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Abst ract 
It is well known that the uniaxial Ramberg-Osgood model cannot be used to correlate 
principal stresses and strains under multiaxial loading. But, to calculate multiaxial 
fatigue damage, it is frequently necessary to obtain the multiaxial stresses from 
measured elastic-plastic strains. To tackle this task, an efficient model is proposed to 
obtain the multiaxial stress-strain history in the non-proportional case, considering 
both isotropic and kinematic hardening. An improved version of the Mròz multi-yield 
surface model is used to calculate the Bauschinger effect under multiaxial loading in 
the deviatoric stress space, allowing the yield surface to translate with no change in 
its size or shape, following Garud's hypothesis. Moreover, an algorithm is presented 
to obtain the multiaxial hysteresis loops, including the effects of isotropic and 
kinematic hardening due to cyclic loads. 
Key words:  Multiaxial fatigue; Non-proportional loading; Isotropic and kinematic 
hardening; Incremental plasticity; Multi-yield-surface algorithm. 
 
 

MODELOS DE ENCRUAMENTO ISOTRÓPICO E CINEMÁTICO PARA 
HISTÓRIAS DE CARREGAMENTO MULTIAXIAL NÃO-PROPORCIONAL 

Resumo 
O modelo uniaxial de Ramberg-Osgood não pode ser usado para correlacionar 
tensões e deformações principais sob cargas multiaxiais. Mas para calcular o dano 
multiaxial à fadiga é frequentemente necessário obter as tensões multiaxiais a partir 
de deformações elastoplásticas medidas. Para cumprir esta tarefa, um modelo 
eficiente é proposto para obter a história de tensão-deformação no caso não-
proporcional, considerando ambos os encruamentos isotrópico e cinemático. Uma 
versão melhorada do modelo de múltiplas superfícies de escoamento de Mròz é 
usado para calcular o efeito de Bauschinger sob cargas multiaxiais no espaço de 
tensões desviatórias, permitindo que a superfície de escoamento translade sem 
mudar seu tamanho ou forma, segundo a hipótese de Garud. Além disso, um 
algoritmo é apresentado para obter os laços de histerese multiaxiais, incluindo 
efeitos de encruamento isotrópico e cinemático. 
Palavras chave:  Fadiga multiaxial; Carregamento não-proporcional; Encruamento 
isotrópico e cinemático; Plasticidade incremental; Algoritmo de múltiplas superfícies 
de escoamento. 
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1 INTRODUÇÃO 
 
In most engineering applications, either the stress or the strain history is known, but 
not both. When designing a new component, it is common to calculate or estimate 
the stress history from measured or specified design loads, whereas in most 
structural integrity evaluations (of an existing component) only the strain history can 
be measured using strain gage rosettes, for example. But the best multiaxial fatigue 
damage models require the knowledge of both the stress and the corresponding 
strain histories to quantify the consequent damage parameter.(1-3) 
For linear elastic histories, it is trivial to correlate the stresses with the strains using 
Hooke’s law. For elastoplastic proportional histories, where the principal directions 
remain fixed, this can be done using the (total) stress-strain models from the previous 
section. But to properly reproduce the stress-strain hysteresis loops in NP 
elastoplastic histories, which depend on the load path, it is necessary to use 
incremental plasticity models to correlate infinitesimal changes in all stress 
components with the associated strain components, and vice-versa. They are based 
on 3 equations: the yield function, which describes combinations of stresses that lead 
to plastic flow; the flow rule, which describes the relationship between stresses and 
plastic strains; and the hardening rule, which defines how the yield criterion changes 
with plastic straining. These equations are discussed and applied in the following 
sections. 
 
2 STRESS AND STRAIN TENSORS 
 
A convenient way to represent the equations in incremental plasticity is to represent 
stress and strain tensors as 9-dimensional column vectors: 

    σ = σ σ σ τ τ τ τ τ τσ = σ σ σ τ τ τ τ τ τσ = σ σ σ τ τ τ τ τ τσ = σ σ σ τ τ τ τ τ τ    

    ε = ε ε ε ε ε ε ε ε εε = ε ε ε ε ε ε ε ε εε = ε ε ε ε ε ε ε ε εε = ε ε ε ε ε ε ε ε ε    

T
x y z xy yx xz zx yz zy

T
x y z xy yx xz zx yz zy

 

where ττττij = ττττji (or ττττxy = ττττyx,  ττττxz = ττττzx, ττττyz = ττττzy), εεεεij = εεεεji, γγγγij = 2εεεεij (meaning γγγγxy = εεεεxy + εεεεyx 
= 2εεεεxy, etc.), and T stands for the transpose of a vector. The elastoplastic strain εεεε  is 
the sum of the elastic and plastic components ε = ε + εε = ε + εε = ε + εε = ε + εe p , where 

