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Abst ract

It is well known that the uniaxial Ramberg-Osgood model cannot be used to correlate
principal stresses and strains under multiaxial loading. But, to calculate multiaxial
fatigue damage, it is frequently necessary to obtain the multiaxial stresses from
measured elastic-plastic strains. To tackle this task, an efficient model is proposed to
obtain the multiaxial stress-strain history in the non-proportional case, considering
both isotropic and kinematic hardening. An improved version of the Mroz multi-yield
surface model is used to calculate the Bauschinger effect under multiaxial loading in
the deviatoric stress space, allowing the yield surface to translate with no change in
its size or shape, following Garud's hypothesis. Moreover, an algorithm is presented
to obtain the multiaxial hysteresis loops, including the effects of isotropic and
kinematic hardening due to cyclic loads.

Key words: Multiaxial fatigue; Non-proportional loading; Isotropic and kinematic
hardening; Incremental plasticity; Multi-yield-surface algorithm.

MODELOS DE ENCRUAMENTO ISOTROPICO E CINEMATICO PARA

HISTORIAS DE CARREGAMENTO MULTIAXIAL NAO-PROPORCIONAL
Resumo
O modelo uniaxial de Ramberg-Osgood ndo pode ser usado para correlacionar
tensdes e deformacdes principais sob cargas multiaxiais. Mas para calcular o dano
multiaxial a fadiga é frequentemente necessario obter as tensdes multiaxiais a partir
de deformacdes elastoplasticas medidas. Para cumprir esta tarefa, um modelo
eficiente € proposto para obter a histéria de tensdo-deformagcdo no caso néo-
proporcional, considerando ambos 0s encruamentos isotropico e cinematico. Uma
versao melhorada do modelo de multiplas superficies de escoamento de Mroz é
usado para calcular o efeito de Bauschinger sob cargas multiaxiais no espaco de
tensdes desviatorias, permitindo que a superficie de escoamento translade sem
mudar seu tamanho ou forma, segundo a hipotese de Garud. Além disso, um
algoritmo € apresentado para obter os lacos de histerese multiaxiais, incluindo
efeitos de encruamento isotropico e cinematico.
Palavras chave: Fadiga multiaxial, Carregamento nao-proporcional; Encruamento
isotrépico e cinematico; Plasticidade incremental; Algoritmo de multiplas superficies
de escoamento.
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1 INTRODUCAO

ANAIS
PROCEEDINGS

In most engineering applications, either the stress or the strain history is known, but
not both. When designing a new component, it iSs common to calculate or estimate
the stress history from measured or specified design loads, whereas in most
structural integrity evaluations (of an existing component) only the strain history can
be measured using strain gage rosettes, for example. But the best multiaxial fatigue
damage models require the knowledge of both the stress and the corresponding
strain histories to quantify the consequent damage parameter.®®

For linear elastic histories, it is trivial to correlate the stresses with the strains using
Hooke’s law. For elastoplastic proportional histories, where the principal directions
remain fixed, this can be done using the (total) stress-strain models from the previous
section. But to properly reproduce the stress-strain hysteresis loops in NP
elastoplastic histories, which depend on the load path, it is necessary to use
incremental plasticity models to correlate infinitesimal changes in all stress
components with the associated strain components, and vice-versa. They are based
on 3 equations: the yield function, which describes combinations of stresses that lead
to plastic flow; the flow rule, which describes the relationship between stresses and
plastic strains; and the hardening rule, which defines how the yield criterion changes
with plastic straining. These equations are discussed and applied in the following
sections.

