
 

 
* Technical contribution to the 70º Congresso Anual da ABM – Internacional and to the 15º ENEMET - 
Encontro Nacional de Estudantes de Engenharia Metalúrgica, de Materiais e de Minas, part of the 
ABM Week, August 17th-21st, 2015, Rio de Janeiro, RJ, Brazil. 

NANO-PATTERNING OF SURFACES BY ION SPUTTERING: 
NUMERICAL STUDY OF THE KURAMOTO-SIVASHINSKY 

EQUATION BY IMPLICIT TIME SPLITTING* 
 

Eduardo Vitral1 

Daniel Walgraef2 

José Pontes3 

Gustavo Rabello dos Anjos4 

Norberto Mangiavacchi5 

 
Abstract  
The present study focuses in the simulation of pattern formation by ion beam 
sputtering on a material surface. This process is responsible for the appearance of 
unexpectedly organized patterns, such as ripples, nanodots and hexagonal arrays of 
nanoholes. A numerical analysis of preexisting patterns is proposed to investigate 
surface dynamics, based on a model derived from a Kuramoto-Sivashinsky 
anisotropic equation, in a two dimensional surface with periodic boundary conditions. 
While deterministic, its highly nonlinear character gives a rich range of results, 
making it possible to describe accurately different patterns. A finite-difference semi-
implicit splitting scheme is employed on the discretization of the governing equation. 
Simulations were conducted with realistic coefficients related to physical parameters 
(anisotropies, beam orientation, diffusion). The study dealt with a random and a 
monomode 1D structure initial condition in order to understand how the shape and 
wavelength of the initial pattern evolve with time. Ripples and hexagonal patterns 
were observed in the results, being physically consistent with the phenomenon. 
Moreover, the Method of Manufactured Solution has been used as verification of the 
developed numerical scheme. 
Keywords: Kuramoto-Sivashinsky equation; Sputtering; Finite-difference method. 
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1 INTRODUCTION 

 
During the last decades, huge advances in materials science technologies permitted 
the processing of new materials and structures through the operation in 
nonequilibrium conditions, dodging the limitations imposed by equilibrium thermo- 
dynamics. Among the techniques, some of the best known are: ion implantation, 
spark plasma sintering, laser beam melting, glow discharge sputtering and ion beam 
sputtering. The theoretical comprehension of such processes is still an ongoing 
challenge and their mathematical modeling needs more development. Our effort aims 
toward the development of a numerical scheme to solve a model proposed to the ion 
beam sputtering erosion. 
The phenomenon consists on the ionic bombardment of a surface, spontaneously 
developing a well-ordered periodicity over a large area under certain conditions [1]. 
This physical process responsible for the formation of periodic structures on the 
previously surface is called sputtering. Depending on the energy of the incident ion, a 
train of collision event may be established, resulting in the ejection of atoms from the 
matrix. The morphology of the surface can drastically change due to these sputtered 
atoms, being responsible for the appearance of unexpectedly organized patterns, 
such as ripples, nanodots and hexagonal arrays of nanoholes (see [2-4]). Valbusa et 
al. [5] discussed the interplay between ion erosion and vacancies on the surface re-
organization, which would explain some of the patterns experimentally detected. The 
rate of energy deposition is a crucial parameter for the mechanisms, since high 
values can lead to a local transient melting of the surface [3], alongside the possibility 
of ion implantation. 
Continuum theories have been studied to describe surfaces eroded by ion 
bombardment, reproducing ripple formation and other organized patterns. The 
Kuramoto-Sivashinsky equation, which was initially formulated to describe flame 
fronts and chemical waves [6], is deterministic and highly nonlinear, being capable of 
producing a great variety of morphologies. Rost et al. [7] describes the equation as 
being remarkable for the stabilization of the linear instability by the nonlinear term. 
This stabilization makes the equation a good candidate to represent the complexity 
behind the structure formation on sputtered surfaces, with a dynamic transiting 
between different regimes. 
In the present endeavor, a finite-difference semi-implicit splitting scheme of second 
order in time and space is proposed to numerically solve an anisotropic Kuramoto-
Sivashinsky equation subjected to periodical boundary conditions for two dimensional 
surfaces. Internal iterations are used inside each time step to enhance the 
approximation of the nonlinear term. Previously, a similar numerical scheme was 
successfully implemented for the Swift-Hohenberg Equation by Chistov et al. [8,9], 
which also dealt with the challenges of high-order spatial derivatives and nonlinearity. 
The numerical scheme is verified by the Method of Manufactured Solutions, and the 
simulation results are discussed in the light of the experimental evidences and linear 
stability analysis predictions. Hexagonal patterns were obtained from a random initial 