    ε = ε ε ε ε ε ε ε ε εε = ε ε ε ε ε ε ε ε εε = ε ε ε ε ε ε ε ε εε = ε ε ε ε ε ε ε ε ε    

    ε = ε ε ε ε ε ε ε ε εε = ε ε ε ε ε ε ε ε εε = ε ε ε ε ε ε ε ε εε = ε ε ε ε ε ε ε ε ε    

e e e e e e e e e

p p p p p p p p p

T
e x y z xy yx xz zx yz zy

T
p x y z xy yx xz zx yz zy

 

Hooke’s law can then be expressed in vectorial form by 1
e E−−−−ε = ⋅ σε = ⋅ σε = ⋅ σε = ⋅ σ , where 1E−−−−  is 

Hooke’s elastic compliance matrix, the inverse of the stiffness matrix. It is also 
convenient to define the hidrostatic stress and strain vectors 

[[[[ ]]]]
[[[[ ]]]]

σ = σ ⋅σ = σ ⋅σ = σ ⋅σ = σ ⋅

ε = ε ⋅ε = ε ⋅ε = ε ⋅ε = ε ⋅

T
h h

T
h h

1 1 1 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0
 

where σσσσh = (σσσσx + σσσσy + σσσσz)/3 and εεεεh = (εεεεx + εεεεy + εεεεz)/3. 
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3 YIELD FUNCTION AND FLOW RULE 
 
The yield function is an equation in the stress space σσσσ  that describes the 
combinations of stress components which cause yielding. The most used yield 
function is based on the Mises yield criterion(1) 

(((( ))))= σ + σ + σ −σ σ −σ σ − σ σ + ⋅ τ + τ + τ − == σ + σ + σ −σ σ −σ σ − σ σ + ⋅ τ + τ + τ − == σ + σ + σ −σ σ −σ σ − σ σ + ⋅ τ + τ + τ − == σ + σ + σ −σ σ −σ σ − σ σ + ⋅ τ + τ + τ − =2 2 2 2 2 2 2
x y z x y x z y z xy yz zx YF 3 S 0  

where SY is the yield strength (either monotonic or cyclic, or some value in between, 
depending on the application). This yield function assumes that the material is 
isotropic, since the subscripts x, y and z can be interchanged without changing the 
equation. It also assumes that the material is pressure-insensitive, because it is 
independent of the hydrostatic stress σσσσh. Geometrically, the Mises yield function F = 
0 describes the surface of a hyperellipsoid in the 9-dimensional stress space. When 
represented in 2D in a σσσσx-σσσσy diagram, it results in the boundary of an ellipsis rotated 
45o from the x axis, see the left figure in Figure 1. 
 

     
Figure 1.  Mises yield surface in the σσσσx-σσσσy stress space (left) and in the Sx-Sy stress space (right), 
showing a normal vector and the flow rule. 
 
If at some stress state σσσσ  the yield function σ <σ <σ <σ <YF( ,S ) 0 , then σσσσ  is inside the yield 
surface, and any infinitesimal stress variation dσσσσ  will lead to a purely elastic strain 

variation −−−−ε = ε = ⋅ σε = ε = ⋅ σε = ε = ⋅ σε = ε = ⋅ σ1
ed d E d , since ε =ε =ε =ε =pd 0 . But if σσσσ  is on the yield surface and its 

variation σσσσd  is in the outward direction of F = 0 (i.e. dF > 0), then the material will 
yield and generate a plastic strain increment given by the Prandtl-Reuss flow rule 

ε = ⋅ σ ⋅ ⋅ε = ⋅ σ ⋅ ⋅ε = ⋅ σ ⋅ ⋅ε = ⋅ σ ⋅ ⋅p
1

d (d n) n
C

 

where C is called the generalized plastic modulus, and n  is the normal unit vector 
perpendicular to the surface F = 0 at the current state σσσσ , given by 

∂ ∂σ∂ ∂σ∂ ∂σ∂ ∂σ====
∂ ∂σ∂ ∂σ∂ ∂σ∂ ∂σ
F

n
| F |

 

 where | |∂ ∂σ∂ ∂σ∂ ∂σ∂ ∂σF  stands for the norm of the gradient 

    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂====     ∂σ ∂σ ∂σ ∂σ ∂τ ∂τ ∂τ ∂τ ∂τ ∂τ∂σ ∂σ ∂σ ∂σ ∂τ ∂τ ∂τ ∂τ ∂τ ∂τ∂σ ∂σ ∂σ ∂σ ∂τ ∂τ ∂τ ∂τ ∂τ ∂τ∂σ ∂σ ∂σ ∂σ ∂τ ∂τ ∂τ ∂τ ∂τ ∂τ    

