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Abstract  
The necessary time to launch a vehicle has been reduced year by year thanks to, 
among other factors, software improvement that can predict metal forming process 
and application performances. The material behavior is one of fundamental issue to 
guarantee accuracy in numerical simulations. The relationship of the stress-strain 
determined by uniaxial tensile test is an information required in forming software. The 
strains obtained in stamping process normally are higher than those reached by 
tensile test. Therefore, it is necessary to extrapolate of the tensile data to predict the 
steel plastic behavior under biaxial stress state. This implies the development of new 
work-hardening equations or better identification methods of classical equations. 
Among the models already known, this study makes use of the following work-
hardening equations: Hollomon, Ludwik, Swift, Hockett-Sherby and Voce to describe 
the uniaxial tensile behavior of steel sheets. The results showed that the Swift, 
Hockett-Sherby and Voce equations, in general, present good fit to the experimental 
data. Both initial yielding and large straining domains of the stress-strain curve are 
better described by the Hockett-Sherby, and the combination of the Swift and 
Hockett-Sherby plastic models. 
Keywords: Work-hardening models, Sheet Metal Forming, Numerical Simulation, 
Deep Drawing Quality Steel. 
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1 INTRODUCTION 
 
In the automotive industry, a numerical 
simulation is an important step in order to 
optimize sheet metal forming processes, 
as well as a tool that enables detection and 
prevention of eventual failures, leading to a 
constant reduction of time, cost and 
improvement of the final product quality. 
These factors favor the reduction in time 
required to launch new vehicles on the 
market. 
The numerical simulation accuracy will 
depend on steel’s mechanical properties, 
which can be characterized by its strain 
hardening curve obtained in a uniaxial 
tensile test [1,2]. However, the extent of 
plastic strain achieved in a tensile test is 
much lower compared to other loading 
modes, and also to the large strain levels 
that are obtained for most metal forming 
processes [3]. Since numerical simulation 
needs to predict large strains, it is 
necessary to generalize the strain 
hardening curve to larger values of plastic 
straining. 
The hydraulic bulge test, or biaxial bulge 
test, is an alternative method to evaluate 
the strain-hardening of steel sheets in the 
large strain domain [4]. This mechanical 
test is known for its ability to plastically 
deform materials to higher strain levels 
compared to the uniaxial tensile test, 
mainly due to the imposed biaxial stress 
state and friction absence between the 
blank specimen and the tools [4]. 
In addition to intrinsic strain hardening 
characteristics of the sheet material, 
mathematical models are used to describe 
mechanical behavior in sheet metal 
forming, that is, a plastic flow criterion and 
constitutive equation models are adopted. 
For each material, constitutive equations 
parameters can be obtained from uniaxial 
and equibiaxial stress curves [1]. 
The objective of this work is to perform a 
data conversion or data description from 
the symmetrical biaxial strain hardening 
curve, generated from the hydraulic bulge 
test, to the uniaxial strain and to propose 

which constitutive model best describes 
the mechanical forming behavior of the 
evaluated material. 
 
2 MATERIALS AND METHODS 
 
2.1 Uniaxial Tensile Test 
 
Uniaxial tensile tests were performed on an 
Instron universal tensile machine and test 
specimens were made according to sheet 
type recommendations from ASTM A 370 
standard [5]. The specimens were 
manufactured from a steel sheet, and 
obtained out from different directions at 0°, 
45° and 90° relative to the rolling direction. 
Tensile tests were performed at room 
temperature at a constant strain rate of 
0.001/s until rupture. Equations (1) and (2) 
were used for the uniaxial tensile test data 
to obtain the true stress-strain curve, which 
was plotted up to the tensile strength (TS). 
 

𝜀 = 𝑙𝑛(1 + 𝑒) = 𝑙𝑛 (1 +
∆𝑙

𝑙0
)     (1) 

𝜎 =
𝐹

𝐴0
∙ (1 + 𝑒) =

𝐹

𝐴0

∙ (1 +
∆𝑙

𝑙0

)     (2) 

 
Where F is the force (N) applied to the 
specimen and A0 is the initial cross-section 
area (mm2); l0 is the initial length (mm) and 

l (mm) is the elongation relative to l0 (mm) 
on the specimen. Curves will be adjusted 
according to rigid-plastic constitutive 
models proposed in the literature in 
addition to the experimental determination 
of the strain hardening curve. 
 

