; Oxygen; Cost.

¹ Contribuição técnica ao 42º Seminário de Aciaria – Internacional, 15 a 18 de maio de 2011, Salvador, BA, Brasil.

² Membro da ABM – Eng. Mecânico pelo ICMG, MSc. em Engenharia de Materiais pelo IME – Gerente Geral de Aços Longos CSN

³ Engenheiro Especialista da Gerência Técnica da CSN Aços Longos

⁴ Supervisor de Forno de Forno Elétrico e Forno Panela da CSN Aços Longos

⁵ Engenheiro Especialista da Gerência Técnica da CSN Aços Longos

⁶ Especialista em Siderurgia da Aciaria da CSN Aços Longo

42nd Steelmaking Seminar - International 15 a 18 de maio de 2011 / May 15th - 18th, 2011

ISSN 1982-9345

1 INTRODUÇÃO

Atualmente, as Aciarias Elétricas modernas são concebidas para operar de forma automática, através de um modelo de balanço energia, que fornece os dados de entradas de processo: matérias-primas, gases e energia elétrica, necessários para produção de determinado grau de aço. No limiar da escala tecnológica, algumas optam por adquirir modelos que selecionam a carga metálica mais econômica com boa precisão de consumo de energia elétrica. No topo da sofisticação, poucas operam utilizando Controle Dinâmico.⁽¹⁻³⁾

No caso da CSN Aços Longos, por não ser ainda conhecido o modelo de energia, adquirido para o sistema de automação do Forno Elétrico a Arco (FEA), a equipe técnica/operacional elaborou um plano B, denominado Projeto Carga Fria, com a finalidade de suprir as eventuais necessidades.

O projeto Carga Fria da CSN Longos tem por objetivos:

- dotar a supervisão da Aciaria de uma ferramenta capaz de selecionar o mix de sucata de mais baixo custo, compatível com os requisitos do processo de densidade, impurezas, consumo de energia elétrica e rendimento metálico;
- permitir, à semelhança dos Conversores LD, que o operador conheça os valores das principais variáveis operacionais, antes de iniciar a corrida;
- verificar se os cálculos das variáveis obtidas são compatíveis com uma boa prática de escória espumante e com o nível de oxidação da corrida no final de fusão.

O modelo desenvolvido, além de fornecer parâmetros de processo para elaboração da corrida, ele conjuga as variáveis principais do processo para calcular o consumo de energia, produtividade e custos de produção. O seu desenvolvimento no Excel foi feito com base nas planilhas: Balanço Térmico do Forno Elétrico, Balanço de O₂, Solver. Esta última foi projetada para resolver a questão do mix de sucata de mais baixo custo, respeitando as restrições impostas pelo processo de produção.

2 DESENVOLVIMENTO DO MODELO DE CARGA FRIA

2.1 Fluxograma do Modelo

O modelo desenvolvido utiliza o Balanço de Energia⁽⁴⁾ e a ferramenta Solver, que juntas apresentam um potencial de ganhos de processo substancial, podendo ser empregado para atuar como um verdadeiro Modelo Estático, a exemplo do que ocorre nas aciarias LD.

ISSN 1982-9345

ISSOCIAÇÃO BRASILEIRA

DE METALURGIA,

MATERIAIS E MINERACÃO

42nd Steelmaking Seminar - International

15 a 18 de maio de 2011 / May 15th - 18th, 2011

A Figura 1 apresenta o fluxograma do Modelo de Carga Fria. A Figura 2 mostra como Modelo de Carga Fria se insere no processo do FEA.

ISSN 1982-9345

SSOCIAÇÃO BRASILEIRA

DE METALURGIA,

MATERIAIS E MINERACÃO

42° Seminário de Aciaria Internacional

42nd Steelmaking Seminar - International

15 a 18 de maio de 2011 / May 15th - 18th, 2011

Figura 2- Posição do modelo de carga fria no fluxo do processo do FEA.

2.2 Melhorias Realizadas no Modelo de Energia.

As seguintes melhorias foram introduzidas no modelo de Energia:

- introdução no modelo das características dimensionais, áreas dos painéis refrigeradas, vazões de água de refrigeração, etc.
- adaptação do modelo para operar juntamente com o Solver do Excel, invertendo a situação de algumas entradas do modelo, por exemplo: Power on, produtividade, % FeO na escória, passaram a ser calculado e não imputados.
- ampliação dos tipos de sucata, possibilitando as entradas de qualquer tipo, com suas características físicas e químicas.
- introdução de fórmulas de previsão do nível de oxidação do aço líquido.
- os requisitos de injeção de O₂ tanto da lança como dos queimadores foram destacados num modelo próprio denominado Modelo de Injeção de O₂.

