

REDUÇÃO DAS PERDAS METÁLICAS NA TESOURA DE CORTE A QUENTE DO LAMINADOR DA ARCELORMITTAL ITAÚNA¹

Márcio Rezende²

Resumo

Com este trabalho pretendemos demonstrar a aplicabilidade e eficácia do Método para Análise e Solução de Problemas - MASP na melhoria contínua da qualidade. Demonstraremos como o MASP auxilia no aumento da capacidade crítica e analítica dos profissionais de uma empresa para que estes possam resolver problemas crônicos e atingir metas de melhoria desafiadoras. Este método simples e de fácil aplicação produz resultados relativamente rápidos além de facilitar a disseminação do conhecimento em todas as esferas da organização. Concluímos que o MASP é um poderoso e indispensável método para tornar as empresas mais competitivas e capazes de enfrentar as dificuldades impostas pelo mundo globalizado.

Palavras-chave: Método para análise e solução de problemas; PDCA; Melhoria contínua; Redução de perdas metálicas.

REDUCTION OF METAL LOSS IN THE HOT CUTTING SCISSORS PROCESS, IN THE ROLLING MILL AT THE ARCELORMITTAL ITAÚNA

Abstract

With this work we intend to demonstrate the applicability and efficacy of the Method for Analysis and Solution of Problems – MASP in the continuous improvement of quality. We'll show how the MASP helps in the increasing of the critique and analytic capacity of the company's professionals, for them to resolve the chronic problems and get the goals of challenger improvement. This simple and easy application method makes relatively quick results, beyond to facilitate the dissemination of knowledge in all the organization's spheres. We conclude MASP is a powerful and essential method to became the companies more competitive and able to face the imposed difficult of the globalizated world.

Key words: Method for Analysis and Solution of Problems; PDCA; continuous improvement; Reduction of metal loss

Contribuição técnica ao 48° Seminário de Laminação – Processos e Produtos Laminados e Revestidos, 24 a 27 de outubro de 2011, Santos, SP

² Analista de Assistência Técnica – ArcelorMittal Itaúna, especialização em Siderurgia ABM/UFOP

1 INTRODUÇÃO

1.1 A Realidade das Empresas

No mundo atual, caracterizado por rápidas e profundas mudanças nas áreas tecnológicas, econômicas e sociais, apenas as empresas que praticam a busca pela melhoria contínua encontram-se em posição realmente competitiva.

O gerenciamento consiste em atingir as metas necessárias à sobrevivência de uma organização e ao seu desenvolvimento. Isto é, uma meta é alcançada por meio do método gerencial.

Quanto mais informações forem agregadas à gestão, maiores as chances de se alcançar às metas. Neste contexto, podemos introduzir o MASP como o método que viabiliza a coleta, o processamento e a disposição da informação, de forma que o conhecimento assim gerado possa ser utilizado - por meio de ações gerenciais - para o alcance de metas. Portanto, é imediato perceber que a solução de problemas crônicos é fundamental para as empresas que desejam garantir sua sobrevivência a longo prazo.

1.2 Objetivos do Trabalho

Este trabalho tem como objetivo reduzir as perdas metálicas na tesoura de corte a quente da ArcelorMittal Itaúna reduzindo custos e tornando a empresa mais competitiva.

2 MATERIAL E MÉTODOS

Segundo Werkema,⁽¹⁾ o ciclo PDCA de melhorias consiste em uma seqüência de procedimentos lógicos baseada em fatos e dados, que objetiva localizar as causas fundamentais de um problema e posteriormente eliminá-las.