T

x y z xy yx xz zx yz zy

F F F F F F F F F F  
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Note also that the flow rule is only valid if σ ⋅σ ⋅σ ⋅σ ⋅d n  is not negative, otherwise σσσσ  would 
be moving in stress space in the inward direction of the yield surface. From the Mises 
yield function, it is found that 

∂∂∂∂     = σ −σ −σ σ −σ −σ σ −σ −σ τ τ τ τ τ τ= σ −σ −σ σ −σ −σ σ −σ −σ τ τ τ τ τ τ= σ −σ −σ σ −σ −σ σ −σ −σ τ τ τ τ τ τ= σ −σ −σ σ −σ −σ σ −σ −σ τ τ τ τ τ τ    ∂σ∂σ∂σ∂σ
T

x y z y x z z x y xy yx xz zx yz zy
F

2 2 2 3 3 3 3 3 3  

The generalized plastic modulus C can then be obtained from the uniaxial case using 

the Ramberg-Osgood equation, assuming 0 0 0 0 0 0 0 0σ = σσ = σσ = σσ = σ        
T

x . The 

gradient ∂ ∂σ∂ ∂σ∂ ∂σ∂ ∂σF  in this case becomes 

[[[[ ]]]]∂∂∂∂ = σ −σ −σ= σ −σ −σ= σ −σ −σ= σ −σ −σ
∂σ∂σ∂σ∂σ

T
x x x

F 2 0 0 0 0 0 0  

where ∂ ∂σ = σ∂ ∂σ = σ∂ ∂σ = σ∂ ∂σ = σx| F | 6 . A variation σ = σσ = σσ = σσ = σ        
T

xd d 0 0 0 0 0 0 0 0  in the 

outward direction of the yield surface will cause then a plastic strain variation 
(((( )))) [[[[ ]]]]σ ⋅ ∂ ∂σ ⋅ ∂ ∂σσ ⋅ ∂ ∂σ ⋅ ∂ ∂σσ ⋅ ∂ ∂σ ⋅ ∂ ∂σσ ⋅ ∂ ∂σ ⋅ ∂ ∂σ σ σσ σσ σσ σε = ⋅ = ⋅ ⋅ σ −σ −σε = ⋅ = ⋅ ⋅ σ −σ −σε = ⋅ = ⋅ ⋅ σ −σ −σε = ⋅ = ⋅ ⋅ σ −σ −σ

∂ ∂σ σ∂ ∂σ σ∂ ∂σ σ∂ ∂σ σ
Tx x

p x x x2 2
x

d F F1 1 2 d
d 2 0 0 0 0 0 0

C C| F | 6
 

therefore its x component is dεεεεxp = 2⋅⋅⋅⋅dσσσσx/3C ⇒⇒⇒⇒ C = 2⋅⋅⋅⋅dσσσσx/3dεεεεxp. On the other hand, 
from the cyclic Ramberg-Osgood equation 

 
− −− −− −− −σ σ σ σ σσ σ σ σ σσ σ σ σ σσ σ σ σ σ                    ε =ε =ε =ε = ⇒⇒⇒⇒ ε = ⋅ ⋅ =ε = ⋅ ⋅ =ε = ⋅ ⋅ =ε = ⋅ ⋅ = ⇒⇒⇒⇒ = ⋅= ⋅= ⋅= ⋅                    

                    

c c c1 h 1 h 1 1 1 h
x x x x x

x x c cp p
c c c c c

d 2d1 2d C h H
H h H H 3C 3 H

 

 
4 DEVIATORIC STRESS AND STRAIN TENSORS 
 
It is much simpler to represent the Mises yield function, the Prandtl-Reuss flow rule 
and Hooke’s law with respect to the deviatoric stress and strain tensors S  and e , 
instead of σσσσ  and εεεε , obtained from the difference between the stress or strain tensors 
and their hydrostatic component 

    = σ − σ = τ τ τ τ τ τ= σ − σ = τ τ τ τ τ τ= σ − σ = τ τ τ τ τ τ= σ − σ = τ τ τ τ τ τ    

    = ε − ε = ε ε ε ε ε ε= ε − ε = ε ε ε ε ε ε= ε − ε = ε ε ε ε ε ε= ε − ε = ε ε ε ε ε ε    