2.2 Hydraulic Bulge Test 
 

The hydraulic bulge test consists of fixing, 
by means of a high load (blank holder 
forces – FBH), a thin, generally circular, 
sheet metal specimen of initial thickness t0, 
which shall be subjected to a hydraulic 
pressure (P) according to the schematic 
drawing shown in Figure 1 [6]. The 
specimen is progressively deformed by the 
action of hydraulic pressure in the place of 
a punch, minimizing any frictional influence 
[1]. The fluid pressure against one side of 
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the sheet increases over time, deforming it 
and forming a protruding central region - 
hemispherical dome, whose material 
thickness at the pole (t) tends to decrease 
more intensely than at the peripheral 
region, while constant latitude circles are 
formed at the internal surface (hydraulic 
fluid and sheet surface contact). Under 
these conditions, a symmetrical biaxial 
state (stretch), with rotational symmetry, is 
generated on the pole [6, 7, 8]. As strain 
advances, this protuberance tends to 
present a smaller and smaller curvature 

radius (), so, this curvature can be 
considered infinite at the beginning of the 
test, when the sheet is flat. 
 

 

FIGURE 1.  Schematic representation of a sheet 
hydraulic bulge test., Adapted from Maummer et al 

[6]. 

 
Hydraulic bulge tests were performed on a 
universal forming press, with blank holder 
force and press speed of 500 kN and 60 
mm / min, respectively. The specimens 
used in the hydraulic bulge tests were 
circular with 180 mm in diameter. The 
hydraulic pressure (p), sheet thickness at 

the pole (t), and the curvature radius () 
are recorded during the hydraulic bulge 
test. 
Values for pressure p were acquired 
directly from the forming press using a 
software. Values for the curvature radius of 

the specimen (), hydraulic pressure (P), 
and instantaneous pole thickness (t) were 
also determined automatically. This 

software determines the radius (), 
although the procedures for this calculation 
are not described. 
 
 

2.2.1 Biaxial stress-strain curve 
definition 
An analysis of the stress state in the 
vicinity of the hemispherical dome during 
the biaxial test is performed using equation 
(3), known as the stress equation for thin-
walled pressure vessels, also known as 
membrane theory. [9]. 
 

𝜎1

𝜌1
+

𝜎2

𝜌2
=

𝑃

𝑡
      (3) 

 

Where 1 and 2 are the principal stresses 
on the sheet surface (assuming that the 
main stresses axes -0123- and the 

anisotropic axes -0xyz- are coincident), 1 

and 2 are the curvature radii in the middle 
of the sheet thickness (t), and p is the 
hydraulic pressure [1]. Since the ratio 
between sheet thickness and its diameter 
is less than 1/50, under these conditions 
bending stresses can be neglected and it is 

assumed that 3 equals zero [1].  
On the other hand, the curvature radii are 
experimentally evaluated on the outer 
dome surface outer surface, then their 
adjustment can be performed using 
equation (4): 
 

𝜌 = 𝜌𝑒𝑥𝑡 −
𝑡

2
     (4) 

 

Where  is the curvature radius at half the 

thickness of the pole, and ext is the 
curvature radius of the hemispherical dome 
outer surface. 

In equation (3), 1 and 2 are unknown and 
an additional equation is required for their 
determination. For anisotropic metals that 
meet the Hill's 48 yield criterion [10], 
equation (5) can be used, assuming that 
the main stress axes (0123) and the 
anisotropic axes (Oxyz) are coincident [1].  
 

 𝑑𝜀1 = 𝑑𝜆[(𝐺 + 𝐻)𝜎1 − 𝐻𝜎2],     (5) 

 𝑑𝜀2 = 𝑑𝜆[(𝐹 + 𝐻)𝜎2 − 𝐻𝜎1]         ) 
 
Where F, G and H are anisotropic 

parameters, d1 and d2 are plastic strain 
increments in the sheet plane parallel to 

Ox and Oy axes, respectively, and d is a 
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scalar proportionality factor. Knowing F, G 
and H parameters from Hill's 48 criterion, 

it’s possible to find out 1 and 2.  
In order to determine F, G and H, the 

plastic anisotropy coefficients (r), relative 
to different angular orientations with 

respect to the rolling direction () at 0, 45 
and 90º, are calculated from uniaxial 
tensile tests. 
The relationships between Hill's 48 
criterion parameters and anisotropy 

coefficients (r) are presented in equation 
(6) [11; 12]: 
 