Para permitir um controle adequado do nível de oxidação do banho e da capacidade de espumação da escória foram introduzidas no modelo a fórmula de cálculo da concentração de Oxigênio no aço líquido⁽⁵⁻⁷⁾ e a fórmula de cálculo do FeO, em função da basicidade da escória,⁽⁶⁾ conforme apresentado nas Figuras 3 e 4.

42nd Steelmaking Seminar - International 15 a 18 de maio de 2011 / May 15th - 18th, 2011

ISSN 1982-9345

Relação Carbono do Banho Líquido e a Atividade de Oxigênio

$$Log \% C = k1 + (k2/T) + k3 * Log(O)$$

 $O(PPM) = 10^{(Log C - k1 - k2/T)/k3}$

Figura 3. Fórmula de cálculo do nível de oxidação do banho.

Figura 4 - Cálculo do FeO da Escória.

2.3 Modelo de Injeção de O₂

O modelo de injeção de oxigênio é constituído de duas planilhas: uma de cálculo e outra de resumo dos requisitos de O_2 para elaboração da corrida. Os cálculos de previsão de consumo de Oxigênio, para combustão dos elementos C, Si, Mn, P e queima de gases, são realizados na primeira planilha. A Figura 5 mostra a planilha Resumo do Modelo de Injeção. Observa-se que, além de apresentar o mix de sucata e consumos de O_2 , ela apresenta na forma de gráfico a evolução do carbono e do oxigênio do aço líquido, bem como uma previsão do tempo de injeção de O_2 .

42nd Steelmaking Seminar - International

15 a 18 de maio de 2011 / May 15th - 18th, 2011

			Bala	C/O2 FEA 50t								
Peso dos Metálicos (t	t)	Quant. de Carbono	kg	kg/t	Necessidade de (D2 outras	queimas	Ítem	Nm3	Nm3/t		
Gusa Sólido	Coque no cestão	926	18,5	Elemento O2 (Nm3)		O2 (Nm3/t)	O2combustão	1502	30,0			
Shredder 8,2		Carbono Injeção	319	6,4	Mn	39	0,8	O2gas	491	9,8		
Tesourada	Consumo de eletrodos	85	1,70	Si 226 4,5		4,5	O2pós-comb.	0	0,0			
Oxicorte	Quantidade real de C	kg	kg/t	Р	0	0,0	O2 Total (Nm ³)	1993	39,9			
Pac Estamp Revest	0,0	Carbono carga fria (kg)	667	13,3	AI	0	0,0	Vazão de O ₂ (N	m ³ /min)	68		
Pac Estamp Preta	0,0	Carbono Adição (kg)	0	0,0	Fe	238 4,8 Relação C/O		Relação C/O ₂		1,40		
Estamp Rev Solta	12,0	Carbono Injeção(kg)	319 6.4		% FeO na Escória	21%		Taxa Descarb	-0,097			
Estamp Preta Solta	0,0	Carbono eletrodo (kg) 8		1,7	Peso da escória (kg/t)	142		(d% C/d				
Sucata Mista	0,0	Total:	1071	21,4	Perda de Ferro (kg) 1185			Tempo de s	22			
Pacote Misto	0,0	Parâmetros de Cálculo d	a PPM	de O2	Perda de Ferro (kg/t)	23,7		PPM DE 02 (end	d of blow)	645		
Suc Retorno Aciaria	0,0	K 1	K 2	K 3								
Cavaco de FoFo	0,0	1,280160601	-12	-0,88817								
Cavaco de Aço	Necessidade de O2 pa	ima do C	Oxigênio para queima de gás									
Retorno de Laminação	3,4		%	O2 (Nm3)		_						
TOTAL 54,9		Pós-Combustão	0%	0	Consumo de Gás (Nm3)	O2 (Nm3)	O2 (Nm3/t)					
Vazamento	50	Combustão	100%	999	245,3	490,7	9,81					
e 2,500 2,250 2,250 2,250 2,500 0,1500 0,1500 0,750 0,250 8 0,000 0,500 0,250 0 5	Decai	rburação no FEA		9 800 9 800 9 800 9 400 9 400 9 400 9 400 9 400 9 400 9 0 9 400 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9	Pot	tencial de (Dxigênio do Bar	1 ho	60			
	Tem	po de Sopro de O2 (min)			Tempo de Sopro de O2 (min)							

Figura 5. Planilha resumo do modelo de injeção.