T
h x y z xy yx xz zx yz zy

T
h x y z xy yx xz zx yz zy

S S S S

e e e e
 

where Sx = σσσσx – σσσσh = (2σσσσx – σσσσy – σσσσz)/3, Sy = (2σσσσy – σσσσx – σσσσz)/3, Sz = (2σσσσz – σσσσx – σσσσy)/3, 
and ex = εεεεx – εεεεh = (2εεεεx – εεεεy – εεεεz)/3, ey = (2εεεεy – εεεεx – εεεεz)/3, ez = (2εεεεz – εεεεx – εεεεy)/3. The 
deviatoric stress points (Sx, Sy, Sz) describe a plane in the (σσσσx, σσσσy, σσσσz) space called 
deviatoric plane or π-plane. Note that Sx + Sy + Sz = (σσσσx + σσσσy + σσσσz) – 3σσσσh = 0 and ex + 
ey + ez = (εεεεx + εεεεy + εεεεz) – 3εεεεh = 0. 
The deviatoric strain can be represented as the sum of its elastic and plastic 
components 

    = ε ε ε ε ε ε= ε ε ε ε ε ε= ε ε ε ε ε ε= ε ε ε ε ε ε    

    = ε ε ε ε ε ε= ε ε ε ε ε ε= ε ε ε ε ε ε= ε ε ε ε ε ε    

T
e x y z xy yx xz zx yz zye e e e e e e e e

T
p x y z xy yx xz zx yz zyp p p p p p p p p

e e e e

e e e e
 

In the deviatoric space, it follows that Hooke’s law simply becomes ====ee S 2G , 
where G = E/[2 ⋅⋅⋅⋅(1+νννν)]. Therefore, since the elastic component of the deviatoric strain 
is always parallel to the deviatoric stress, they’re related by the scalar 2G, without the 
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need to use Hooke’s 9×9 elastic compliance matrix, simplifying the calculations. The 
incremental deviatoric stresses and elastic strains are related by ====ede dS 2G . 
As the Mises yield function is pressure-insensitive, the hidrostatic stresses cannot 
cause plastic strains, therefore these components are always elastic and correlated 
by Hooke’s law εεεεh = σσσσh / 3K, where K = E/[3(1−−−−2νννν)] is the bulk modulus of the 
material, which measures its resistance to uniform compression. Therefore, 
ε = σε = σε = σε = σh h 3K  and ε = σε = σε = σε = σh hd d 3K .  
It follows that the increment = + = ε − ε + ε= + = ε − ε + ε= + = ε − ε + ε= + = ε − ε + εe p e h pde de de (d d ) d . Since the hydrostatic 

component εεεεh  is elastic, the correspondence between elastic and plastic strain 

increments results in = ε − ε= ε − ε= ε − ε= ε − εe e hde d d  and = ε= ε= ε= εp pde d . Another advantage of using 

the deviatoric space is that the Mises yield function simply becomes 

(((( ))))        = ⋅ + + + τ + τ + τ + τ + τ + τ − = ⋅ − == ⋅ + + + τ + τ + τ + τ + τ + τ − = ⋅ − == ⋅ + + + τ + τ + τ + τ + τ + τ − = ⋅ − == ⋅ + + + τ + τ + τ + τ + τ + τ − = ⋅ − =             

22 2 2 2 2 2 2 2 2 2 2
x y z xy yx xz zx yz zy Y Y

3 3
F S S S S | S | S 6 3 0

2 2
 

where | |S  is the norm of the deviatoric stress tensor. So, from the above equation 
the Mises yield surface is simply a 9-dimensional sphere (a hypersphere) with radius 
SY√√√√6/3 in the deviatoric space. When represented in 2D in an Sx-Sy diagram, it 
results in the boundary of a circle, see the right figure in Fig. 1. The use of 
hyperspheres, instead of hyperellipsoids, greatly simplifies the incremental plasticity 
algorithms, especially when the hardening rules are introduced, in the next section. 
It is possible to show that the normal unit vector n  perpendicular to the surface F = 0 
at the current state S  has the same expression as in the stress space 

∂ ∂ ∂ ∂σ∂ ∂ ∂ ∂σ∂ ∂ ∂ ∂σ∂ ∂ ∂ ∂σ= == == == =
∂ ∂σ∂ ∂σ∂ ∂σ∂ ∂σ∂ ∂∂ ∂∂ ∂∂ ∂

F S F
n

| F || F S |
 

From = ε= ε= ε= εp pde d  and ⋅ = σ ⋅⋅ = σ ⋅⋅ = σ ⋅⋅ = σ ⋅dS n d n , the Prandtl-Reuss flow rule results in 

        ε = ⋅ σ ⋅ ⋅ε = ⋅ σ ⋅ ⋅ε = ⋅ σ ⋅ ⋅ε = ⋅ σ ⋅ ⋅ ⇒⇒⇒⇒ = ⋅ ⋅ ⋅= ⋅ ⋅ ⋅= ⋅ ⋅ ⋅= ⋅ ⋅ ⋅p p
1 1

d (d n) n de (dS n) n
C C

 