𝐹 =
𝑟0

𝑟90(1+𝑟0)
  , 𝐺 =

1

1+𝑟0
  ,   𝐻 =

𝑟0

1+𝑟0
     (6) 

 

The thickness strain 3 is obtained from the 
surface principal strains assuming plastic 

incompressibility, 1 and 2, as long as the 
material’s volume remains constant during 
plastic strain [13] (equation (7)) : 
 

𝜀1+𝜀2+𝜀3 = 0     (7) 
 
2.2.2 Biaxial and uniaxial Stress-Strain 
Transformation 
 
Two distinct strain hardening curves to the 
same material can be obtained from 
uniaxial tensile and hydraulic bulge tests, 

where u = f(), that comes from the 

uniaxial tensile test and b = f() that 
comes from the bulge test. 
Since the curves do not come from the 
same strain mode, they cannot be directly 
compared, so a combination of data cannot 
be performed [14]. To perform the 
equibiaxial data description to uniaxial 
strain, it is necessary to calculate the 
equivalent stress and strain, that are 𝜎̅ and 

𝜀,̅  respectively, which represent this data 
description, from symmetrical biaxial strain 
hardening curve to uniaxial strain.  
 
2.2.2.1 Hill's 48 and von Mises 
Equivalent Stress-strain  
 
Equations (8) and (9) can be used to 
calculate the equivalent stress and strain, 

which are simplifications of the quadratic 
function from Hill'48 plastic flow criterion [8, 
10, 13, 15]: 

𝜎̅ = √(𝐺 + 𝐻)𝜎1
2 + (𝐹 + 𝐻)𝜎2

2 − 2𝐻𝜎1𝜎2  (8) 

 

𝜀̅ = √𝐹 [
𝐺𝜀2−𝐻𝜀3

𝐹𝐺+𝐺𝐻+𝐻𝐹
]

2
+ 𝐺 [

𝐹𝜀1−𝐻𝜀3

𝐹𝐺+𝐺𝐻+𝐻𝐹
]

2
+ 𝐻 [

𝐹𝜀1−𝐺𝜀2

𝐹𝐺+𝐺𝐻+𝐻𝐹
]

2
  (9) 

 
Rana et al [7] applied the Hill'48 yield 
criterion to several classes of IF steels as 
described below in equations (10) and 
(11): 
 

𝜎̅ = 𝜎1√
3

2
(

𝑟0+𝑟90

𝑟0𝑟90+𝑟0+𝑟90
)     (10) 

 

𝜀̅ = |𝜀3| ∙ {
3

2
(

𝑟0+𝑟90

𝑟0𝑟90+𝑟0+𝑟90
)}

−1
2⁄
     (11) 

 
For isotropic materials that meet von Mises 
criterion (F = G = H = 0.5), equations (8) 
and (9) are reduced to equations (12) and 
(13) respectively. 
 

𝜎̅ = √𝜎1
2 + 𝜎2

2 − 𝜎1𝜎2     (12) 

     

𝜀̅ = (
2

√3
) √𝜀1

2 + 𝜀2
2 + 𝜀1𝜀2     (13) 

 
In cases of completely isotropic or 
anisotropic materials with r0=r90, the main 

stresses are equal (1 = 2 = b), as well as 

the main stain (1 + 2 = b) and curvature 

radii (1 = 2 = ), which simplifies equation 
(3) and leads to equation (14) [1,8]: 
 

𝜎𝑏 =
𝑃𝜌

2𝑡
     (14) 

 
2.3 Materials and Mechanical 
Characterization 
 
The uniaxial tensile and equibiaxial 
stretching tests by hydraulic bulge were 
applied on an Interstitial Free steel (IF) - 
EEP grade 3 - NBR5915-2[16]. The 
mechanical properties obtained from the 
uniaxial tensile test, yield strength (YS), 

tensile limit (TS), uniform elongation (%u), 

total elongation (%t), anisotropy 
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coefficients (r) calculated at 20% strain, 
for the different directions relative to the 
rolling direction for this steel, are presented 
in Table 1. 
 

Table 1. Mechanical properties of IF steel - EEP 
grade 3 relative to different rolling directions - 

Engineering Stress-Strain. 