condition, while a 1D structure constructed with a function sine in the 𝟏⃗⃗ 𝒙 direction split 
its wavelength in two transiting to the steady state, without losing its unidimensional 
quality.  
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2 MATERIAL AND METHODS 

 
2.1 Governing Equations 

 
The present study proposes a second order in time finite difference numerical 
scheme for solving modifications of the generalized Kuramoto-Sivashinsky equation 
[5,6,10-12]. For the case of isotropic energy distribution, considering an ion beam 

with angle of incidence θ with respect to the normal of the surface, one 
dimensionless and simplified form of the equation reads: 
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where 𝒉̄ and 𝝉 are, respectively, the surface height function of the external atom layer 

and the time dependency of the transient model, with 𝑿 and 𝒀 as the domain space 

coordinates. The function c represents the cosine of the incident angle θ. Equation 1 

presents a damping term -𝜶𝒉̄ , with 𝜶 being a damping coefficient, contributing to the 

smoothening of the surface [13]. Finally, 𝑲 takes into account the surface diffusion 
effects, which varies with temperature. The parameters 𝝁, 𝝂𝒙, 𝑫𝒙𝒙 and 𝑫𝒙𝒚 will be 

defined as follows:                            
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Here, s is the sine of θ and 𝒂𝝁 is the ratio between the ionic penetration depth and 

the width of energy distribution. In order to solve Equation 1, the following second 
order in time Cranck-Nicholson semi-implicit scheme [6,7] was adopted: 
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2.2 Internal Iterations 

 
Internal iterations at each time step are required to secure the approximation for the 
nonlinearities taking part in the scheme of Equation 2. The iterations loop will 
continue until convergence is attained from monitoring the 𝑳∞ norm. There is a trade-

off related to the time step 𝜟𝝉: for a larger 𝜟𝝉, convergence will be impaired and the 

number of internal iterations will increase, while a smaller 𝜟𝝉 will impact on a smaller 
number of iterations, but it will imply on a greater number of time steps. The internal 
iterations scheme reads:  
 

ℎ̄𝑛,𝑚+1 − ℎ̄𝑛

𝛥𝜏
  =   𝛬𝑋

𝑛+1 2⁄ (ℎ̄𝑛,𝑚+1 + ℎ̄𝑛) + 𝛬𝑌
𝑛+1 2⁄ (ℎ̄𝑛,𝑚+1 + ℎ̄𝑛) + 𝑓𝑛+1 2⁄   (6) 

 
where the index m refers to the internal iteration number. The superscript (n,m + 1) 
identifies the new iteration, while (n) are the values of the previous time step. The 
superscript (n+1) for the nonlinear term in the function 𝒇𝒏+𝟏 𝟐⁄  will be replaced by 
(n,m), which stands for the values obtained from the previous iteration. The iterations 

proceed until the following criterion for the  𝑳∞ norm is satisfied: 
 

𝐿∞  =  
𝑚𝑎𝑥|ℎ̄𝑛,𝑚+1 − ℎ̄𝑛,𝑚| 

𝑚𝑎𝑥|ℎ̄𝑛,𝑚+1|
< 10−6  (7) 

 

for all points of the grid for a fixed m. The function 𝒉̄𝒏+𝟏 for the current time will be 

acquired from 𝒉̄𝒏,𝒎+𝟏, proceeding to the last iteration. 
 