2 STRESS AND STRAIN TENSORS

A convenient way to represent the equations in incremental plasticity is to represent
stress and strain tensors as 9-dimensional column vectors:

~ T
6=[oy O O Ty T W W T Ty ]

B T
8=|:8X ay g 8)(y sy)( &2 &x ?Z %y :I

where Tj = Tji (0r Tyy = Tyx, Tz = Tox, Tyz = Tay), &j = &ji, Yij = 2&j (Meaning Yxy = &y + &y
= 2¢&y, etc.), and T stands for the transpose of a vector. The elastoplastic strain € is
the sum of the elastic and plastic components € =& +&, where

_ T
€ = [axe Eye &¢ E&ye &xe &z &xe Hz .o &y e:|
_ T
& =[€Xp &p &p &yp 8xp &zp &y §zp By :I

Hooke’s law can then be expressed in vectorial form by Ee=E_1|36, where E™ is

Hooke’s elastic compliance matrix, the inverse of the stiffness matrix. It is also
convenient to define the hidrostatic stress and strain vectors

G,=0,1 1100000 0]
g =60111000000]

where o, = (0x + Oy + 0;)/3 and &, = (& + g, + &,)/3.
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3 YIELD FUNCTION AND FLOW RULE

The vyield function is an equation in the stress space ¢ that describes the
combinations of stress components which cause vyielding. The most used yield
function is based on the Mises yield criterion®

F=of +0 +0Z -0,q, -q,G -G ¢ +3fiF +2 + | -§° =0

where Sy is the yield strength (either monotonic or cyclic, or some value in between,
depending on the application). This yield function assumes that the material is
isotropic, since the subscripts X, y and z can be interchanged without changing the
equation. It also assumes that the material is pressure-insensitive, because it is
independent of the hydrostatic stress o,. Geometrically, the Mises yield function F =
0 describes the surface of a hyperellipsoid in the 9-dimensional stress space. When
represented in 2D in a oyx-0, diagram, it results in the boundary of an ellipsis rotated
45° from the x axis, see the left figure in Figure 1.

stress space: deviatoric stress space:
(l_\ "\ a
Oyl a-i)-5 L. " Sy de,=dz, o _dS
e ~a T
n = I 2G
S, do (dSym)-ng. -~
Syv6/3l M ds
S
O, \,\
Syv 6/3
Mises vield Mises yield
surface F=10 surface F=0

Figure 1. Mises yield surface in the oyx-0y stress space (left) and in the S,-S, stress space (right),
showing a normal vector and the flow rule.

If at some stress state @ the yield function F(0,Sy) <0, then © is inside the yield
surface, and any infinitesimal stress variation do will lead to a purely elastic strain

variation d€ =d¥g, =E~'@a, since dg, =0. But if @ is on the yield surface and its

variation do is in the outward direction of F = 0 (i.e. dF > 0), then the material will
yield and generate a plastic strain increment given by the Prandtl-Reuss flow rule

dg, =04 E) B

where C is called the generalized plastic modulus, and n is the normal unit vector
perpendicular to the surface F = 0 at the current state @, given by

0F/dc

| OF/0G |

where |dF/adG | stands for the norm of the gradient

n=

-
OF _| OF OF oF _OF oF oF oF oF oF
0o |dox 00y 00; Oty Ofyx Ok, Oux Oy Oy
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Note also that the flow rule is only valid if do [ is not negative, otherwise @ would
be moving in stress space in the inward direction of the yield surface. From the Mises
yield function, it is found that

oF i
£=[Zox—oy—oz 20,-0, -0, 20,00, 3%y, 3K 3k 3K 3 K :I

The generalized plastic modulus C can then be obtained from the uniaxial case using
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the Ramberg-Osgood equation, assuming 6=[g, 0 0 0 0 0 0 O qT.The

gradient 0F/dc in this case becomes
(‘;—c_,=[2oX ~gx =Gx 00000 0
where |9F/d0|=0,+6. A variation do=[do, 0 0 0 0 0 0 O 0]T in the
outward direction of the yield surface will cause then a plastic strain variation
_ do [0F/do) [0F/ 00
g, = L 9o/ _)2 / =L #2%% o5, o -ox 0 0 0 0 0 0O

C | OF/0G | C  60%

therefore its x component is dgy, = 2[doy/3C = C = 2[doy/3dgy,. On the other hand,

from the cyclic Ramberg-Osgood equation

]/hc ]/hc -1 1—]/hc
o o oy 2do o
Exp = =X = dey =1 4% |:.|d7X= X :>C=ngHC X

4 DEVIATORIC STRESS AND STRAIN TENSORS

It is much simpler to represent the Mises yield function, the Prandtl-Reuss flow rule

and Hooke's law with respect to the deviatoric stress and strain tensors S and €,
instead of @ and €, obtained from the difference between the stress or strain tensors
and their hydrostatic component

