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Abstract 
Real cracks are always accompanied by plastic zones (pz) which involve their tips 
and strongly influence their behavior. Classical estimates for such pz, based only on 
the crack stress intensity factor, are too imprecise for stresses used in practical ap-
plications. Improved estimates considering the T-stress, obtained from the Williams 
series zero order term, do not satisfy boundary conditions, in particular the nominal 
stresses far from the crack tip, which have a major influence on pz size and shape. 
The complete linear elastic stress field solution for the Griffith plate, obtained by three 
different methods, is used to prove this affirmative. The first is based on its Wester-
gaard stress function, the second on the equivalent Inglis, and the third on the com-
plete Williams series. Equilibrium corrections necessary to compensate for the stress 
limitation inside pz provide still better estimates for their sizes and shapes. For more 
complex structures, for which the geometry and type of loading may also significantly 
influence pz sizes and shapes, the plastic zones can be better estimated from their 
complete elastic stress field calculated e.g. by finite element procedures. 
Key-words: Crack tip plastic zone estimates; T-stress; Equilibrium corrections. 
 

ESTIMATIVAS DE ZONAS PLÁSTICAS BASEADAS EM T-STRESS E EM CAM-
POS COMPLETOS DE WESTERGAARD 

Resumo 
Trincas reais são sempre acompanhadas por zonas plásticas (zp) que envolvem su-
as pontas e influenciam fortemente o seu comportamento. Estimativas clássicas pa-
ra estas zp, baseadas somente no fator de intensidade de tensões, são imprecisas 
demais para tensões usadas em aplicações práticas. Estimativas melhoradas que 
consideram as T-stress, obtidas do termo de ordem zero da série de Williams, não 
satisfazem as condições de contorno, em particular a tensão nominal longe da ponta 
da trinca, que influencia muito o tamanho e a forma da zp. A solução completa para 
o campo de tensões linear elástico na placa de Griffith, obtida por três métodos dife-
rentes, é usada para provar esta afirmativa. A primeira é baseada na sua função de 
tensão de Westergaard, a segunda na placa de Inglis equivalente, e a terceira na sé-
rie completa de Williams. Correções de equilíbrio necessárias para compensar a li-
mitação das tensões dentro da zp geram estimativas ainda melhores para os tama-
nhos e as formas das zp. Para estruturas mais complexas, nas quais a geometria e 
o tipo de carga também podem afetar muito as zp, elas podem ser mais bem esti-
madas a partir dos seus campos de tensão linear elásticos completos, calculados 
e.g. por elementos finitos. 
Palavras-chave: estimativas de zonas plásticas, T-stress; correções de equilíbrio  
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1 INTRODUCTION  
 
The stress intensity factor (SIF) alone cannot model well some simple crack prob-
lems. E.g. the linear elastic (LE) stress field generated by a SIF KI na in a Grif-
fith plate with a 2a crack, loaded in mode I by a nominal stress n, does not obey the 
boundary conditions far from the crack tip: ij  [KI /(2r)]fij()  (r  , 0)  0, in-
stead of (r  , 0)  n as it should, where r is the distance from the tip,  is the 
angle measured from the crack plane and fij() are the Irwin (or Williams) -functions. 
Since SIF-based fields are LE, they obviously cannot describe stresses and strains 
inside the plastic zones pz() which always involve the crack tips either.  
Plastic zones sizes are very important for practical applications because they control 
the applicability of Linear Elastic Fracture Mechanics concepts. Even the most ele-
mentary introductions to fracture problems mention that such concepts can only be 
used if the plastic zone size is much smaller than the cracked structural component 
dimensions, a concept that requires the pz size to start with. But such sizes cannot 
be precisely calculated by practical means. Both for teaching and designing purpos-
es, pz() are traditionally estimated from simplified LE analysis, assuming they de-
pend only on KI (in the cases the crack is loaded in pure mode I). Indeed, equating 
the LE Mises stress to SY, the yielding strength, the simplest mode I elastic-plastic 
frontiers in plane stress (pl-) and in plane strain (pl-) are estimated by Unger:(1) 
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where  is Poisson’s coefficient. Thus, according to this classical estimate, the pz() 
size directly ahead of crack tips in pl-, the reference used here to normalize pz 
plots, should be pz(0)pl-  pz0 (1/2)(KI/SY)2. But the ij  f(KI) hypothesis is exact 
only when r  0, or exactly where the assumed LE behavior is singular, thus has no 
physical sense. It is important to emphasize that singular elastic-plastic (EP) esti-
mates, such as the HRR field, do not solve this problem either, and also generated 
but approximated pz frontiers. As the pz border may not be too close to crack tips, it 
is worth to at least estimate the effect of n/SY on pz(), where SY is the yielding 
strength, instead of simply neglecting it. A simplistic but clear estimate for this n/SY 
effect can be made forcing y(x , y 0)  n, by adding up a constant stress y  
n to the Williams (or Irwin) stress LE field to obtain 
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where 