2.3 The Splitting Scheme 
 
The splitting of Equation 2 is made according to the second Douglas scheme [14,15]. 
Such strategy has been chosen to deal with the costly procedure of solving Equation 
5; even though we are working with sparse matrices for the operators, the internal 
iterations cause the process to be repeated several times during each time step. This 
problem welcomes an attempt to minimize the operations per unit iteration, as 
follows: 
 

ℎ̃̅ − ℎ̄𝑛

𝛥𝜏
  =   𝛬𝑋

𝑛+1 2⁄ ℎ̃̅ + 𝛬𝑌
𝑛+1 2⁄ ℎ̄𝑛 + 𝑓𝑛+1 2⁄ + ( 𝛬𝑋

𝑛+1 2⁄ + 𝛬𝑌
𝑛+1 2⁄ )ℎ̄𝑛  (8) 

ℎ̄𝑛,𝑚+1 − ℎ̃̅

𝛥𝜏
  =   𝛬𝑌

𝑛+1 2⁄ (ℎ̄𝑛,𝑚+1 − ℎ̄𝑛)  (9) 

 

Here, 𝒉̃̅ is the height function for the half-time step. Not only can it be shown that the 
splitting represents the original scheme, but it is also more stable than the original. 
 
2.4 The Method of Manufactured Solution (MMS) 
 

The MMS is a code verification procedure, which analyses if a computational model 
and its implementation code stand for the task of representing the mathematical 
model of a physical event with sufficient accuracy. The idea behind the MMS is to 
solve a problem as if the analytical solution was available from start, creating a 
manufactured solution for a system of partial differential equations [16]. Considering 
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that the proposed function is unlikely to solve the equations exactly, a residual term 
will appear due to the solution of the linear system. By inserting such term in the 
right-hand side of the equation as a source term, a different numerical solution may 
be obtained, which is expected to approach the artificial analytical solution (if the 
manufactured equation was properly constructed). The global discretization error can 

be examined by the 𝑳𝟐 norm: 
 

𝐿2 = (
∑ |ℎ̅𝑖,𝑘

𝑛 − ℎ̅𝑖,𝑚
𝑛 |𝑁

𝑖=1

𝑁
)

1/2

  (10) 

 
where 𝑵 is the total number of mesh nodes, 𝒊 is the index of each node, and the 

index 𝒌 and 𝒎 design the numerical and the manufactured solution, respectively. 
Such norm analyses how the numerical solution approaches its corresponding 
analytical solution after each time step. It is indeed expected that the error will 
decrease by refining the mesh. 
 
3 RESULTS AND DISCUSSION 
 
3.1 Validation and Verification 
 
In consonance with the guidelines for the manufactured solution construction from 

Roache [17], an artificial solution 𝒉̅𝒎 was developed for the height function, which is 
sensible to spatio-temporal variations: 
 

𝒉̅𝒎 = 𝒉𝒐 + 𝒉𝒙𝒚 𝐬𝐢𝐧 (
𝒂𝒙𝝅𝒙

𝑳
)𝐜𝐨𝐬 (

𝒂𝒚𝝅𝒙

𝑳
) 𝒆𝒃𝝉   (𝟏𝟏) 

 
The parameter values employed in the manufactured solution and in the differential 
equation are presented in Table 1. The artificial terms 𝒉𝒐 , 𝒉𝒙𝒚 , 𝒂𝒙 , 𝒂𝒚 and 𝒃 were 

chosen arbitrarily. Although there is no need for the artificial solution to be realistic, 
the chosen values were coherent with the main simulations. All tests took place in a 

quadratic domain, with side 𝑳 = 𝟐𝟓𝟔, and fixed time step 𝜟𝝉 = 𝟎. 𝟏. 
 