S_=_= T
S=0-0h=[Sx Sy & W% W % B Yz Iy |

§=§—§h=|:ex & € &y §x & & §z & :IT

where Sy = 0y — 0, = (204 — Oy — 0,)/3, Sy = (20, — Ox — 0,)/3, S; = (20, — Ox — 0y)/3,
and ex = & — & = (2& — & — &)/3, ey = (2&) — & — &,)/3, e; = (2, — & — &)/3. The
deviatoric stress points (Sx, Sy, S;) describe a plane in the (ox, oy, 0;) space called
deviatoric plane or teplane. Note that Sy + Sy + S, = (0x + 0y + 0;) — 30, = 0 and ey +
ey +e,= (&t & +&)—3e,=0.

The deviatoric strain can be represented as the sum of its elastic and plastic
components

— T
€e = [exe €ye €ze &ye 8Hxe &ze &xe §ze &y e:|
- _ T
€p ‘[eXp p ©p &yp 8xp &zp Exp §Fzp Eyp ]

In the deviatoric space, it follows that Hooke's law simply becomes eg =§/ZG,

where G = E/[2[(L+V)]. Therefore, since the elastic component of the deviatoric strain
is always parallel to the deviatoric stress, they're related by the scalar 2G, without the
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need to use Hooke’s 9x9 elastic compliance matrix, simplifying the calculations. The
incremental deviatoric stresses and elastic strains are related by dee =d§/ZG :

As the Mises yield function is pressure-insensitive, the hidrostatic stresses cannot
cause plastic strains, therefore these components are always elastic and correlated
by Hooke’s law €, = o, / 3K, where K = E/[3(1-2v)] is the bulk modulus of the
material, which measures its resistance to uniform compression. Therefore,
& =0h /3K and dg, =doy /3K .

It follows that the increment de =dee +dep =(d & —d &) +d & . Since the hydrostatic
component §, is elastic, the correspondence between elastic and plastic strain
increments results in dee =d€; —d€, and dep =d§ . Another advantage of using

the deviatoric space is that the Mises yield function simply becomes

3 3 { = 2
=§EES§+532/+SZZ"‘T>%y "'TVZX G+ "'P% "‘BZ/ ]‘32 =§E{|S|Z‘(SY\/5/3) }=0

where |S] is the norm of the deviatoric stress tensor. So, from the above equation
the Mises yield surface is simply a 9-dimensional sphere (a hypersphere) with radius
SyV6/3 in the deviatoric space. When represented in 2D in an S-Sy diagram, it
results in the boundary of a circle, see the right figure in Fig. 1. The use of
hyperspheres, instead of hyperellipsoids, greatly simplifies the incremental plasticity
algorithms, especially when the hardening rules are introduced, in the next section.

It is possible to show that the normal unit vector n perpendicular to the surface F =0
at the current state S has the same expression as in the stress space

0F/0S _ 0F/dc

|0F/8S| |0F/00]

From dép =dg and dS [ =do[d , the Prandtl-Reuss flow rule results in

n

d€p=%tﬂd6|ﬁ) = de‘p=é[@|§ﬁ5 ]

4.1 Direct Problem (Given the Stress History)

If ¢ is on the yield surface and its variation do is in the outward direction of F = 0,
then the above equations are enough to calculate the strain increment d€ as a
function of @ and do from a given stress history from the hydrostatic stresses

