NITRETAÇÃO SOB PLASMA POR TELA ATIVA E PLASMA DIRETO/DC DO AÇO INOXIDÁVEL ENDURECÍVEL POR PRECIPITAÇÃO TIPO 17-4 PH*

Amanda de Angelis Vitoi¹ Rodrigo Magnabosco² Carlos Eduardo Pinedo³ André Paulo Tschiptschin⁴

Resumo

A nitretação do aço inoxidável endurecível por precipitação do tipo 17-4PH foi estudada comparativamente pelos processos de Plasma-DC e de Tela Ativa. Os resultados mostram que os dois processos são eficientes em promover a formação da camada nitretada de elevada dureza superficial, cerca de 1300 HV0,025. Entretanto, diferenças importantes são observadas. No processo de Plasma-DC a camada nitretada é composta, além da martensita acicular saturada em nitrogênio, de nitretos de ferro e cromo precipitados pela supersaturação. No processo de Tela Ativa a precipitação de nitretos de cromo é praticamente suprimida e predominando os nitretos de ferro. Esta diferença na sequência de precipitação de nitretos é inferida como sendo causada pela oferta de nitrogênio. Em Plasma-DC a oferta de nitrogênio é suficiente para a precipitação do nitreto de cromo, o que não ocorre em Tela Ativa. A maior profundidade de camada e de endurecimento transversal confirma a maior difusão de nitrogênio em Plasma-DC. Ainda, em ambos os processos a dureza de partida do substrato envelhecido é preservada após o ciclo de nitretação.

Palavras-chave: Aço 17-4 PH; Nitretação sob plasma; Tela ativa; Endurecimento.

DC-DIRECT AND ACTIVE SCREEN PLASMA NITRIDING OF 17-4 PH STAINLESS STEEL

Abstract

Plasma nitriding of 17-4PH was studied by DC-Plasma and Active Screen processes. Both processes are effective for increasing the surface hardness up to 1300 HV0.025. However, differences in the nitrided case characteristics are observed. In the Plasma-DC process the diffusion zone has iron and chromium nitrides precipitation while in the Active Screen process massive iron nitride precipitation is observed. Such difference in the precipitation behavior is a consequence of the nitrogen inlet rate. For the Plasma-DC the nitrogen inlet rate is higher than for the Active Screen, and enough to allow chromium nitride precipitation. Nitriding depth is higher on DC-Plasma compared to Active Screen. For both processes the aged substrate hardness is not impaired after the surface treatment.

Keywords: Steel 17-4PH; Plasma nitriding; Active screen; Hardening.

¹ Tecnóloga em Petróleo e Gás, Doutoranda em Engenharia Metalúrgica e de Materiais - EPUSP; Pesquisadora/Bolsista RHAE/CNPq na empresa Heat Tech Tecnologia em Tratamento Térmico e Engenharia de Superfície Ltda., Mogi das Cruzes, SP, Brasil.

² Doutor em Engenharia, Centro Universitário da FEI, São Bernardo do Campo/SP, Brasil.

³ Doutor em Ciência dos Materiais; Diretor Técnico da Heat Tech Tecnologia em Tratamento Térmico e Engenharia de Superfície Ltda., Mogi das Cruzes, SP, Brasil.

⁴ Doutor em Engenharia Metalúrgica; Professor Titular Escola Politécnica USP, São Paulo/SP, Brasil.

Os aços inoxidáveis endurecíveis por precipitação (PH) têm amplo uso em diversos setores industriais que abrangem, por exemplo, óleo e gás, biomateriais, automotivo, aeronáutico e aeroespacial. As peças fabricadas em aço PH partem de uma condição solubilizada e após a sua fabricação são endurecidas por envelhecimento. O envelhecimento é capaz de elevar a dureza do aço 17-4PH para valores entre 330 - 450 HV, dependendo do grau especificado para a aplicação [1-2] e, além disso, o envelhecimento conduz a uma baixa variação dimensional, eliminando a necessidade de usinagem posterior mesmo em peças com geometria complexa. Entretanto, mesmo em níveis de dureza em torno de 350 HV, para alguns componentes, a resistência ao desgaste deste aço ainda não satisfaz a necessidade imposta no momento de sua utilização. Assim, o uso do endurecimento superficial de Nitretação é uma opção de uso corrente [3-5] e tem sido estudada amplamente para diferentes aços inoxidáveis [6], incluindo os aços inoxidáveis PH [7-9]. Levando em consideração que a nitretação é aplicada em componentes envelhecidos para os quais a resistência mecânica é fundamental para o seu desempenho, a nitretação não deve alterar as propriedades do substrato, sob pena de inviabilizar a posterior utilização de um componente, mesmo que sua superfície esteja com dureza elevada [10].