  


nWil
M,pl( )  is the resulting LE Mises stress distribution around the crack tip in 

pl- (considering the n/SY effect),   KI/(2r), and fx(), fy(), and fxy() are the 
mode I -functions associated with x, y and xy. A similar equation can be easily 
generated for pl-. The corresponding pz() are obtained from M()  SY (Figure 1). 
Figure 1 indicates that the n/SY ratio may significantly affect pz() under real loading 
conditions, since engineering structures are typically designed with yield safety fac-
tors 1.2 < Y < 3. However, it cannot prove that the n/SY effects are that important, 
since the hypothesis used to generate this plots is not sound. But this simplistic esti-
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mate points out that the pz() dependence on n/SY should be further explored, as 
done in the following sections. 
 

  
Figure 1: Mode I plastic zones pz() frontiers roughly estimated for the Griffith plate by 


  
 nWil

YM,pl( ) S for pl- and for pl- limit conditions. 

 
2 PLASTIC ZONES ESTIMATED FROM THE INGLIS STRESS FIELD 
 
A much better estimate for the n/SY effect on pz() is obtained from the Inglis plate 
with a very sharp elliptical notch of major semi-axis a normal to n, and minor semi-
axis b  a. Making x  ccoshcos and y  csinhsin, this notch is described in 
elliptical-hyperbolical coordinates (,) by   0, where a ccosh0, b  csinh0, 
and c a/cos0. The general solution for the LE stress field , , and  in Inglis 
plates is given by a series too long to be reproduced here.(2,3) But if the very sharp el-
liptical notch has a tiny (but finite) tip of radius � b2/aCTOD/22KI

2/SYE’, 
where E’E in pl- or E’E/(1) in pl-, then its (LE) stress concentration factor 
Kt 1 + 2a/b is given by: 
 


    

            
 

YY Y
t 2 n n nn

Ea E S Sa a a EK 1 2 1 2 1 2
b b 2 22 a

   (3) 

 
Using this a/b ratio to obtain the ellipsis that emulates the crack in elliptical coordi-
nates by 0  tanh1(b/a), then the LE stresses in the Inglis plate that simulates the 
Griffith plate stress field can be calculated. Finally, the Mises stress resulting from , 
, , and z( + ) can be used to estimate the Inglis plastic zone frontiers 
pz() by numerically solving equation (4) for | | (Figure 2). 
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Therefore, the nominal stress influence on these LE estimates for Griffith’s plate plas-
tic zone frontiers pz(), although a little less than estimated by the simplistic Figure 1 
approximation, is indeed significant and should not be neglected in practical applica-
tions. Note that to use Inglis to obtain an exact LE stress field which emulates the 
Griffith plate in mode I, when the crack is modeled as an elliptical sharp notch of tip 
radius   CTOD/2, is a quite sensible and reasonable hypothesis, since ideal cracks 
should open by CTOD under load. Nevertheless, it is worth to use an alternative ap-
proach to confirm it, as follows.  
 