G = 0p=(0,+0,+0;)/3 = Gy,=0,1 1 10 0 0 0 0 0]
do = doy, =(doy +do, +d0)/3 =>do,=do, L 1 100 00 0 0]

followed by the calculation of the deviatoric strain increment de from the current C
and n and its conversion to d€ using

dop
3K

S=0-0h |, 45 d—S+1mdsm)l = dE=dé +d § =de +oh
dS =do-doy 2G

The above formulation is valid for a general 3D stress history. But in most practical
design problems, the stress history is given on a free surface (assumed
perpendicular to the z direction) through the components {oy, oy, Ty} and their
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variations {d oy, dgy, dTyxy}. Since 0; = Txz = Tox = Tyz = Tzy = 0 and Tyx = Tyy, the stress
tensors used in this case are

G=[ox Oy 0 & Ty 0 0 0 0]
do=[dox doy 0 dty diy 0 0 0 0]
and the resulting strain increment should only have the components
de=[dex de, de dey dgx 0 0 0 0

where dy,y = d&xy + dgy = 2dg,y, and the strain variation dg; is usually non-zero due
to the Poisson effect.
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Inverse problem (given the strain history)
The inverse problem of calculating do as a function of € and d€, necessary if the
strain history is given, requires the following derivations

=i lnsmE =» deF =L lnismoE =
2G C C
= (dE—dEh)Iﬂ=dE_=(i+i)I]j§mT = dSF=-CCgEm
2G C 2G+C

which, combined with the Prandtl-Reuss flow rule gives
_ - 1 = 2G o
dg, =dey, ==[S =———M e
& =dep = [dS O) D 2G40 [t ed)E

So, if € and dg€ are given and it is known that @ is on the yield surface, and
assuming that the unknown variation do is in the outward direction of F = 0, then
such do can be calculated by computing the hydrostatic strains

T = en=(ex +& +€,)/3 = F=gnfl 1 10 0 0 0 0 0
dE = de, = (e +dg +dg )R =d&=degd 1 10 0 0 0 0 0]

followed by the calculation of the deviatoric stress increment dS from the current C
and n

2G
2G+C

dS =2G [@e, =2G [HE-d§, —d§]=2G M e-d § - [dE @) @]

and its conversion to do using

do =dS +da;, =dS +3K @ g,
Note that the above equation is only valid if the resulting do is in the outward
direction of the yield surface, i.e., if do @ >0 . Note also that, since de =d€-d¥g, and

de@ =d €@ , the above expression for dS can be rewritten as

= _ 2G _
dsS =2G -
(de 2G+C e )0}

But the above equations for the direct and inverse problems are not enough to solve
the incremental plasticity problem. As the stresses try to move beyond the yield
surface, material hardening effects can cause such surface to translate in stress
space and/or change its size and shape. These effects must be computed from
hardening rules, as studied in the next sections.
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5 KINEMATIC HARDENING
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The Bauschinger effect, observed under cyclic loading, is a change in the modulus of
the opposite yield strength after strain hardening, due to microscopic stress
distribution: tensile cold working up to a stress level ox > Sy increases the tensile
yield strength in the x direction for subsequent loadings from Sy to oy, but it also
reduces in absolute value the compressive yield strength, from —Sy to roughly (oy
—-2Sy), and vice-versa after a compressive strain hardening. This is a general
phenomenon found in most polycrystalline metals, the most significant hardening
type after the material becomes cyclically stable.

The Bauschinger effect can be modeled in stress space, allowing the yield surface to
translate with no change in its size or shape. In the above example, if the center of
the yield surface is translated in the x direction of the stress space by (ox —Sy), then
the resulting surface will intersect the x axis in the new tensile yield stress (ox —Sy
+Sy) = 0x and in the new compressive yield stress (ox =Sy —Sy) = (0x —2Sy). Since
this phenomenon only involves the kinematic translation of the yield surface, it is
called kinematic hardening.

So, in the deviatoric stress space, kinematic hardening maintains the radius Syv6/3
of the yield hypersphere fixed, while its center is translated, changing the generalized
plastic modulus C. Several models can be used to obtain the current value of C as
the yield surface translates, to calculate the plastic strain increments. One of the
most efficient models is the multi-yield-surface model, which uses several yield
surfaces obtained from a discretization of the stress-strain curve. The first surface is
the one that defines the elastic limit of the material, usually represented in the
deviatoric space by a hypersphere with radius r; = SyV6/3, implying that the material
is assumed purely elastic for plastic strains below 0.2% (which define Sy).
Considering n. surfaces, the values of ry, r3, ..., rc are calculated from the cyclic
effective stress-strain curve o,V6/3xg,,, where oy and &, are obtained from uniaxial
tests, see Fig. 2.