É sabido que a nitretação sob plasma DC possui restrições para a obtenção de uma camada homogênea em decorrência dos efeitos de borda ou de sombra. Estes efeitos atuam no sentido de elevar a espessura da camada em arestas positivas e diminuir, ou deixar ausente, a camada nitretada em arestas negativas [11]. Com vantagens em relação ao processo de plasma DC, o uso de nitretação sob plasma utilizando o sistema de Tela Ativa, "Active Plasma Screen", tem sido estudado na literatura e mostrado resultados potencialmente aplicáveis para a nitretação homogênea [11,12]. Entretanto, o mecanismo de nitretação é diferente nos dois processos; no processo de plasma DC o material fica sob o bombardeamento iônico direto, no qual é realizada a remoção do filme passivo e a nitretação sob intensa energia iônica. No processo de Tela Ativa, por outro lado, não existe bombardeamento iônico direto da superfície a ser nitretada. O plasma é gerado na tela ativa fornecendo espécies ativas em seu interior, as quais compõe o meio de nitretação [13,14]. No interior da tela ativa a atmosfera com íons ativos envolvem a peça homogeneamente e devem eliminar os efeitos de borda e aresta presentes no processo de plasma DC. Este trabalho apresenta comparativamente os resultados da nitretação sob plasma utilizando os processos de plasma direto/DC e de tela ativa do aço inoxidável endurecível por precipitação tipo 17-4PH.

2 MATERIAIS E MÉTODOS

Neste trabalho foi utilizado um Aço Inoxidável Endurecível por Precipitação Tipo 17-4PH, recebido na forma de barra solubilizada com 25,4 mm de diâmetro. A partir da barra foram cortadas amostras com 5,0 mm de espessura para a nitretação. As amostras foram faceadas para garantir paralelismo e, antes da nitretação, uma das faces foi polida em pasta de diamante com granulometria de 1 µm. A composição química do aço, fornecida pelo fabricante e obtida por métodos instrumentais, é mostrada na Tabela 1. Previamente ao tratamento de nitretação, as amostras foram envelhecidas em um forno a vácuo a 552°C durante 4 horas, condição H1025 [15] e resfriadas sob uma pressão positiva de nitrogênio igual a 2 bar. A

microestrutura do material no estado envelhecido a 552°C por 4 horas é apresentada na Figura 1. Observa-se que a microestrutura é homogênea e apresenta morfologia tipicamente de martensita acicular.

C	31		U U	INI	Cu	F	3
0,028	0,37	0,55	15,18	4,34	3,36	0,025	0,001
	and a fair			and a	Ser Se	1311 24	
	Ser Line	that by		1000	Provide State		
	20.2	A. S. S. S.		1. C.			
	Gen S	BAY &		A. S. M	Street A	and a	
	The Rest ?	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1:20%	Ley State	清理 法	
	def like	AL : Ale	A CONTRACT	and the set		一方齐。 但是	
	and the	21123	SAL 2	All alle		as a la serie	
	1.1.1	11 623	はたほど	and such	建筑心马	AN ALS	
	The seal	Star 1		ANT A	- ANA		
	20023	PER (1)	Alex A	1200		AL ANTA	
	A star	C. P.	340次	and and		ACT OF	
	1.28		f. Jak	Sila - St	R	(SSNG	
	1. 4.1	C. Sal	Sale in			No Lake	
	K. K. W. 20	Carlor 1	F. S. C.	A. F. A.		L. T. Stew Frank	
		MC2 +	a log	and the	And and	50um	

 Tabela 1. Composição química do Aço Inoxidável Endurecível por Precipitação 17-4 PH (% em massa).

 (% em massa).