  
Figure 2: Mises plastic zones pz() in pl- and pl-, calculated from the Inglis LE stress field for a 
cracked plate loaded in mode I, modelling the crack as a very sharp elliptical notch of tip radius   
CTOD/2. 
 
3 PLASTIC ZONES ESTIMATED BY THE WESTERGAARD STRESS FUNCTION 
 
The Westergaard Z(z) complex stress function provides an alternative way to rigo-
rously estimate the plastic zone frontier pz() from the Griffith plate elastic stress 
field.(3,4) But, since the elastic-plastic frontier is not adjacent to the crack tip, the full 
stresses generated from Z(z) must be used in such a calculation. This is easily dem-
onstrated revisiting the classical Irwin solution for the infinite plate with a crack of size 
2a loaded in mode I. Thus, if (x, y) and (r, ) are Cartesian and polar coordinates 
centered at the crack tip,i and zx + iy is a complex variable, the Irwin solu-
tion is obtained from the Westergaard stress function 
 

Z(z)  zn/(z2 – a2)  Z’(z)  dZ/dz a2n/(z
2 – a2)3/2       (5) 

 
And the corresponding linear stress field is given by 
 

           x n y xyRe( Z ) y Im( Z ) , Re( Z ) y Im( Z ), y Re( Z )    (6) 

 
Note that to solve the mode I problem from Z(z) a constant termn has to be added 
to x ReyImZ’) to force the stress field to obey the Griffith plate boundary 
condition x()  0, an adequate mathematical trick since a constant stress in the x 
direction does not affect the LE stress field near the crack tip. It is convenient to re-
write Z and Z’ in polar coordinates centered at the crack tip: 
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Substituting (7) in (6), the Mises elastic-plastic frontier pz() is then given by 
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Note that the y  Re(Z)yIm(Z’) stress is usually approximated to generate a SIF 
(a highly desirable feature but for estimating pz(), since it neglects the n/SY effect) 
by writing 
 

          2 2
y n n I( 0 ) ( x a ) ( x a ) a a 2ax K 2 r , if x << a  (9) 

 
where 2a is the crack size perpendicular to the nominal stress n. As (9) formally 
yields yKIr0 if r  , this classical approximation obviously cannot 
be used to study the n/SY influence on pz(). That is why this task must be fulfilled 
by first calculating the complete stress field generated from Z and Z’ to obtain the re-
sulting Mises (or Tresca, for that matter) stress, and then equating it to SY to obtain 
the required pz() EP frontiers considering the n/SY effect, as in equation (8). The 
same process can be easily applied in pl- (Figure 3). Inglis and Westergaard pz vi-
sually coincide when the sharp ellipsis has its minor semi-axis (instead of its tip ra-
dius) b  CTOD/2  2KI

2/SYE’ (Figure 4). As pzIng() and pzWtg() are obtained from 
completely different equations, their near coincidence is certainly not fortuitous. 
Therefore, the large n/SY effect predicted by these rigorous solutions really should 
not be neglected in practice. This point must be emphasized for design purposes, 
since it is the plastic zone size that validates most LEFM predictions. 
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4  PLASTIC ZONES ESTIMATED FROM THE COMPLETE WILIAMS SERIES 
 