 
4.1 Direct Problem (Given the Stress History) 
 
If σσσσ  is on the yield surface and its variation dσσσσ  is in the outward direction of F = 0, 
then the above equations are enough to calculate the strain increment εεεεd  as a 
function of σσσσ  and σσσσd  from a given stress history from the hydrostatic stresses 

[[[[ ]]]]
[[[[ ]]]]

        

    

 σσσσ ⇒⇒⇒⇒ σ = σ + σ + σσ = σ + σ + σσ = σ + σ + σσ = σ + σ + σ ⇒⇒⇒⇒ σ = σ ⋅σ = σ ⋅σ = σ ⋅σ = σ ⋅


σσσσ ⇒⇒⇒⇒ σ = σ + σ + σσ = σ + σ + σσ = σ + σ + σσ = σ + σ + σ ⇒⇒⇒⇒ σ = σ ⋅σ = σ ⋅σ = σ ⋅σ = σ ⋅

T
h x y z h h

T
h x y z h h

( ) / 3 1 1 1 0 0 0 0 0 0

d d (d d d ) / 3 d d 1 1 1 0 0 0 0 0 0
 

followed by the calculation of the deviatoric strain increment de  from the current C 
and n  and its conversion to εεεεd  using 

  ( )     
 σσσσ= σ − σ= σ − σ= σ − σ= σ − σ
⇒⇒⇒⇒ = + ⋅ ⋅ ⋅= + ⋅ ⋅ ⋅= + ⋅ ⋅ ⋅= + ⋅ ⋅ ⋅ ⇒⇒⇒⇒ ε = + ε = +ε = + ε = +ε = + ε = +ε = + ε = += σ − σ= σ − σ= σ − σ= σ − σ 

hh
h

h

dS 1 dS de dS n n d de d de
2G C 3KdS d d

 

The above formulation is valid for a general 3D stress history. But in most practical 
design problems, the stress history is given on a free surface (assumed 
perpendicular to the z direction) through the components {σσσσx, σσσσy, ττττxy} and their 
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variations {dσσσσx, dσσσσy, dττττxy}. Since σσσσz = ττττxz = ττττzx = ττττyz = ττττzy = 0 and ττττyx = ττττxy, the stress 
tensors used in this case are  

     σ = σ σ τ τσ = σ σ τ τσ = σ σ τ τσ = σ σ τ τ     


    σ = σ σ τ τσ = σ σ τ τσ = σ σ τ τσ = σ σ τ τ     

T
x y xy xy

T
x y xy xy

0 0 0 0 0

d d d 0 d d 0 0 0 0
 

and the resulting strain increment should only have the components 

0 0 0 0    ε = ε ε ε ε εε = ε ε ε ε εε = ε ε ε ε εε = ε ε ε ε ε    
T

x y z xy yxd d d d d d  

where dγγγγxy = dεεεεxy + dεεεεyx = 2dεεεεxy, and the strain variation dεεεεz is usually non-zero due 
to the Poisson effect. 
 
Inverse problem (given the strain history) 
The inverse problem of calculating dσσσσ  as a function of εεεε  and dεεεε , necessary if the 
strain history is given, requires the following derivations 

       

     

⋅⋅⋅⋅= + ⋅ ⋅ ⋅= + ⋅ ⋅ ⋅= + ⋅ ⋅ ⋅= + ⋅ ⋅ ⋅ ⇒⇒⇒⇒ ⋅ = + ⋅ ⋅ ⋅ ⋅⋅ = + ⋅ ⋅ ⋅ ⋅⋅ = + ⋅ ⋅ ⋅ ⋅⋅ = + ⋅ ⋅ ⋅ ⋅ ⇒⇒⇒⇒

    
⇒⇒⇒⇒ ε − ε ⋅ = ε ⋅ = + ⋅ ⋅ε − ε ⋅ = ε ⋅ = + ⋅ ⋅ε − ε ⋅ = ε ⋅ = + ⋅ ⋅ε − ε ⋅ = ε ⋅ = + ⋅ ⋅ ⇒⇒⇒⇒ ⋅ = ε ⋅⋅ = ε ⋅⋅ = ε ⋅⋅ = ε ⋅     ++++    
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which, combined with the Prandtl-Reuss flow rule gives 

( ) ( )ε = = ⋅ ⋅ ⋅ = ⋅ ε ⋅ ⋅ε = = ⋅ ⋅ ⋅ = ⋅ ε ⋅ ⋅ε = = ⋅ ⋅ ⋅ = ⋅ ε ⋅ ⋅ε = = ⋅ ⋅ ⋅ = ⋅ ε ⋅ ⋅
++++p p