Direction YS* TS* %u %t r  

0º 159 284 27.8 51.3 2.153 

45º 161 292 25.9 49.3 1.877 

90º 158 282 27.9 52.3 2.595 
(*)YS and TS values in (MPa) 

 
Triplicated uniaxial tensile tests were 
performed for each angular orientation, 
and the average result values from these 
tests are presented in Table 1. It was 
aimed to choose the work-hardening 
equation that best describes the yield 
curves obtained. True stress-strain curves 
plotted up to uniform strain for the IF steel 
in three different directions are shown in 
Figure 2. 
 

 
Figure 2. True stress-strain curve for angular 

orientations with respect to the rolling direction of IF 
steel sheet. 

 
2.4 Work-hardening equations 
 
Some different work-hardening equations 
to characterize mechanical behavior of 
materials considering their behavior as 
rigid-plastic [17] are shown in Table 2. 
The work-hardening equations were tested 
to the experimental data and the model 
that best describes the mechanical 

behavior (strain hardening curve) was 
chosen by analyzing the quality of 
adjustments based on a coefficient of 
determination (R2) and the root-mean-
square of residual percentage (rmsrp) 
which is described by equation (15) [26]: 
 

(𝑟𝑚𝑠𝑟𝑝) =

√∑ (
𝜒𝑒𝑥−𝜒𝑓𝑖𝑡

𝜒𝑒𝑥
)

2

𝑁

𝑁
      (15) 

 

Where ex is the value of the experimental 

measurement, fit is the calculated value of 
the fitting model to the corresponding 
experimental point and N is the total of 
experimental points [26]. 
 

Table 2. Work-hardening equations proposed by 
various authors (chronologically ranked). 

Author Constitutive models 

Ludwik (1909) [18]:   

𝜎 = 𝜎0 + 𝐾 ∙ 𝜀𝑛 (16) 

Hollomon (1945) [19]:   
𝜎 = 𝐾 ∙ 𝜀𝑛 (17) 

Voce (1948) [20]:   

𝜎 = 𝜎𝑠 − (𝜎𝑠 − 𝜎𝐼) ∙ 𝑒−𝛽𝜀 (18) 

Swift (1952) [21]:   
𝜎 = 𝐾 ∙ (𝜀 + 𝜀0)𝑛𝑆 (19) 

Ludwigson (1971) [22]:   

𝜎 = 𝐾1 ∙ 𝜀𝑝𝑙
𝑛1 + 𝑒(𝐾2+𝑛2∙𝜀𝑝𝑙) (20) 

Hockett-Sherby (1975) [23]:   

𝜎 = 𝜎𝑠 − (𝜎𝑠 − 𝜎𝐼) ∙ 𝑒−𝑎𝜀𝑝
 (21) 

Swift-Voce [24]:   

𝜎 = (1 − 𝛼)[𝐾(𝜀 + 𝜀0)𝑛𝑆] + 𝛼[𝜎𝑠 − (𝜎𝑠 − 𝜎𝐼) ∙ 𝑒−𝛽𝜀] (22) 

Swift-Hockett/Sherby [25]:   

𝜎 = (1 − 𝛼)[𝐾(𝜀 + 𝜀0)𝑛𝑆] + 𝛼[𝜎𝑠 − (𝜎𝑠 − 𝜎𝐼) ∙ 𝑒−𝑎𝜀𝑝
] (23) 

  
3 RESULTS AND DISCUSSION 
 
The Hill's 48 parameters of equation (6), 
calculated with values of anisotropy 

coefficients - r (Table 1), follow the 
condition G + H = 1. This means that the 
equivalent strain hardening curve can only 
be compared in the rolling direction, that is 
direction Ox. Thus, the work-hardening 
equations adjustments to the uniaxial 
tensile test data were performed only for 
samples referring to the rolling direction. 
Tables 3 and 4 present values calculated 
by adjustments of the work-hardening 
equations parameters to the experimental 
data, with values of (R2) and (rmsrp). 
 



 

 
* Technical contribution to the 56º Seminário de Laminação e Conformação de Metais, part of the ABM Week 
2019, October 1st-3rd, 2019, São Paulo, SP, Brazil. 

 
 
Table 3. Parameters of work-hardening equations 

based on data from the IF Steel uniaxial tensile test 
in the rolling direction. 