Figure 2. Yield surfaces in the S,-S, deviatoric stress space, and correspondent radii obtained from
the piecewise linearization of the cyclic effective stress-strain curve.

As seen in the figure, n. points from the cyclic effective stress-strain curve are

chosen to define each of the radii r; from the yield surfaces, i = 1, ..., n.. The value of
the generalized plastic modulus C = C; between the surfaces with radii ri,; and r; is
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then estimated from the slopes of the cyclic effective curve between points (&pi, Oxi)
and (&xpi+1, Oxi+1), by

Cizg dox Dggoxi"'l_c&i =E|:_|\/_g
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o T ince oy =r IZ-I\/—6
dexp 3 Expiyy "Bxp; 3 2 Expiy TExp 2

Note that the difference between the radii of consecutive surfaces is not necessarily
the same for all surfaces. To improve the algorithm accuracy, it is a good idea to
choose values g,y that are logarithmically spaced, resulting in

_ (i-1)/(nc-1)
exp; = vp Heip /2vp )
where gy, is a plastic strain below which the material is assumed purely elastic and

&p IS the plastic component of the rupture strain (which is usually approximated by
the rupture strain g). The radius of each surface is then calculated by

he /6

xpi By

Note that the usual value r; = SyV6/3 is obtained by making &y, = 0.2% and i = 1. For
a better precision, but with a higher computational cost, it is recommended to use a
lower value of €y, associated with the true elastic limit of the material, usually much
smaller than Syg 2.

From the above equations, it is possible to obtain all values of r; and C;, necessary
for the algorithm, described next.

The multi-yield-surface model assumes that the vyield surfaces are rings with
increasing radii r;, initially concentric. The rings cannot intersect each other, except

when they are tangent. While the vector S is moving in the deviatoric space inside
the inner ring, with radius rq, all stress and strain increments are purely elastic. When

the vector S touches the border of the inner ring, this ring becomes the active
surface and starts translating until it touches the next one, which has radius r».
During this trajectory between r; and r,, the plastic strain increment is calculated
using C = C;. The ring r, then becomes the active surface.

If the loading is further increased, both rings r; and r, are translated altogether as a
rigid body, until touching the ring r3;. Analogously, during this trajectory between r;
and r3, the plastic strain increment is calculated using C = C,. The ring rz becomes
the active surface and the process continues, until some loading reversal makes the
vector S move inside the inner ring. During this trajectory inside the inner ring, the
strain increments are purely elastic, no surface is active, and therefore none of the
rings move. The rings will only move again when S touches again the inner ring.
Note however that the rings are not concentric anymore. The plastic memory of the
material is stored in the model through these positions between centers of the rings.
Figure 3 shows the multi-yield-surface algorithm applied to a 1020 steel under the
biaxial loading history [ox = {0 - 350 - -250 - 250}MPa, oy = —0y], with all other
stress components equal to zero, for n. = 15 yield surfaces. Note that, in this simple
example, the choice of oy = —ox and o, = 0 results in o, = (0x + Oy + 0;)/3 = 0, making
Sx = 0x — On = 0y and Sy = Oy — O = Oy,

rizlﬁc 5
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1) elastic loading from the origin until the border of the first yield surface
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Figure 3. Yield surfaces in the S-S, deviatoric stress space; the active surface (circle) at each loading
step is represented with a thicker line.

Under non-proportional loading, the direction along which the deviatoric stress vector
S moves may be different from the ring translation direction. To calculate the ring
translation direction in this general case, two rules have been proposed, one by
Mroz® and another by Garud.®

The Mroz rule® assumes that the translation of ring r; occurs in a direction parallel to
the line that joins the current point S at ring r; with the corresponding point §M at the

next ring ri+1 which has the same normal unit vector ny,, see Figure 4. In this figure,
Sc;

; and §Ci+1 are the centers of rings r; and ri:1 in the deviatoric space.