      Table 1. Parameter values for the manufactured solution. 

MS Parameters Value KS Parameters Value 

𝒉𝒐 0 𝑲 5 

𝒉𝒙𝒚 𝟏𝟎−𝟒 𝒂𝝁 4 

𝒂𝒙 2 θ 30° 

𝒂𝒚 2 𝜶 0.15 

𝒃 -1/200 𝜟𝝉 0.1 

 
Figure 1 shows how the spatial grid refinement affects the global discretization error, 
plotting the 𝑳𝟐 norm for five different grid spacing 𝒈𝒔 . The error trends toward 
second-order convergence with respect to grid spacing for coarser meshes, while it 
stands between first and second-order convergence for more refined meshes. The 
manufactured solution was unstable for the analyzed differential equation, which 
grows rapidly in time until its saturation, dominating the result over the source term. 
For such reason, we limited the range of analysis to a stable region for the artificial 
function, where the numerical solution converges with the analytical solution. 
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Figure 1. Evolution in time of the L2 norm for the manufactured comparing different grid spacing (left 
panel). First and second order error lines are also displayed for comparison (right panel). 

 

3.2 Initial Pattern: Random Values 
 

The first case analyzed was for a mesh with 𝟐𝟓𝟔 × 𝟐𝟓𝟔  points with a randomly 
generated initial pattern, ranging from 0 to 0.1, and parameters 𝜶, θ,  𝑲 and 𝒂𝝁 as 

found in Table 1. Since the side of the domain is 𝑳𝒙 = 𝑳𝒚 = 512, and the linear 

stability analysis reveals a value of 𝝀𝒄 = 𝟏𝟖 for the critical wavelength corresponding 

to the maximum growth rate in the 𝟏⃗⃗ 𝒙 direction, each wavelength of the final pattern 

was expected to be represented by approximately 9 points. 
We monitored the rate of evolution of the pattern during the simulation by the 𝑳𝟏 
norm, which indicates how fast the structure is changing between the current and 
previous time step, normalized by the spatial average of the modulus of the surface 
height. This norm is denoted as: 

𝑳𝟏 =
∑  |𝒉̅𝒊𝒋

𝒏+𝟏 − 𝒉̅𝒊𝒋
𝒏 |𝒊𝒋

𝜟𝝉 ∑  |𝒉̅𝒊𝒋
𝒏+𝟏|𝒊𝒋

  (𝟏𝟐) 

 

The pattern evolution was monitored until 𝑳𝟏 < 𝟏 × 𝟏𝟎−𝟔, when we assume that the 

steady state was reached. Figure 2 presents the 𝑳𝟏 norm decay for the random initial 
pattern, alongside the maximum height modulus value for a certain time step. 
 

 
Figure 2. 𝑳𝟏 norm curve (left panel) and maximum height modulus (right panel) for a random initial 
pattern,  𝜟𝝉 = 0.1, 𝜟𝑿 = 𝜟𝒀 = 2, on a 𝟐𝟓𝟔 × 𝟐𝟓𝟔 nodes domain. 
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Figure 3 illustrates some major changes in the transient structure, from the initial to 
the steady state pattern formation. A hexagonal 2D weakly anisotropic structure 
grows rapidly from the random values; however, the defects take longer to be 

accommodated. From the 𝑳𝟏 norm and the maximum height modulus, it is expected 

that for 𝝉 = 𝟐𝟎, 𝟎𝟎𝟎 the hexagonal structure will be clear of defects, just as the 
pattern shown by 𝝉 = 𝟒𝟗, 𝟐𝟎𝟎. For each state, the Fast Fourier Transform (FFT) is 
also displayed for the central part of the domain, in order to observe the growing and 
arrangements of the modes which lead to the hexagonal pattern. It is important to 

emphasize that the final structure presents negative height values in the 𝒉̄𝒏 function, 
with 0.65 being the valley. This result is physically coherent, since we expect the 
height to decay after the removal and rearrangement of surface atoms. 
 