As the Williams series can be used to obtain exact LE solutions for cracked compo-
nents, its coefficients can then be adjusted to the Griffith plate complete stress field 
generated from the Westergaard stress function, successively incrementing its num-
ber of terms.(5) Figure 5 shows the EP frontiers ahead of the crack tip obtained consi-
dering 1 to 4 terms in Williams series. 3 terms are already sufficient to visually repro-
duce pzIng()  pzWtg(). Thus, exactly as expected, these three paths lead to the 
same pz() estimations.  
These estimates are based on the Griffith plate correct LE stress field, which obeys 
the plate boundary conditions (i.e. y(x  a , y 0)  xy(x  a , y 0)  x

xy
0, 

y
n). Thus they are the best pz() LE estimates that can be obtained for the Grif-

fith plate without considering equilibrium requirements between the applied force and 
the stresses it generates. However, as the stresses inside the plastic zone are limited 
by yielding, the truncated LE stress field cannot obey equilibrium conditions. But such 
conditions can have a major influence on pz(), as recognized by Irwin a long time 
ago. The next topic considers them, and compares the resulting equilibrated pz() 
estimations with pz() estimated considering only the T-stress correction. 
 

  
Figure 3: Mises pz() for the Griffith plate in mode I, estimated from the complete LE stress field in-
duced by the Westergaard stress function for pl- and pl- conditions. 
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Figure 4: The Mises plastic zone frontiers pz() estimated by the complete Westergaard stress field 
are visually identical to the Inglis estimate when a sharp elliptical notch with b  CTOD/2  2KI

2/SYE’ 
instead of   CTOD/2 is used to model the crack. 
 
5  T-STRESS AND EQUILIBRIUM INFLUENCE ON pz() ESTIMATIONS 
 
The T-stress correction is a constant x term (parallel to the crack) added to the KI-
based LE stress field which can alleviate some of its limitations.(6) Thus, it has been 
widely explored in the literature to model some interesting problems.(7-16) From a 
practical point of view, Fett(17) lists T-stress values for several geometries. However, 
the resulting KI +T-stress field cannot reproduce the y

n boundary condition in 
the Griffith plate, as it is just a simplification of the complete LE stress field used 
above. It is then interesting to compare the plastic zones estimated by them.  
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Figure 5: The Mises pz() estimated for the Griffith plate loaded in mode I from the Williams series 
with only 3 terms visually reproduces reasonably well pzIng()  pzWtg() both in pl- and in pl-. 
 
But before doing so, it is important to remember that although the complete field 
generated e.g. from the Westergaard stress function is the correct LE solution for the 
Griffith plate, its truncation inside the plastic zone limits stresses, thus inevitably 
leads to underestimated pz() frontiers. In a first approximation, such stresses can be 
limited by SY, neglecting strain-hardening effects inside pz(), but such effects can be 
considered assuming an HRR-like stress-strain relation. However, due to space limi-
tations only the ideal perfectly plastic behavior is discussed here.   
Four alternative models for compensating the stress truncation inside the plastic 
zones augmenting them by forcing the plate to obey equilibrium conditions are consi-
dered following.  

 Correction to compensate for the y component truncation, as proposed by 
Rodriguez, Castro e Meggiolaro:(18) 
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      (10) 

 
This correction may be seen as a generalization of Irwin´s classical correction for the 
plastic zone along the crack direction  = 0, which is based on the equilibrium of net 
vertical forces that could not exist within the plastic zone because y cannot surpass 
the yielding stress [3-4]. Besides the generalization to perform this correction along 
any -direction, the most important difference between equation (8) and Irwin´s re-
ceipt is that the former is based on the complete Westergaard stress function while 
the latter considers a stress field that is based solely on the SIF. 

 Correction using a constant increment along each radius connecting the crack 
tip to the pz() borderline, defined by its -direction, obtained from  
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       Wtg eqR Wtg
M Mpz pz CTE            (11) 

 

where         Wtg eqR Wtg
M MCTE pz 0 pz 0 . This constant has the same equilibrium 

rational as the previous correction, and it is based on the 0 direction. For other 
radial directions, the same length correction is adopted, inspired by the idea of the 
constant T-stress correction. 