1 2G
d de dS n n d n n

C 2G C
 

So, if εεεε  and dεεεε  are given and it is known that σσσσ  is on the yield surface, and 
assuming that the unknown variation dσσσσ  is in the outward direction of F = 0, then 
such dσσσσ  can be calculated by computing the hydrostatic strains 
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followed by the calculation of the deviatoric stress increment dS  from the current C 
and n  

[ ] [ ( ) ]= ⋅ = ⋅ ε − ε − ε = ⋅ ε − ε − ⋅ ε ⋅ ⋅= ⋅ = ⋅ ε − ε − ε = ⋅ ε − ε − ⋅ ε ⋅ ⋅= ⋅ = ⋅ ε − ε − ε = ⋅ ε − ε − ⋅ ε ⋅ ⋅= ⋅ = ⋅ ε − ε − ε = ⋅ ε − ε − ⋅ ε ⋅ ⋅
++++e h p h
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and its conversion to dσσσσ  using 
σ = + σ = + ⋅ εσ = + σ = + ⋅ εσ = + σ = + ⋅ εσ = + σ = + ⋅ εh hd dS d dS 3K d  

Note that the above equation is only valid if the resulting σσσσd  is in the outward 
direction of the yield surface, i.e., if σ ⋅ >σ ⋅ >σ ⋅ >σ ⋅ >d n 0 . Note also that, since = ε − ε= ε − ε= ε − ε= ε − εhde d d  and 

⋅ = ε ⋅⋅ = ε ⋅⋅ = ε ⋅⋅ = ε ⋅de n d n , the above expression for dS  can be rewritten as 

[ ( ) ]= ⋅ − ⋅ ⋅ ⋅= ⋅ − ⋅ ⋅ ⋅= ⋅ − ⋅ ⋅ ⋅= ⋅ − ⋅ ⋅ ⋅
++++

2G
dS 2G de de n n

2G C
 

But the above equations for the direct and inverse problems are not enough to solve 
the incremental plasticity problem. As the stresses try to move beyond the yield 
surface, material hardening effects can cause such surface to translate in stress 
space and/or change its size and shape. These effects must be computed from 
hardening rules, as studied in the next sections. 
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5 KINEMATIC HARDENING 
 
The Bauschinger effect, observed under cyclic loading, is a change in the modulus of 
the opposite yield strength after strain hardening, due to microscopic stress 
distribution: tensile cold working up to a stress level σσσσx > SY increases the tensile 
yield strength in the x direction for subsequent loadings from SY to σσσσx, but it also 
reduces in absolute value the compressive yield strength, from –SY to roughly (σσσσx 

−−−−    2SY), and vice-versa after a compressive strain hardening. This is a general 
phenomenon found in most polycrystalline metals, the most significant hardening 
type after the material becomes cyclically stable. 
The Bauschinger effect can be modeled in stress space, allowing the yield surface to 
translate with no change in its size or shape. In the above example, if the center of 
the yield surface is translated in the x direction of the stress space by (σσσσx −−−−    SY), then 
the resulting surface will intersect the x axis in the new tensile yield stress (σσσσx −−−−    SY 

+    SY) = σσσσx and in the new compressive yield stress (σσσσx −−−−    SY −−−−    SY) = (σσσσx −−−−    2SY). Since 
this phenomenon only involves the kinematic translation of the yield surface, it is 
called kinematic hardening.  
So, in the deviatoric stress space, kinematic hardening maintains the radius SY√√√√6/3 
of the yield hypersphere fixed, while its center is translated, changing the generalized 
plastic modulus C. Several models can be used to obtain the current value of C as 
the yield surface translates, to calculate the plastic strain increments. One of the 
most efficient models is the multi-yield-surface model, which uses several yield 
surfaces obtained from a discretization of the stress-strain curve. The first surface is 
the one that defines the elastic limit of the material, usually represented in the 
deviatoric space by a hypersphere with radius r1 = SY√√√√6/3, implying that the material 
is assumed purely elastic for plastic strains below 0.2% (which define SY). 
Considering nc surfaces, the values of r2, r3, ..., rnc are calculated from the cyclic 
effective stress-strain curve σσσσx√√√√6/3×εεεεxp, where σσσσx and εεεεxp are obtained from uniaxial 
tests, see Fig. 2.  
 

 
Figure 2.  Yield surfaces in the Sx-Sy deviatoric stress space, and correspondent radii obtained from 
the piecewise linearization of the cyclic effective stress-strain curve. 
 