GERENCIAMENTO PELO PDCA E INTERVENÇÃO COM O MÉTODO PARA ANÁLISE E SOLUÇÃO DE PROBLEMAS (MASP)

CICLO PDCA	FLUXO	ETAPA	OBJETIVO		
D	ETAPA 1	IDENTIFICAÇÃO	DEFINIR CLARAMENTE O PROBLEMA E RECONHECER SUA IMPORTÂNCIA		
(DLANI)	ETAPA 2	OBSERVAÇÃO	INVESTIGAR AS CARACTERÍSTICAS ESPECÍFICAS DO PROBLEMA COM VISÃO AMPLA E SOB OS FATORES TEMPO, LOCAL, SINTOMA E TIPO		
(PLAN) (PLANEJAR)	ETAPA 3	ANÁLISE	INTEIRAR-SE COM A EQUIPE PARA DESCOBRIR AS CAUSAS FUNDAMENTAIS		
(DO) (EXECUTAR)	ETAPA 4	PLANO E AÇÃO	DESENVOLVER UM PLANO DE AÇÃO (5W2H) DIRECIONADO ÀS CAUSAS FUNDAMENTAIS E EXECUTAR ESTE PLANO, BLOQUEANDO AS MESMAS		
(CHECK) (VERIFICAR)	PLOQUEIO I OI		VERIFICAR SE O BLOQUEIO DAS CAUSAS FUNDAMENTAIS FOI EFETIVO, SE NÃO FOI EFETIVO, VOLTAR NA ETAPA 2 OBSERVAÇÃO		
A	ETAPA 6 NORMATIZAÇÃO		DOCUMENTAR AS AÇÕES TOMADAS PARA PREVENIR CONTRA REAPARECIMENTO DO PROBLEMA, TREINANDO PESSOAL ENVOLVIDO		
(ACTION) (AGIR)	ETAPA 7	CONCLUSÃO	RECAPITULAR O PROCESSO DE SOLUÇÃO DO PROBLEMA PARA TRABALHOS FUTUROS		

Figura 1. MASP com 7 etapas e fluxograma. (2)

2.1 Etapa de Identificação do Problema

Esta etapa foi dividida nas seguintes atividades:

2.1.1 Escolha do Problema

Partindo da definição de que problema é "um resultado indesejável de um processo", realizamos um *shake-down* de problemas com a Gerência de Produção de Laminados, com foco nas diretrizes de redução de custos definidas pela Gerência Geral da Usina. Como resultado deste *shake-down*, chegamos à conclusão que precisávamos aumentar nosso rendimento metálico. Estratificamos através de Gráfico de Pareto nossas perdas e verificamos que as perdas metálicas na tesoura de corte a quente representavam 19,2% do total (Figura 2). A partir daí definimos que nosso problema era "Alto índice de perdas metálicas na tesoura de corte a quente".

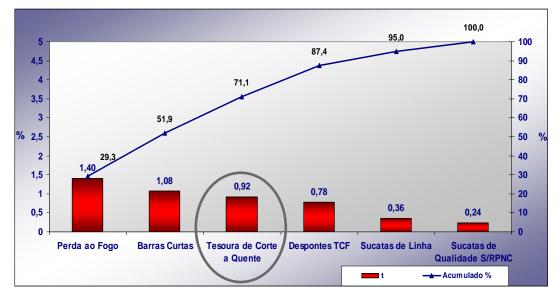


Figura 2. Pareto das perdas metálicas (2009).

2.1.2 Elaboração do histórico do problema

O gráfico sequencial mostra como foi a trajetória do problema no período histórico (Figura 3).

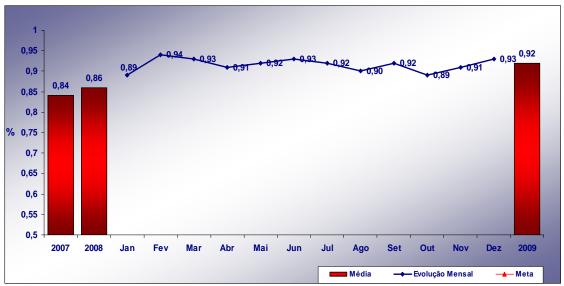


Figura 3. Histórico das perdas metálicas na tesoura de corte a quente (2007 a 2009).

2.1.3 Demonstração dos processos envolvidos

Através de fluxograma demonstramos os processos envolvidos e as potenciais atividades geradoras de perdas na tesoura de corte a quente (Figura 4).