Figura 1. Microestrutura do aço Tipo 17-4PH no estado envelhecido. Reagente de Vilella.

As nitretações foram realizadas pelos processos de Plasma Direto/DC (DCPN) e pelo processo de Tela Ativa (ASPN). O processo de nitretação foi realizado em um reator de parede quente fabricado pela empresa Eltropuls GmbH. Previamente a nitretação, foi realizada a etapa de sputtering, para a remoção do filme passivo, na temperatura de 400°C por 1 hora e 30 minutos, utilizando atmosfera com 100% de hidrogênio. A etapa de nitretação foi realizada a 552°C durante 4 horas e a composição da mistura gasosa foi de 75%N₂ e 25%H₂. O tratamento utilizou um dispositivo de Tela Ativa, com diâmetro de 120 mm e altura de 130 mm. A furação obedeceu ao esquema de furos alternados de 8 mm de diâmetro, uma distância entre centros de furos adjacentes de 9,2 mm e a fração da área de malha aberta de 68%, conforme dados da literatura [13]. Para o tratamento em plasma DC a amostra foi posicionada do lado externo da Tela Ativa. O dispositivo de nitretação é mostrado na Figura 2. Os dois termopares do reator foram utilizados em sensores de temperatura diferentes. O primeiro termopar foi colocado na amostra dentro da tela ativa, com isolamento elétrico de um tubo de alumina, conectado ao PLC do reator (T_P) e o segundo foi colocado na amostra de controle fora da tela ativa, sem isolamento elétrico, conectado a um termômetro digital externo, (T_T), com o objetivo de comparar a temperatura durante o tratamento na condição de Plasma Direto-DC e em Tela Ativa.

Figura 2: Arranjo experimental de nitretação.

As microestruturas foram observadas por Microscopia Óptica (MO) após ataque com reagente de Vilella. As amostras foram imersas no reagente químico por aproximadamente 15 segundos. A identificação das fases presentes em cada condição de tratamento superficial foi realizada por técnica de Difração de Raios-X (DRX) em um Difratômetro Shimadzu XRD-7000, em simetria de Bragg-Brentano, operando com radiação Cu-K α , λ = 1,5406 Å. Os difratogramas foram obtidos usando velocidade de varredura angular 1° por minuto, passo de 0,02° e ângulo de varredura (2 θ) de 30 a 120°. A dureza superficial foi realizada em Microdurômetro Shimadzu utilizando uma carga de 25 gramas. A dureza Rockwell C foi medida em um durômetro Mitutoyo Modelo DT-10D.

3 RESULTADOS E DISCUSSÃO

A Figura 3 mostra o acompanhamento da temperatura nos termopares dentro e fora da tela ativa durante todo o processo dentro do reator. É possível observar que há uma diferença de temperatura entre os termopares dentro e fora da tela ativa na etapa de sputtering, o que pode ser justificado pela diferença de temperatura no reator ainda em aquecimento. Por outro lado, na etapa de nitretação a temperatura dos dois termopares se iguala confirmando que esta etapa foi realizada na mesma temperatura dentro e fora da tela ativa, o que é fundamental para comparar os resultados nas diferentes condições de processo.

Figura 3. Perfil de acompanhamento das temperaturas dos termopares na amostra da tela ativa e na amostra em plasma/DC.

As Figuras 4 e 5 apresentam a microestrutura após o a nitretação sob plasma dentro da Tela Ativa e em Plasma/DC. É possível observar que a zona de difusão apresenta-se escura em decorrência do maior ataque pelo reagente de Vilella com relação ao substrato. A zona de difusão apresenta-se com profundidade homogênea e a interface entre a região nitretada e o substrato é plana. Não se observa presença de camada branca ou de nitretos em contornos de grão. A morfologia de formação da camada nitretada para o aço inoxidável 17-4PH, tanto em tela ativa quanto em plasma/DC, coincide com a morfologia apresentada na literatura para aços inoxidáveis martensíticos [16-17], e tem seu mecanismo de crescimento controlado pelo teor de cromo no aço e pela necessidade de precipitação de nitretos de cromo durante seu crescimento [18-19]. Comparando a microestrutura da amostra nitretada dentro e fora da Tela Ativa é verificado que a amostra nitretada em Plasma/DC, apresenta uma zona de difusão maior que na amostra nitretada em Tela Ativa. O valor médio da profundidade da camada nitretada, medida por microscopia, em plasma DC é de 65,8 ± 0,8 µm e em Tela Ativa é de 27,7 ± 0,6 µm.