2.4 Configurações Solver para a Carga Fria

Uma planilha utilizando o Solver foi construída para resolver a questão do mix de sucata de mais baixo custo. Ela possui a seguinte arquitetura:

- Uma tabela com seis colunas, contendo: tipos de sucata, participações percentuais no mix, pesos, preços, limites inferiores e superiores de participação desejados no mix de sucata, parâmetros de processo e os respectivos valores das restrições de processo. A coluna participação no mix, que é a solução encontrada pelo Solver é preenchida após ser rodado o programa com as restrições estabelecidas. Todos os valores estão associados ao Modelo de Energia.
- O Solver foi, então, configurado tomando-se como célula de destino a célula correspondente à soma dos produtos das colunas participação percentual dos tipos de sucata versus preços correspondentes. As células variáveis foram definidas, exatamente, como as que deverão ser preenchidas pela solução encontrada pelo Solver, ou seja, as células correspondentes às da coluna do mix de sucata. A função objetivo representa justamente aquilo que se procura, isto é, a minimização da soma dos produtos dos tipos de sucata versus preços. A Figura 6 mostra a configuração do Solver.

ISSN 1982-9345

METALURGIA,

MATERIAIS E MINERACÃO

42nd Steelmaking Seminar - International

15 a 18 de maio de 2011 / May 15th - 18th, 2011

ISSN 1982-9345

		CARG								
		Deco		Tabela das Restrições						
Tipo Sucata	Mix de Sucata (%)	da Carga (t)	Preços (R\$/kg)	Limite Inferior (%)	Limite Superior (%)	Parâmetros do Processo	Valores			
Gusa Sólido	40,00	21,96	0,55	40	40	% Gusa	40,0			
Shredder	15,0	8,23	0,43	15	50					
Tesourada	15,0	8,23	0,46	0	20	Pot Ativa (MW)	32,8			
Oxicorte	0,0	0,00	0,45	0	15	FOLKIVA (MW)	Atendido			
Pac Estamp. Revest	0,0	0,00	0,42	0	10	Rend. (%)	91,1			
Pac Estamp. Preta	0,0	0,00	0,48	0	15					
Estamp Revest Solta	21,9	12,02	0,40	0	30	ρ (t/m3)	1,40			
Estamp Preta Solta	0,0	0,00	0,46	0	30					
Sucata Mista	0,0	0,00	0,40	0	20	%(CAV FF+CAV A)	1,9			
Pacote Misto	0,0	0,00	0,48	0	20					
Sucata Retorno Aciaria	0,0	0,00	0,30	0	15	Basicidade (B2)	2,08			
Cavaco de FoFo	0,0	0,00	0,30	0	15					
Cavaco de Aço	1,9	1,03	0,30	0	15	Cons. $O2 (Nm3/t)$	30,0			
Retorno de Laminação	6,2	3,43 0,30		0	15	cons. oz (mis/t)	Atendido			
Total Metálicos	100,00	Soma Produto		46,5		% MgO	8,70%			
C adição (kg/t)	0,0	C Injeç	ăo (kg/t)	10,0		% FeO	21,50%			
Definições do	Solver				Dado	s de Partida				
Cel. Dest:		tap t	o tap	49	Cal Calcític					
Cel Var:	C5:C18			power on		37	25			
F. Objetivo:]	Ajuste de B3	3,1	3,1	Cal Dol 15					
Premissas Bá	isicas]	Temp. (°C)		1620				
Consumo Máx O2 Combustão Potência Ativa Máxima (MW)		Carbon A	dição (%)	0,00						
			,	Carbono Objetivado 0,06						

Figura 6 - Configuração do Solver.

 Ainda compondo o modelo, há uma tabela dedicada ao plano de simulações, que permite programar até cinco simulações em função das restrições impostas estabelecidas na planilha Solver, e Modelo de Energia, relativas ao processo de fabricação do aço. Este mesmo espaço do modelo é dedicado à previsão de espumação da escória, de forma gráfica, em função dos teores de FeO e do MgO da escória. Por ser um aspecto fundamental do processo, foi dado um destaque especial à capacidade de espumação da escória, possibilitando corrigir os dados de entrada do processo para se atingir formulações adequadas de escória. A Figura 7 mostra as áreas reservadas para o programa de simulações e para o gráfico de capacidade de espumação da escória.