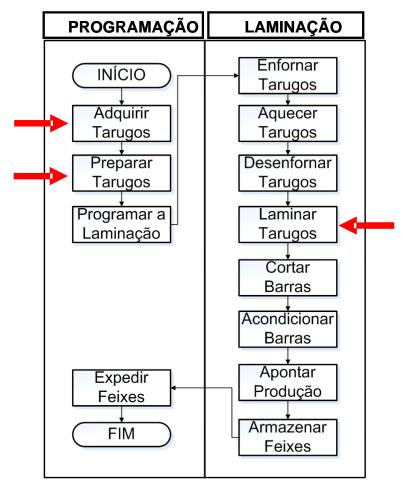


Figura 4. Fluxograma do processo.

2.1.4 Demonstração de perdas

Através de gráfico de Pareto (Figura 2) concluímos que as perdas metálicas na tesoura de corte a quente foram de 0,92% no ano de 2009, o que corresponde a uma perda anual de aproximadamente 773t.

2.1.5 Definição da meta

Com base na diretriz gerencial, na experiência e conhecimento da equipe definiu-se a seguinte meta: "Reduzir as perdas metálicas na tesoura de corte a quente de 0,92% para 0,79% até junho de 2010".

2.1.6 Estabelecimento de plano para a etapa de observação

Através de Plano de Ação – 5W2H (quadro1) a equipe definiu as atividades para iniciar a etapa de observação.

Quadro 1. Plano de ação para a etapa de observação.

O QUÊ	QUEM	QUANDO	
Observar o processo de corte de tarugos	Todos		
Observar o funcionamento da tesoura CV50	Mascarenhas e Marcos Rabelo		
Observar os despontes da tesoura CV50	Mascarenhas e Washington	04/01/2010 a 18/01/2010	
Observar a qualidade dos cortes dos			
tarugos	Márcio		
Observar o funcionamento dos maçaricos	Ricardo e Marcos Ribeiro		

2.2 Etapa de Observação do Problema

2.2.1 Descobrimento de características do problema por meio da observação As principais observações feitas no local de trabalho foram registradas no Quadro 2.

Quadro 2. Principais observações

Principais observações	Provável Causa Variação na velocidade de corte		
A velocidade de avanço da máquina de oxi-corte pode interferir na qualidade do corte do tarugo			
A temperatura de pré-aquecimento pode interferir na qualidade do corte do tarugo	Variação na temperatura de pré-aquecimento		
O uso de bico de maçarico desgastado pode interferir na qualidade do corte do tarugo	Uso de bico desgastado		
A regulagem dos maçaricos (oxigênio pré, oxigênio solenoide, GLP, ângulo das canetas) pode interferir na qualidade do corte do tarugo	Regulagem inadequada do equipamento de oxi-corte		
O tamanho dos despontes varia de acordo com o turno	Falta padronização da operação de desponte da tesoura de corte a quente		
O desponte maior que o necessário pode interferir no índice.	Esquecimento por parte do operador em ajustar o tamanho d desponte após o câmbio/troca de canal.		
A qualidade do corte do tarugo pode ser influenciada por trepidações da máquina de corte	Movimentação das canetas de corte		
Os defeitos observados nos despontes da tesoura de corte a quente podem estar relacionados à qualidade do corte do tarugo	Qualidade do corte do tarugo insatisfatória		
O desnivelamento dos trilhos da máquina de corte pode influenciar na qualidade do corte do tarugo	Desnivelamento dos trilhos		
O vazio/rechupe contido no tarugo pode influenciar na qualidade do corte	% de Carbono na faixa crítica, superaquecimento, taxa de extração de calor no molde irregular, ausência de agitador eletromagnético.		

2.3 Etapa de Análise do Problema

2.3.1 Definição das prováveis causas

As principais observações foram analisadas através de brainstorming e definidas as prováveis causas (Quadro 2)

2.3.2 Confirmação de prováveis causas (hipóteses)

As principais hipóteses foram julgadas para confirmação conforme Quadro 3.

Quadro 3. Confirmação das prováveis causas.