Esta diferença na profundidade de nitretação é decorrente dos mecanismos de nitretação operantes em DC e na Tela Ativa. A literatura mostra que o mecanismo operante na tela ativa não segue o mecanismo clássico de Köebel para o processo de plasma-DC, no qual o bombardeamento iônico ocorre diretamente na superfície da amostra, gerando um excesso de lacunas e facilitando a difusão do nitrogênio, também, em DCPN os átomos de ferro arrancados da superfície da amostra sofrem então combinação e decomposição diretamente na superfície. Como em tela ativa o plasma incide na grade, não existe a remoção de átomos de Ferro na superfície da amostra em nitretação e nem a geração de excesso de lacunas, pela ação do bombardeamento iônico, o processo operante em APSN é o de "bombardeamento - deposição", em que os átomos de ferro são removidos da tela ativa, reagem com os íons ativos de nitrogênio no interior da tela, se depositam na superfície da amostra,

se decompõe e então liberam o nitrogênio para a difusão [15,20,21]. Nestas condições a cinética em plasma-DC é superior do que em ASPN.

Figura 4. Microestrutura do aço Inoxidável Endurecível por Precipitação 17-4PH nitretado dentro da Tela Ativa. Reagente Vilella.

Figura 5. Microestrutura do aço Inoxidável Endurecível por Precipitação 17-4PH nitretado fora da Tela Ativa em Plasma/DC. Reagente Vilella.

Os espectros de DRX são apresentados na Figura 6. Observa-se que na amostra nitretada em Plasma-DC ocorre a precipitação dos nitretos de ferro tipo E-Fe₃N e γ -Fe₄N e de cromo tipo Cr₂N, sendo que um pico correspondente a 36,7° não pode ser indexado com os dados da ICCD. O aparecimento de picos de nitreto de ferro e de cromo em aços com matriz martensítica nitretados em alta temperatura é amplamente discutido na literatura [16,17]. Na nitretação em Tela Ativa detecta-se predominantemente a presenca de nitreto de ferro ε-Fe₃N, sendo apenas o pico de baixa intensidade, correspondente ao ângulo de 76,4°, indexado ao nitreto de cromo CrN(311). Desta forma, é possível inferir que a oferta de nitrogênio em Plasma-DC é superior ao APS. Em Plasma-DC o teor de nitrogênio difundido é suficientemente elevado para promover a formação do nitreto de cromo em sua forma mais estável, Cr₂N, do nitreto γ -Fe₄N e também do nitreto mais rico em nitrogênio ε -Fe₃N. No processo de APS a formação massiva é de nitreto de ferro tipo ε-Fe₃N, com mínima formação do nitreto de cromo CrN, é um indicativo importante que a oferta de nitrogênio não foi suficiente para formação dos nitretos de cromo que necessitam de maior oferta do intersticial para a sua precipitação.

* Contribuição técnica ao 70º Congresso Anual da ABM – Internacional e ao 15º ENEMET - Encontro Nacional de Estudantes de Engenharia Metalúrgica, de Materiais e de Minas, parte integrante da ABM Week, realizada de 17 a 21 de agosto de 2015, Rio de Janeiro, RJ, Brasil.

ISSN 1516-392X

A Figura 7 mostra os perfis de dureza transversal das amostras nitretadas fora e dentro da tela ativa. O endurecimento máximo atingido nos dois processos é igual, cerca de 1300HV, mas é possível observar que o perfil de endurecimento transversal da amostra nitretada em DCPN é mais profundo comparado com a amostra em ASPN. Esta dureza máxima é reportada pela literatura para aços inoxidáveis com matriz de martensita acicular como o 17-4PH [9,22] e para aços inoxidáveis martensíticos [23] nitretados a alta temperatura, sendo decorrente da precipitação de nitretos, como verificado nos resultados de DRX. A determinação da profundidade de endurecimento utilizou o critério NHT, especificado pela Norma DIN 50190 [24], obtida pelo método de interpolação e diretamente no gráfico. A Tabela 2 apresenta as profundidades das camadas nitretadas nas condições determinadas e confirma a condição de maior difusão de nitrogênio existente no processo de Plasma-DC comparado com o de Tela Ativa.