Model  Parameters 

Ludwik o = 65.9 k = 496 n=0.33 

Hollomon k= 531.2 n = 0.25 

Voce s = 390.8 i = 156.6  = 9.4 

Swift k = 549.2 n = 0.27 0 = 0.005 

Ludwig. k1 = 540.4 n1 = 0.26 k2 = 4.12 n2 = -183.8 

(HS) s = 438.1 i = 134.5 a = 4.31 p = 0.75 

(SV) 
k = 549.2 n = 0.27 0 = 0.005  = 0.637 

s = 390.8 i = 156.6 a = 9.4 p = 1 

(SHS) 
k = 549.2 n = 0.27 0 = 0.005  = 0.81 

s = 438.1 i = 134.5 a = 4.31 p = 0.75 

All parameter values beginning with  and k are in MPa. 
The rmsrp values are in percent. Abbreviations of some 

models: HS: Hockett-Sherby; SV: Swift-Voce; SHS: Swift-
Hockett/Sherby 

 
Table 4. Quality of adjustments for each work-

hardening equation based on data from the IF Steel 
uniaxial tensile test in the rolling direction. 

Model  R2 rmsrp 

Ludwik 0.9979 0.0272 

Hollomon 0.9962 0.043 

Voce 0.9984 0.0217 

Swift 0.9988 0.0199 

Ludwig. 0.9996 0.01 

(HS) 0.9998 0.0068 

(SV) 0.9992 0.0161 

(SHS) 0.9998 0.0084 

 
By analyzing the values of R2 (closest to 1) 
and rmsrp (closest to 0), the work-
hardening equation that best describes or 
represents the strain hardening curve for 
the evaluated steel is the equation of 
Hockett-Sherby [23] (Figure 3a). This work-
hardening equation agrees with Voce 
model [20] when p = 1 in equation (21) and 
the constant 𝑎 from Hockett-Sherby 

equation becomes equal to constant  in 
Voce model, i.e. 𝑎 = 𝛽𝑝, where p ranges 
from 0 to 1. The authors proposed this 
equation considering that for high levels of 
plastic strain, the strain hardening curve 
reaches a steady state, in which will occur 
a formation of a cell structure of 
dislocations and in this configuration, there 
will be a balance between generation 
(strain hardening) and annihilation 
(dynamic recovery) of dislocations during 

the evolution of the strain hardening curve 
[23]. 
 
In Figure 3b it can be seen that the work-
hardening equations almost coincide in the 
true stress-strain domain for the tensile 
test, so for large strain level there is a 
divergence between constitutive models. 
Therefore, the transfer of hydraulic bulge 
test data by the use of equivalent stresses 
and strain is of great relevance to confirm 
which constitutive model is best at large 
levels of plastic strain.  
 

 
Figure 3. (a) Adjustment of Hockett-Sherby 

equation to experimental data from the Uniaxial 
Tensile Test. (b) Comparison between various 

work-hardening equation with experimental data 
and strain level. 

 
Although the material is anisotropic with 
r0≠r45≠r90 (Table 1), it presents close values 

of mechanical properties (YS, TS, %u, 

%t) in relation to the rolling direction (0º) 
and transverse (90º), therefore r0≈r90. In 
addition, the stress distribution in the pole 
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region can be approximated as a rotational 
symmetry case - equibiaxial stretching - 

the main stresses (1 and 2) can be 
considered equivalent and equal to the 

membrane stress (1 ≈ 2 ≈ b) [4, 12, 14], 
then, for this case it is valid to apply 
equation (14) for generating the 
symmetrical biaxial strain hardening curve 
with a good approximation. Equivalent 
stresses and strains were calculated with 
equations (10) and (11) respectively. 
Equations (8) and (9) did not allow a good 
transfer of symmetrical biaxial to uniaxial 
stress data for this material under 
evaluation. 
Figure 4 presents the representation of 
data passage from symmetrical biaxial 
strain hardening curve to uniaxial stress 
(Figure 4a). Figure 4b shows the 
superposition of the uniaxial stress curve 
with the equivalent strain hardening curve 
calculated by Hill'48 criterion. This 
superposition occurs at a point 
corresponding to the Uniaxial Tensile 
Strength Limit (TS), generating a combined 
strain hardening curve, that is, the 
equibiaxial data used, generates a strain 
hardening curve extrapolated by the real 
data. Figure 4b is nothing more than a 
combined strain hardening curve 
superimposed on Figure 3b. Although the 
Hockett-Sherby (HS) model had the best 
uniaxial strain fit, the extrapolation of the 
Swift-Hockett / Sherby (SHS) fit appears to 
be closer to the strain hardening curve for 
stress values above (TS) (Figure 4b). 
Again, the constitutive models were 
adjusted, only now for the combined strain 
hardening curve, and, by evaluating the 
values of (R2) and (rmsrp), two models that 
best represent the IF steel strain hardening 
behavior, from YS to major strain levels are 
the Hockett-Sherby models and the Swift-
Hockett-Sherby (SHS) combined model, as 
shown in Tables 5 and 6. Figure 5a shows 
a graphical representation of these models 
adjustments to the combined strain 
hardening curve data. Both models (HS) 
and (SHS) led to the best adjustments in 
comparison to other models, and the same 