As seen in the figure, nc points from the cyclic effective stress-strain curve are 
chosen to define each of the radii r i from the yield surfaces, i = 1, ..., nc. The value of 
the generalized plastic modulus C = Ci between the surfaces with radii r i+1 and r i is 
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then estimated from the slopes of the cyclic effective curve between points (εεεεxpi , σσσσxi) 
and (εεεεxpi+1 , σσσσxi+1), by 

+ ++ ++ ++ +

+ ++ ++ ++ +σ − σσ − σσ − σσ − σσ −σ −σ −σ −= ⋅ ≅ ⋅ = ⋅ ⋅= ⋅ ≅ ⋅ = ⋅ ⋅= ⋅ ≅ ⋅ = ⋅ ⋅= ⋅ ≅ ⋅ = ⋅ ⋅
ε ε − ε ε − εε ε − ε ε − εε ε − ε ε − εε ε − ε ε − εp p p p pi 1 i i 1 i

x xx i 1 i i 1 i
i

x x x x x

2 d 2 2 6 r r
C

3 d 3 3 2
, since σ = ⋅σ = ⋅σ = ⋅σ = ⋅x

6r
2

 

Note that the difference between the radii of consecutive surfaces is not necessarily 
the same for all surfaces. To improve the algorithm accuracy, it is a good idea to 
choose values εεεεxpi  that are logarithmically spaced, resulting in 

(((( ))))(((( )))) (((( ))))− −− −− −− −ε = ε ⋅ ε εε = ε ⋅ ε εε = ε ⋅ ε εε = ε ⋅ ε ε c
pi

i 1 n 1
x Yp fp Yp  

where εεεεYp is a plastic strain below which the material is assumed purely elastic and 
εεεεfp is the plastic component of the rupture strain (which is usually approximated by 
the rupture strain εεεεf). The radius of each surface is then calculated by 

= ⋅ ε ⋅= ⋅ ε ⋅= ⋅ ε ⋅= ⋅ ε ⋅c
pi

h
c xi

6
r H

3
 

Note that the usual value r1 = SY√√√√6/3 is obtained by making εεεεYp = 0.2% and i = 1. For 
a better precision, but with a higher computational cost, it is recommended to use a 
lower value of εεεεYp associated with the true elastic limit of the material, usually much 
smaller than SY0.2%.  
From the above equations, it is possible to obtain all values of r i and Ci, necessary 
for the algorithm, described next. 
The multi-yield-surface model assumes that the yield surfaces are rings with 
increasing radii r i, initially concentric. The rings cannot intersect each other, except 
when they are tangent. While the vector S  is moving in the deviatoric space inside 
the inner ring, with radius r1, all stress and strain increments are purely elastic. When 
the vector S  touches the border of the inner ring, this ring becomes the active 
surface and starts translating until it touches the next one, which has radius r2. 
During this trajectory between r1 and r2, the plastic strain increment is calculated 
using C = C1. The ring r2 then becomes the active surface. 
If the loading is further increased, both rings r1 and r2 are translated altogether as a 
rigid body, until touching the ring r3. Analogously, during this trajectory between r2 
and r3, the plastic strain increment is calculated using C = C2. The ring r3 becomes 
the active surface and the process continues, until some loading reversal makes the 
vector S  move inside the inner ring. During this trajectory inside the inner ring, the 
strain increments are purely elastic, no surface is active, and therefore none of the 
rings move. The rings will only move again when S  touches again the inner ring. 
Note however that the rings are not concentric anymore. The plastic memory of the 
material is stored in the model through these positions between centers of the rings. 
Figure 3 shows the multi-yield-surface algorithm applied to a 1020 steel under the 
biaxial loading history [σσσσx = {0 →→→→ 350 →→→→ −−−−250 →→→→ 250}MPa, σσσσy = −σσσσx], with all other 
stress components equal to zero, for nc = 15 yield surfaces. Note that, in this simple 
example, the choice of σσσσy = −σσσσx and σσσσz = 0 results in σσσσh = (σσσσx + σσσσy + σσσσz)/3 = 0, making 
Sx = σσσσx – σσσσh = σσσσx and Sy = σσσσy – σσσσh = σσσσy. 
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Figure 3. Yield surfaces in the Sx-Sy deviatoric stress space; the active surface (circle) at each loading 
step is represented with a thicker line. 
 
Under non-proportional loading, the direction along which the deviatoric stress vector 
S  moves may be different from the ring translation direction. To calculate the ring 
translation direction in this general case, two rules have been proposed, one by 
Mròz(4) and another by Garud.(5) 
The Mròz rule(4) assumes that the translation of ring r i occurs in a direction parallel to 
the line that joins the current point S  at ring r i with the corresponding point MS  at the 

next ring r i+1 which has the same normal unit vector Mn , see Figure 4. In this figure, 

ciS  and 1++++ciS  are the centers of rings r i and r i+1 in the deviatoric space. 