* Contribuição técnica ao 70º Congresso Anual da ABM – Internacional e ao 15º ENEMET - Encontro Nacional de Estudantes de Engenharia Metalúrgica, de Materiais e de Minas, parte integrante da ABM Week, realizada de 17 a 21 de agosto de 2015. Rio de Janeiro, RJ, Brasil.

Figura 7. Perfil de endurecimento transversal para as amostras do aço 17-4PH dentro e fora da Tela Ativa.

	Tela Ativa	Plasma/DC
NHT (Interpolação)	29,6	68,9
NHT (Gráfico)	28,0	67,5
Microscópio Óptico	27,7	65,8

Tabela 2. Medidas das camadas nitretadas.

Em aços endurecíveis por precipitação no envelhecimento, é importante que o processo posterior de nitretação não influencie de maneira negativa na resistência obtida no tratamento térmico. A Tabela 3 apresenta as medidas de dureza da matriz 17-4PH inoxidável nas condicões; solubilizado. envelhecido do aco е envelhecido/nitretado. Os resultados mostram que a nitretação, seja em Plasma/DC seja em Tela Ativa, não interfere de forma deletéria na dureza do substrato, preservando suas propriedades mecânicas. Assim, ambos os processos podem ser aplicados em componentes industriais.

Tabela 3. Dureza HRC do substrato do aço Inoxidável 17-4PH.								
Solubilizado Envelhecido		Envelhecido +	Envelhecido +					
		ASPN	DCPN					
33,10 <u>+</u> 0,48	35,30 <u>+</u> 0.20	36,2 <u>+</u> 069	34,40 <u>+</u> 0.32					

4 CONCLUSÃO

- No aço inoxidável 17-4PH os processos de nitretação em Plasma-DC (DCPN) e em Tela Ativa (ASPN) são eficientes para a obtenção de uma camada nitretada homogênea composta apenas da Zona de Difusão, sem formação de Camada de Compostos. No processo de DCPN a profundidade da Zona de Difusão é superior a obtida em ASPN, 65,8 μm e 27,7 μm respectivamente.
- No processo DCPN a Zona de Difusão é formada pela precipitação de nitretos de ferro γ-Fe₄N e ε-Fe₃N, além do nitreto de cromo Cr₂N na matriz de

* Contribuição técnica ao 70º Congresso Anual da ABM – Internacional e ao 15º ENEMET - Encontro Nacional de Estudantes de Engenharia Metalúrgica, de Materiais e de Minas, parte integrante da ABM Week, realizada de 17 a 21 de agosto de 2015, Rio de Janeiro, RJ, Brasil.

martensita acicular, saturada em nitrogênio. Em ASPN, é verificada a precipitação predominante de nitreto de ferro ε-Fe₃N.

- Os perfis de endurecimento transversal mostram que, apesar de ambos os processos apresentarem a mesma dureza máxima, 1300 HV0,025, a profundidade de endurecimento, ou de nitretação, em DCPN possui cinética superior ao processo de ASPN. Esta vantagem cinética deve estar associada aos diferentes mecanismos operantes nos processos.
- Tanto na DCPN quanto na ASPN a resistência mecânica inicial do substrato envelhecido, avaliada pela sua dureza Rockwell C, não foi modificada pelo processo posterior de tratamento superficial, mostrando que o superenvelhecimento não ocorre nas condições de nitretação estudadas, a 552°C por 4 horas.

Agradecimentos

Ao CNPq pela bolsa RHAE, processo 459609/2013-0, de pesquisadora atuando na empresa Heat Tech Tecnologia em Tratamento Térmico e Engenharia de Superfície Ltda.

Á Villares Metals SA pelo fornecimento do material utilizado neste trabalho.