42nd Steelmaking Seminar - International

15 a 18 de maio de 2011 / May 15th - 18th, 2011

1

ISSN 1982-9345

LIMPAR PROGRAMA DE SIMULAÇÕES										
Simu- Iação Grau do Aço	% Gusa	Pot Ativa (MW)	power on	%η	B2	O2 Combustão (Nm3/t)	ρ (kg/t)			
1 Gr 1024 D	0	≤34	≤38	≥88	≤2,2	≤59,6	≤1			
2 Gr 1024 D	10	≤34	≤38	≥88	≤2,2	≤59,6	≤1			
3 Gr 1024 D	20	≤34	≤38	≥88	≤2,2	≤59,6	≤1,10			
4 Gr 1024 D	30	≤34	≤38	≥88	≤2,2	≤59,6	≤1,20			
5 Gr 1024 D	40	≤34	≤38	≥88	≤2,2	≤59,6	≤1,40			
18% 16% 14% Escóru ENAC	A MIUITA DUR ESPUMO SA	A	ATURAÇÃO DE	MgO .						
12% SATURAÇÃO SATURAÇÃO DE MgO - FeO e Muito Es	RIA IOSA ITÁVEL									
6% 4% 2% 5ATURAÇÃO	ESCÓRIA ESPUMOS/ ESTÁVEL	ESCO	DRIA ESPUMO SA		E	SCÓRIA LÍQUIDA				
0% 10%	20%		30% FeO,	409 %	%	50%	60%			

Figura 7- Programa de simulação e capacidade de espumação da escória.

• A última parte contém as tabelas onde são registrados os valores encontrados pelo Solver e Modelo de Energia, conforme mostra a Figura 8.

42nd Steelmaking Seminar - International

15 a 18 de maio de 2011 / May 15th - 18th, 2011

ISSN 1982-9345

Ð	CSN	F	ROG	RAM	A DE C	ARGA	FRIA	DO FO	ORNO	ELÉT	RICO	50 t		
	Resultados do Programa de Simulação - Mix de Sucata													
	Gusa Sol.	SHRD	STES	Oxi Corte	Pct Est Revs	Pct Est Preta	Est Revest Solta	Est Preta Solta	Suc Mista	Pct Misto	Suc Ret de Aciaria	CAVA FoFo	CAVA Aço	Ret Lam
SIM 1														
SIM 2	10.0	15,0	15,0	0,0	0,0	0,0	20.8	0,0	20,0	1,4	10.6	11.0	1.7	15,0
SIM 3	20.0	15.0	15,0	0,0	0,0	0,0	20,0	0,0	0,0	0,0	3.7	6.4	1,7	15.0
SIM4	30.0	15.0	15.0	0.0	0,0	0.0	22.9	0.0	0.0	0.0	1.9	0.2	0.0	15.0
SIMIS	40.0	15.0	15.0	0.0	0.0	0.0	21.9	0.0	0.0	0.0	0.0	0.0	1.9	6.2
	Resultados das Simulações - Parâmetros do Processos													
LIMPAR	Prod(t/h)	tap to tap	power on (min)	Peso Escória (kg/t)	Coque na Carga Fria (kg/t)	Consumo Energia (kwh/t)	Pot Ativa (MW)	Rend. (%)	B2	% FeO	% MgO	р (t/m ³)	Tempo Sopro O2(min	O2 Comb (Nm3/t)
1	60,0	50,0	38,0	187,3	6,0	429,8	33,9	88,6	2,2	22,23%	6,69%	0,8	23,0	31,4
2	60,0	50,0	38,0	171,9	5,0	431,2	34,0	89,4	2,2	22,23%	7,25%	1,0	23,0	31,4
3	61,2	49,0	37,0	155,8	3,0	419,8	34,0	90,5	2,2	22,23%	7,94%	1,1	22,0	30,0
4	61,2	49,0	37,0	141,2	2,0	415,3	33,7	91,4	2,2	22,23%	8,72%	1,2	22,0	30,0
5	61,2	49,0	37,0	141,8	0,0	405,1	32,8	91,1	2,1	21,50%	8,70%	1,4	22,0	30,0
						Resulta	dos das s	Simulaçõe	\$					
	Aço (R\$/t)	Sucata (R\$/t)	Gusa (R\$/t)	Energia (R\$/t)	Pátio (R\$/t)	Retorno Interno (R\$/t)	Direto (R\$/t)	Oper s/ Depre. (R\$/t)	Oper c Deprec (R\$/t)					
1	998,4	429,3	0,0	71,0	59,1	-6,0	514,4	195,0	484,0					
2	1003,4	369,8	61,8	71,2	61,9	-5,2	520,3	194,1	483,1					
3	1027,9	334,8	122,1	69,6	64,6	-4,8	548,7	190,2	479,2					
4	1057,3	303,7	181,3	68,9	67,3	-4,4	579,8	188,5	477,4					
5	10/9,4	264,4	242,6	67,5	70,5	-3,8	605,6	164,8	4/3,8					
			Figur	a 8 - F	Registro	os dos r	esulta	dos pro	oduzid	os pelo	o moc	lelo.		