values for (R2) and (rmsrp). It should be 

noted that () from SHS model, fit on the 
combined strain hardening curve, was 
slightly higher than one (due to numerical 
errors), this means that the portion or 
weight of the Hockett combined Swift 
model -Sherby is negligible and the SHS 
model, for this adjustment, was governed 
by the (HS) portion (or weight) of this 
model, since at both low and high strain 
levels, the Hockett-Sherby model 
presented the best values of (R2) and 
(rmsrp), then among the suggested 
constitutive models, this one presents the 
best description and prediction of the 
plastic behavior for the IF steels under 
analysis. 
 

 
Figure 4. (a) Representation of the equibiaxial 
stretch data transfer for uniaxial tensile test; (b) 

Overlapping stress and equivalence data from (TS) 
point. 

 
In Figure 4b a comparison is made 
between work-hardening equations 
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previously identified. It is clear that using 
only tensile test data, the corresponding 
(best fit) equations led to less strain 
hardening for the material in the 
extrapolation zone. Using the hydraulic 
bulge test data it is possible to improve 
prediction and description of the IF steel 
strain hardening at higher levels of plastic 
strain. 
 

 
Figure 5.  (a) Adjustment of the HS and SHS 

equations in the combined strain hardening curve; 
(b) Comparison of the combined strain hardening 
curve using symmetrical biaxial test data in the 

selection of the work-hardening equation. 

 
Table 5. Work-hardening equations parameters 

based on data acquired from combination of the IF 
Steel uniaxial tensile test data in the rolling direction 
and the combination with the equivalent Hill stress 

from the Biaxial test. 
Model Parameters 

Ludwik o = -55.25 k = 561 n=0.20 

Hollomon k= 514.3 n = 0.24 

Voce s = 438 i = 171  = 6.1 

Swift k = 515.2 n = 0.24 0 = 3.65 x 10-4 

Ludwig. k1 = 516.5 n1 = 0.24 k2 = 4.37 k1 = 516.5 

(HS) s = 491.95 i = 121.4 a = 2.76 s = 491.95 

(SV) 
k = 515.2 n = 0.24 

0 = 3.65 x 
10-4 

 = 0.464 

s = 438 i = 171.3  = 6.1 p = 1 

(SHS) 
k = 515.2 n = 0.24 

0 = 3.65 x 
10-4 

 = 1.002 

s = 492 i = 171 a = 2.8 p = 0.63 

 
 

Table 6. Fit quality for each work-hardening 
equation based on data from combination of the IF 

Steel uniaxial tensile test data in the rolling direction 
and the combination with Hill equivalent stress from 

the Biaxial test. 

Model  R2 rmsrp 

Ludwik 0.9922 0.0523 

Hollomon 0.9914 0.0479 

Voce 0.9892 0.0587 

Swift 0.9914 0.0467 

Ludwig 0.9925 0.0386 

(HS) 0.9994 0.0132 

(SV) 0.9981 0.0272 

(SHS) 0.9994 0.0132 

 
 
4 CONCLUSION 
 
In the present study it was possible to 
generate a strain hardening curve for high 
levels of plastic strain of an IF steel - EEP 
grade 3, combining uniaxial tensile and 
hydraulic bulge test data. This was made 
possible by transferring data from a 
equibiaxial strain condition to uniaxial 
strain using Hill's (1948) yield criterion. 
This data transfer proved to be an 
approach with excellent results in 
reproducing material behavior for high 
levels of plastic strain, serving as a 
reference for adjustments of different work-
hardening equations. Among the work-
hardening equations evaluated, both initial 
yielding and large straining domains of the 
stress-strain curve, the Hockett-Sherby, 
and Swift-Hockett/Sherby equations have 
proved to be the best describe the plastic 
behavior for this steel. 
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