REFERÊNCIAS

- 1 ASM Handbook, Properties and Selection: Irons, Steels, and High-Performance Alloys. V. 1, Novelty-OH: ASM International; 1993.
- 2 Carpenter Technical Datasheet. Custom 630 Stainless, Ed. Carpenter Technology Corporation, 2011.
- 3 Sun, T., Bell, T. Plasma surface engineering. Materials Science and Engineering, 1991;140:419-434.
- 4 Edenhofer, B. Physical and metallurgical Aspects of Ion Nitriding", Heat Treatment of Metals. Part 1. 1974;1:23-28.
- 5 Pinedo, CE. Nitretação por plasma. In: Anais do I Seminário Internacional de Engenharia de Superfície, Mogi das Cruzes, Brasil; 1995, p.13-26.
- 6 Dong, H. S-phase surface engineering of Fe-Cr, Co-Cr and Ni-Cr alloys. International Materials Review. 2010;55(2):65-98.
- 7 Li, G-j., Wang, J., Li, C., Peng, Q., Gao, J., Shen, B-I. Microstructure and dry-sliding wear properties of DC plasma nitrided 17-4 PH stainless steel. Nuclear Instruments and Methods in Physics Research B. 2008;(266):1964–1970.
- 8 Dong, H., Esfandiari M., Li, XY. On the microstructure and phase identification of plasma nitrided 17-4PH precipitation hardening stainless steel. Surface & Coatings Technology. 2008;(202):2969–2975.
- 9 Wang, J., Lin, Y., Zeng, D., Yan, J., Fan, H. Effects of the Process Parameters on the Microstructure and Properties of Nitrided 17-4PH Stainless Steel. Metallurgical and Materials Transactions B. 2013;44:414-422.
- 10 Oliveira, SD., Tschiptschin, AP., Pinedo CE. Simultaneous plasma nitriding and ageing treatments of precipitation hardenable plastic mould steel. Materials and Design. 2007;(28):1714–1718.
- 11 Li, CX. Active screen plasma nitriding an Overview. Surface Engineering. 2010;26:135-141.
- 12 Burlacov, I., Börner, K., Spies, H.-J., Biermann, H. Progress in control of nitriding potential in ASPN process. International Heat Treatment and Surface Engineering. 2014;8(4):139-143.
- 13 Li, CX., Bell, T., Dong, H. A Study of Active Screen Plasma Nitriding. Surface Engineering. 2002;18:175-181.

- 15 AMS 5643, Corrosion-Resistant, Bars, Wire, Forgings, Tubing, and Rings, 16Cr 4.0Ni - 0.30Cb - 4.0Cu, Solution Heat Treated, Precipitation Hardenable, 2013.
- 16 Pinedo, CE., Monteiro, WA. On the kinetics of plasma nitriding a martensitic stainless steel type AISI 420. Surface and Coatings Technology. 2004;(179): 119–123.
- 17 Pinedo, CE., Monteiro, WA. Tratamento térmico e nitretação sob plasma do aço inoxidável martensítico AISI 420. Tecn. Metal. Mater. Miner. 2011;8:1-5.
- 18 Jack, DH. "Nitriding", In: HEAT TREATMENT'73, Proc. Conf., London-UK; 1973, p.39-50.
- 19 Lightfoot, J., Jack, DH. "Kinetics of nitriding with and without compound layer formation", In: HEAT TREATMENT'73, Proc. Conf., London-UK; 1973, p.59-65.
- 20 Zhao, C., Li, CX., Dong, H., Bell, T. Study on the active screen plasma nitriding and its nitriding mechanism. Surface & Coatings Technology. 2006; (201):2320–2325.
- 21 Gallo, SC., Dong, H. New insights into the mechanism of low-temperature activescreen plasma nitriding of austenitic stainless steel. Scripta Materialia. 2012;67:89-91.
- 22 Bernardelli, EA., Borges, PC., Fontana, L.C., Floriano, J.B. Role of plasma nitriding temperature and time in the corrosion behaviour and microstructure evolution of 15-5 PH stainless steel. Kovove Mater. 2010;48:105-115.
- 23 Pinedo, CE., Monteiro, WA. Surface hardening by plasma nitriding on high chromium alloy steel. Journal of Materials Science Letters. 2001;20(2):47-149.
- 24 DIN 50190 "Häteteife Wärmebehandelter Teile Ermittung der Nitriehätetiefe", Teil 3, März, 1979.