Principais observações	Provável Causa	Julgamento		
A velocidade de avanço da máquina de oxi-corte pode interferir na qualidade do corte	Variação na velocidade de corte	Hipótese confirmada: Observado in loco que cada turno praticava velocidades diferentes.		
A temperatura de pré-aquecimento pode interferir na qualidade do corte	Variação na temperatura de pré-aquecimento	Hipótese confirmada: Observado in loco que não existia padronização da atividade		
O uso de bico de maçarico desgastado pode interferir na qualidade do corte	Uso de bico desgastado	Hipótese confirmada: Observado in loco o uso de bicos desgastados		
A regulagem dos maçaricos (oxigênio pré, oxigênio solenoide, GLP, ângulo das canetas) pode interferir na qualidade do corte		Hipótese confirmada: Observado in loco que não existia padronização da atividade		
O tamanho dos despontes varia de acordo com o turno	Falta padronização da operação de desponte da CV50	Hipótese confirmada: Observado in loco que não existia padronização da atividade		
O desponte maior que o necessário pode interferir no índice.	Esquecimento por parte do operador em ajustar o tamanho do desponte após o câmbio/troca de canal.	Hipótese confirmada: Observado através de amostragem que por diversas vezes o despontes estava maior que o necessário		
A qualidade do corte pode ser influenciada po trepidações da máquina de corte	Movimentação das canetas de corte	Hipótese confirmada: Observado in loco a fixação inadequada das canetas de corte		
Os defeitos observados nos despontes da tesoura do corte a quente podem estar relacionados à qualidade do corte do tarugo		Hipótese confirmada: Comprovado através do experimento de número 1 que os defeitos encontrados nos despontes estão relacionados à qualidade do corte do tarugo		
Desnivelamento dos trilhos da máquina de corte pode influenciar na qualidade do corte.	Desnivelamento dos trilhos	Hipótese confirmada: Em levantamento realizado foram encontrados desníveis de até 65mm.		
O vazio/rechupe contido no tarugo pode influenciar na qualidade do corte	% de Carbono na faixa crítica, a superaquecimento, taxa de extração de calor no molde irregular, ausência de agitador eletromagnético.	Hipótese confirmada: Comprovado através do experimento de número 2 (ArcelorMittal Itaúna) e através do projeto "Melhoria da Qualidade Interna dos Tarugos destinados a Itaúna (ArcelorMittal Cariacica)		

2.4 Etapas de Plano e Ação

Foram definidas e implementadas as ações descritas no Quadro 4.

Quadro 4. Plano de ação

	O QUÊ - WHAT	POR QUE - WHY	ONDE - WHERE	QUEM - WHO	QUA	NDO - WHEN	COMO - HOW	QUANTO CUSTA - HOW MUCH	CONCLUÍDO EM
1	Contatar empresa especializada em oxi- corte	Obter as informações necessárias à padronização	Gerência Técnica	Marcio Rezende	Até	3/2/2010	Contatando o prestador de serviço e solicitando visita técnica	Zero	3/2/2010
2	Criar procedimento operacional para atividades críticas do oxi-corte (ângulo e altura da caneta, velocidade de avanco de corte, temperatura de pré-aquecimento, oxigênio solenoide, GLP, limpeza dos bicos, critérios de aceitação) e treinar a equipe.	Padronizar as atividades de corte de tarugos	Corte de Tarugos	Ricardo Luiz Teles	Até	10/2/2010	Analisando as atividades críticas e padronizando	Zero	26/3/2010
3	Padronizar os despontes (cabeça e cauda) da tesoura CV50 e treinar a equipe	Reduzir as perdas metálicas	Tesoura CV50	Marco Antônio Mascarenh as	Até	30/4/2010	Estudando a situação atual e analisando melhorias	Zero	7/5/2010
4	Implantar uma câmera na CV50	Permitir uma rápida avaliação do tamanho dos despontes	Tesoura CV50	Marcos Rabelo	Até	20/5/2010	Adquirindo os equipamentos necessários e providenciando a instalação	R\$5.000,00	20/5/2010
5	Discutir diariamente na reunião gerencial os resultados dos despontes na CV50	Permitir um acompanhame nto do item de controle	Sala de reuniões	Márcio Rezende	Até	3/5/2010	Acordando com gerente e supervisores	Zero	3/5/2010
6	Nivelar os trilhos do equipamento de oxi- corte	Fazer as correções necessárias para garantir a boa qualidade de corte	Oxi-corte	Marcos Guimarães	Até	17/2/2010	Analisando o desnível ao longo dos trilhos e colocando calços onde necessário.	Zero	11/2/2010
7	Melhorar a qualidade interna dos tarugos em relação à vazio.	Melhorar a qualidade do corte	Aciaria e lingotamento contínuo do fornecedor de tarugos	Marcio Rezende	Até	24/2/2010	Realizando estudos e alterações na composição química e nos processos de fabricação dos tarugos em conjunto com a equipe da ArcelorMittal Cariacica	Zero	26/3/2010