 

 
 

Figu re 4. Illustration of Mròz and Garud kinematic hardening rules. 
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However, the Mròz rule can induce a few numerical problems, which can result in 
rings intersecting in more than one point. Garud’s rule(5) does not have such 
numerical problems, therefore it is our model of choice. It states that the translation of 
ring r i is in a direction parallel to the line that joins the points ′′′′GS  and GS  shown in 

Fig. 4. The point GS  is found from the intersection between ring r i+1 and the vector 

+ α ⋅+ α ⋅+ α ⋅+ α ⋅S dS , where αααα > 0 is a constant that can be determined from such intersection 
condition. The normal vector Gn  at GS  is then 

| |
++++

++++

− + α⋅− + α⋅− + α⋅− + α⋅====
− + α⋅− + α⋅− + α⋅− + α⋅

ci 1
G

ci 1

S S dS
n

S S dS
 

The point ′′′′GS  is defined as the corresponding point of GS  at ring r i with same normal 
unit vector Gn , see Fig. 4. It is easy to see that the translation vector for the center of 

ring r i is parallel to cidS , where 

1 1
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The multi-yield-surface algorithm is summarized in Figs. 5 and 6. Initially, all ring 
centers ciS  are placed at the Sx××××Sy plane origin. The ring radii r i and the generalized 
plastic modulii Ci, i = 1,...,n, are calculated from the presented equations. The 
variable j is used to count the loading number from the history, while the variable i* 
stores the number of the currently active ring (if no ring is active, then i* = 0).  
 
6 ISOTROPIC HARDENING 
 
Isotropic hardening is characterized by the expansion/contraction of the yield 
surfaces due to material hardening or softening. In the isotropic cyclic hardening or 
softening, there is an increase or decrease in material strength due to plastic strain, 
changing the size or shape of the yield surfaces, an effected partially accounted for 
by the cyclic σσσσ××××εεεε curves in the classical (unidimensional) εεεεN theory. 
White(6) considered not only the kinematic hardening, which happens due to the 
translations of the hyperspheres (rings), but also the cyclic hardening (or softening) 
due to cyclic stresses and strains, which make the unidimensional h and H Ramberg-
Osgood parameters tend to the cyclic hc and Hc. Therefore, the transition between 
the monotonic and cyclic hardening parameters can be modeled. 
It has been proposed that isotropic hardening is a function of the applied plastic work 
Wp, which can be incrementally computed by 

= = σ ⋅ ε= = σ ⋅ ε= = σ ⋅ ε= = σ ⋅ ε∑ ∑∑ ∑∑ ∑∑ ∑p p pW dW d  

Assuming the material is pressure-insensitive, thus plastically incompressible, the 
plastic Poisson coefficient is ννννp = 0.5, and the sum of the plastic normal strain 
increments must be nil, ε + ε + ε =ε + ε + ε =ε + ε + ε =ε + ε + ε =p p px y zd d d 0 . Therefore, 
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Figure 5.  Multi-yield-surface algorithm. 

 

 
Figure 6.  Routines from the multi-yield-surface algorithm to stop inside or to go beyond ring r i*+1. 
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So, the plastic work increment can be directly computed from the deviatoric stress 
and strain tensors. In the multi-yield-surface algorithm, a deviatoric stress increment 
α ⋅α ⋅α ⋅α ⋅dS  associated with a plastic deviatoric strain increment pde  from a state S  

results in a plastic work increment 

(((( ))))( )    ≅ + + α ⋅ ⋅ = + α ⋅ ⋅≅ + + α ⋅ ⋅ = + α ⋅ ⋅≅ + + α ⋅ ⋅ = + α ⋅ ⋅≅ + + α ⋅ ⋅ = + α ⋅ ⋅    p p pdW S S dS 2 de S dS 2 de  

The above quantity can be easily obtained in the algorithm at every calculation step. 
Therefore, the accumulated plastic work can be calculated. 
Cyclic hardening can then be empirically considered in the multi-yield-surface 
algorithm through the expressions for the transient hardening coefficient Ht and 
exponent ht 
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h h
h h

1 ( dW )
 

where h* is a material-dependent adjustable exponent. 
 
7 CONCLUSIONS 
 
The proposed incremental plasticity algorithm is computationally efficient, calculating 
the hysteresis loops faster than traditional implementations. It is entirely formulated 
on the deviatoric stress-strain space, resulting in much simpler equations for the 
stress or strain increments. The algorithm can capture phenomena such as 
ratcheting, cyclic hardening or softening, and non-proportional hardening. Damage 
models that incorporate both strain and stress effects can then be applied. 
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