• Foi reservada uma planilha para construção de gráficos de simulação, conforme apresentado na Figura 9.

16

ISSN 1982-9345

42° Seminário de Aciaria Internacional

42nd Steelmaking Seminar - International

15 a 18 de maio de 2011 / May 15th - 18th, 2011

Figura 9 - Efeito do ferro-gusa sólida no custo, produtividade e tempo tap to tap.

3 RESULTADOS OBTIDOS

Foram realizadas cinco simulações considerando as seguintes proporções de ferro-gusa na carga: 0, 10, 20 30 e 40%, de acordo com o programa de simulação da Figura 7, cujos resultados estão registrados na Figura 8. O aço escolhido foi o aço CA 50, grau 1024 D, com carbono objetivado de fim de fusão de 0,06% e temperatura de 1620 °C. A figura 9 mostra as tendências de evolução do custo, tapto-tap e produtividade.

4 DISCUSSÃO DOS RESULTADOS

Os resultados do Modelo da Carga Fria indicam custos crescentes com a utilização de ferro-gusa sólidos na carga, devido aos preços atuais praticados no mercado. O ganho de produtividade (1,2 t/h), decorrente da sua utilização se verifica ao nível de 20 %, e permanece estável neste patamar para porcentagens maiores de ferro-gusa na carga. A razão é que o "power on", tempo de forno ligado, depende da potência elétrica e da vazão de oxigênio injetado, que no projeto do forno está limitada à 4.100 Nm³/h.

O modelo de Carga Fria permite avaliar o benefício econômico que pode ser atingido pelo ganho de produtividade com a tecnologia que o Sistema de Injeção de O2 por Jatos Coerentes possibilita.

A Figura 10 mostra os resultados da simulação feita pelo Modelo de Carga Fria, simulando a utilização de Jatos Coerentes na vazão de 5000 Nm³/h. Observase, que o ganho de produtividade em relação ao sistema de lança supersônica pela porta do FEA é atingido já no nível zero de gusa, e atinge valores de 2,5 t/h e 3,8 t/h respectivamente para valores de 30% e 40% de gusa.

42nd Steelmaking Seminar - International

15 a 18 de maio de 2011 / May 15th - 18th, 2011

Figura 10. Previsão de aumento da produtividade do FEA com a Implantação do Sistema de Jatos Coerentes (vazão de O2 5000 Nm³).

A Figura 11 mostra uma avaliação econômica preliminar do benefício de se implantar este sistema.

Os resultados confirmam as experiências de outras Usinas de ser altamente vantajosa a implantação do Sistema Jatos Coerentes Forno Elétrico a Arco.

ISSN 1982-9345

5 CONCLUSÃO

Desta forma, além de estar preparado para cumprir com a função principal de supervisionar o processo de operação do FEA, possibilitando a utilização mais econômicas dos metálicos na elaboração das corridas, o Modelo de Carga Fria está potencialmente estruturado para:

- auxiliar a partida da Planta de Aços Longos da UPV, definindo a carga fria, a quantidade restrita de oxigênio e o perfil de potencia ideal, para não comprometer a vida do refratário e dos painéis refrigerados nas primeiras corridas;
- atuar como ferramenta de avaliação de planos de redução de custos, estabilização e capacitação do processo do Forno Elétrico a Arco; e
- apoiar nas estratégias de aquisição e controle do estoque de metálicos.

REFERÊNCIA

- 1 Nyssen P., Colin R. CRM, Liège, Belgium; knoops S. Arcelor Group, Belgium; Junque JL- Arcelor Group, G.D. of Luxemburg; On-line EAF control with a dynamic metallurgical model.
- 2 Nyssen P; Marique C. CRM- Contrôle Du Four életrique Grace à um nouveau modele metallurgique Revue de Metallurgie CIE Avril 1999.
- 3 Clerice P. Tenova's intelligent arc furnace 'iEAF' Concept and technical overview Steel Times International May/Jun 2008.
- 4 Raposo, S, Balanço Térmico do Forno Élétrico, GGNP. CSN 2009
- 5 Landa S., Rodríguez T, Muños , J.L. Laraudogoitia Dynamic Controlo of Slag Foaming at Sidenor Basauri Meltshop; Archives of Metallurgy and Materials - Vol 53, 2008.
- 6 Ecil Met Téc Ltda; Oxilab, Controle da Atividade de Oxigênio no Metal Líquido, Piedade, São Paulo.
- 7 Meraikib M. Effect of Direct Reduced Iron on Oxygen Distribution between Slag and Bath in Electric Arc Furnaces, steel research int. 79 (2008) No. 5