 Correction based on the Mises stress, obtained from  
  
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Since the correction proposed by Rodriguez et al.   Wtg eq y
Mpz  only presents the 

equilibrium rational for 0  in pure mode I and does not take into account the effect 
of the other stress components, this correction based on the Mises stress may be 
seen as a reasonable alternative, since it considers them and can be used for any 
type of loading. 

 Correction based on the vertical traction component, obtained from 
  
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Wtg
y M

t r ,  dr

pz
t pz ,

          (13) 

where ty is determined by 
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 

   
   

 
 

    
     

            
x xyx

y xy y

r , r ,t r , cos
t r , r , r , sin

         (14) 

 
Again, this equilibrium correction to compensate for the LE stress field limitation in-
side the plastic zone has an exact equilibrium appeal only for   0. However, by 
considering the vertical traction component, the equilibrium may be seen as resulting 
from a free body diagram obtained by sectioning the model along any -direction, a 
more elegant way to treat this problem. Figures 6 and 7 compare the various equili-
brium corrections described above, by showing the difference between their pz() es-
timates for plane stress and plane strain. These figures also depict plastic zones ob-
tained by truncated SIF, SIF plus T-stress, and complete LE stress fields, which do 
not obey equilibrium requirements. Note in particular that the KI+T-stress pz() can 
be significantly smaller than equilibrium-corrected ones. 
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Figure 6: Equilibrium-corrected pz() and pzKI+T() estimated for the Griffith plate loaded in mode I in 
pl- for a low n/SY  0.2 and a high n/SY  0.8 ratios. 
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Figure 7: Equilibrium-corrected pz() and pzKI+T() estimated for the Griffith plate loaded in mode I in 
pl- for a low n/SY  0.2 and a high n/SY  0.8 ratios. 
 
Figures 6 and 7 display pz() borderlines estimated for n/SY 0.2 and n/SY 0.8 
ratios, which correspond to yield safety factors Y  5 and Y  1.25, representative of 
maxima low and high loads used in typical structural applications. The equilibrium-
corrected hypothesis based on y, M, and on the traction vector provide similar pz() 
predictions, which are significantly larger than the KI+T-stress one usually accepted 
as reliable pz() estimates for analysis and design purposes. As the KI+T-stress field 
neglects stress components considered by the exact LE solution for the Griffith plate, 
this suggest that for practical applications pz() in generic cracked components 
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should be estimated using equilibrium-corrected LE stress fields properly calculated 
using standard finite element procedures.(19) 

 
6 CONCLUSIONS 
 
The nominal stress to yield strength n/SY ratio significantly affects both the size and 
shape of plastic zones ahead of crack tips estimated from LE stress fields, as dem-
onstrated for Griffith’s plate using 3 different ways to find its exact solution. This solu-
tion should be corrected to consider equilibrium requirements violated by the LE 
stress truncation inside the plastic zone, a task tackled by 4 different approximate but 
reasonable hypotheses. From these, the stress-based ones generate quite similar 
pz() estimates. Such equilibrium-corrected pz() are significantly larger than the es-
timates obtained from the plate SIF KI n(a) alone, or from the combination of its 
SIF+T-stress, particularly for the high y/SY ratios used in modern structures.  
As such estimates are based on an exact LE solution complemented by quite sensi-
ble equilibrium assumptions, they indicate that the traditional practice of assuming 
that T-stress can adequately correct SIF limitation for estimating pz() may, and 
probably should be questioned. Moreover, they suggest that pz() frontiers can be 
similarly estimated in cracked structural components using complete LE stress fields 
calculated by well-established finite element procedures, which should be then equi-
librium-corrected to avoid underestimation due to stress truncation, possibly including 
strain-hardening effects for better precision. This fact has important practical conse-
quences, as it can be used to seriously question the similitude principle, one miles-
tone of the mechanical design against fracture, in many real life problems. In com-
pensation, it may help to better predict the actual toughness of real structures, by 
comparing reliable estimates for their pz() with those obtained for the standard test 
specimens used to measure their material toughness. 
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