3.3 Initial Pattern: 1D Structure – Monomode 𝒒⃗⃗ = 𝒒𝒐𝟏⃗⃗ 𝒙 

 
Another case of interest studied was for an initial pattern with sine function in the X 

direction, which represents a monomode 1D structure with wavevector 𝒒⃗⃗ = 𝒒𝒐𝟏⃗⃗ 𝒙 . 
The pattern started with 14 wavelengths, being approximately half of the total number 
of wavelengths in the steady state from the previous case, which agrees with the 
critical wavelength calculated from the linear stability analysis and is placed inside 

the stable domain. From Figure 4 we follow a smooth pattern transition from the 𝑳𝟏  

curve and a gently change of height values from the initial maximum modulus 0.1 
(positive) up to 0.4 (negative). The wave amplitude goes initially from (0;0.1) to         

(-0.4;0) in the steady state, which is also consistent with the physical phenomenon of 
surface erosion. 
In Figure 5 we can observe the growth of new harmonics and the decay of the initial, 
while maintaining the 1D structure and splitting the starting wavelength by two. The 
steady state is reached much more quickly when compared to the previous 

emergence of hexagons: while 𝑳𝟏 in the 𝒒𝒐𝟏⃗⃗ 𝒙 case takes approximately 2,000 time 

steps of 0.1 to fall under 𝑳𝟏 = 𝟏 × 𝟏𝟎−𝟔, it takes 250 times longer for the random 
initial condition. In terms of internal iterations, both pass on a maximum of six during 
the initial time steps and keep falling as they get closer to the steady state, when 
there are only two internal iterations for each time step.  
 
4 CONCLUSION 
 
In the present paper we have developed a finite-difference time splitting scheme for 
solving an anisotropic Kuramoto-Sivashinsky equation to describe a surface eroded 
by ion bombardment. The MMS was employed for code verification, and a second-
order convergence was detected for coarser meshes comparison, while results 
between first and second-order convergence appeared for more refined meshes, 
suggesting a possible issue with the manufactured solution stability. Hexagonal 
patterns grew from a domain with random initial conditions, and for the monomode 

𝒒⃗⃗ = 𝒒𝒐𝟏⃗⃗ 𝒙 case the wavelength split in two, meeting the critical wavenumber from the 
linear stability analysis. Both simulations were physically consistent with the 
sputtering phenomenon, reproducing ripple and hexagonal structure formation 
dynamics. Future work will investigate a greater variety of initial patterns and 
formalize the linear stability analysis for a better comparison with results. 
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Figure 3. Surface height values 𝒉̅𝒏 and their respective Fourier Transform for 𝝉 = 𝟎 (upper panel), 𝝉 =
𝟐𝟎𝟎 (middle panel) and 𝝉 = 𝟒𝟗, 𝟐𝟎𝟎 (bottom panel). A hexagonal pattern rises quickly from a random 
initial condition, while the defects are slowly eliminated, until the steady state is reached. 
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Figure 4. L1 norm curve (left panel) and maximum height modulus (right panel) for a monomode 𝒒𝒐𝟏⃗⃗ 𝒙 
initial pattern,  𝜟𝝉 = 0.1, 𝜟𝑿 = 𝜟𝒀 = 2, on a 𝟐𝟓𝟔 × 𝟐𝟓𝟔 nodes domain. 

 

     

     
Figure 5. Surface height values 𝒉̅𝒏 and their respective Fourier Transform for 𝝉 = 𝟎 (upper panel) and 

𝝉 = 𝟏𝟓𝟎 (bottom panel). From a monomode 𝒒𝒐𝟏⃗⃗ 𝒙  initial pattern, the wavelengths are split in two with 
the decay and growth of new harmonics. The steady state maintains the 1D structure. 
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