A\ N

Figure 4. lllustration of Mroz and Garud kinematic hardening rules.
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However, the Mroz rule can induce a few numerical problems, which can result in
rings intersecting in more than one point. Garud's rule® does not have such
numerical problems, therefore it is our model of choice. It states that the translation of

ring r;i is in a direction parallel to the line that joins the points Sg and Sg shown in
Fig. 4. The point Sg is found from the intersection between ring ri:1 and the vector
S+a @S, where a > 0 is a constant that can be determined from such intersection
condition. The normal vector Ng at Sg is then
< - S=Sen +alS
| S—Scj+1 +adS |
The point Sg is defined as the corresponding point of Sg at ring r; with same normal
unit vector ng, see Fig. 4. It is easy to see that the translation vector for the center of

ring r; is parallel to d§ci , Where

56 =Seirt *Ne M1l 45 =56 -Sa' =(Scivt ~Sei) +116 Wisa 1)
Sc' =Scj +ng [

The multi-yield-surface algorithm is summarized in Figs. 5 and 6. Initially, all ring
centers Sc; are placed at the SyxSy plane origin. The ring radii r; and the generalized

plastic modulii C;, i = 1,...,n, are calculated from the presented equations. The
variable j is used to count the loading number from the history, while the variable i*
stores the number of the currently active ring (if no ring is active, then i* = 0).

6 ISOTROPIC HARDENING

Isotropic hardening is characterized by the expansion/contraction of the yield
surfaces due to material hardening or softening. In the isotropic cyclic hardening or
softening, there is an increase or decrease in material strength due to plastic strain,
changing the size or shape of the yield surfaces, an effected partially accounted for
by the cyclic oxeg curves in the classical (unidimensional) N theory.
White® considered not only the kinematic hardening, which happens due to the
translations of the hyperspheres (rings), but also the cyclic hardening (or softening)
due to cyclic stresses and strains, which make the unidimensional h and H Ramberg-
Osgood parameters tend to the cyclic he and Hc. Therefore, the transition between
the monotonic and cyclic hardening parameters can be modeled.
It has been proposed that isotropic hardening is a function of the applied plastic work
W, which can be incrementally computed by

Wp =2 dWp =005
Assuming the material is pressure-insensitive, thus plastically incompressible, the
plastic Poisson coefficient is v, = 0.5, and the sum of the plastic normal strain
increments must be nil, dExp + dEyp + dEZp =0 . Therefore,

oh g =an Eﬂd§(p+d§,p+d§p)=0 O
AW, =6 % =S +0,)d§ =S Dep +a@ T =S b6,
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Figure 5. Multi-yield-surface algorithm.

Figure 6. Routines from the multi-yield-surface algorithm to stop inside or to go beyond ring ris.
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So, the plastic work increment can be directly computed from the deviatoric stress
and strain tensors. In the multi-yield-surface algorithm, a deviatoric stress increment

a @S associated with a plastic deviatoric strain increment dep from a state S
results in a plastic work increment

dWp O[S +(S+am@s) ]2 @e, =(§+a§/z)e‘p
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The above quantity can be easily obtained in the algorithm at every calculation step.
Therefore, the accumulated plastic work can be calculated.
Cyclic hardening can then be empirically considered in the multi-yield-surface
algorithm through the expressions for the transient hardening coefficient H; and
exponent hy
Hy = He +— e _ and hy =h¢ + h=he .
1+ (X dwp)" 1+ (3 dwp)"

where h* is a material-dependent adjustable exponent.

7 CONCLUSIONS

The proposed incremental plasticity algorithm is computationally efficient, calculating
the hysteresis loops faster than traditional implementations. It is entirely formulated
on the deviatoric stress-strain space, resulting in much simpler equations for the
stress or strain increments. The algorithm can capture phenomena such as
ratcheting, cyclic hardening or softening, and non-proportional hardening. Damage
models that incorporate both strain and stress effects can then be applied.
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