2.5 Verificação

2.5.1 Verificação de alcance da meta e continuidade do bloqueio

Através de análise do gráfico seqüencial podemos constatar que a meta de índice de perdas metálicas na tesoura de corte a quente foi alcançada e manteve-se em patamar satisfatório conforme Figura 5.

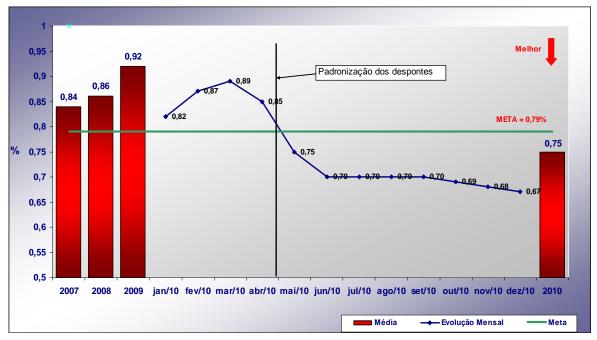


Figura 5. Verficação de resultados.

2.6 Normatização

2.6.1 Elaboração ou revisão de padrões

Foram elaborados ou revisados padrões conforme a seguir:

- Criação do procedimento de Operação da Máquina de Corte;
- Revisão no procedimento de Especificação Técnica de Tarugos;
- Revisão na Planilha de Cálculo de Comprimento de Tarugos; e
- Padronização dos Despontes na Tesoura CV50

2.6.2 Comunicação e treinamento

Foram ministrados treinamentos para todos os responsáveis pelas atividades envolvidas. Os registros de treinamentos encontram-se disponíveis na Gerência de Recursos Humanos e Qualidade

3 RESULTADOS

Conforme já relatado na etapa de verificação, com o desenvolvimento deste projeto o Índice de perdas metálicas na tesoura de corte a quente foi reduzido de 0,92% (média do período histórico) para 0,70% (média dos meses de maio a dezembro de 2010). Podemos concluir que a meta (0,79%) foi alcançada e que houve uma redução do índice em 23,9%. Podemos destacar ainda os seguintes resultados positivos quando comparamos o ano de 2009 com 2010:

- redução dos riscos de acidentes;
- redução das sucatas por defeitos relacionados ao tarugo de 40 peças/ano para 19 peças/ano (52,5%)
- aumento do rendimento metálico em 0,22%;
- aumento da disponibilidade do laminador em 6h27; e
- aumento da disponibilidade de produtos (183t/ano) para atendimento aos nossos clientes.

4 CONCLUSÃO

O projeto atendeu plenamente os objetivos propostos, pois possibilitou a redução das perdas metálicas, a redução dos custos com consequente aumento da competividade da empresa.

Permitiu também, através da interação entre equipes setoriais e externas, o desenvolvimento de características coletivas tais como: sinergia, disseminação do conhecimento, comprometimento, criatividade e motivação, que foram fundamentais para o sucesso.

Concluímos que para nos tornarmos profissionais capacitados, devemos adotar uma nova mentalidade e postura diante dos problemas e desafios que nos são apresentados; vislumbrando uma nova visão estratégica voltada para as partes interessadas, com foco em segurança e resultados, pois somente assim cresceremos profissionalmente e estaremos preparados para enfrentar as dificuldades e competitividade do mundo globalizado.

REFERÊNCIAS

- 1 WERKEMA, M.C.C. Ferramentas estatísticas básicas para o gerenciamento de processos. Belo Horizonte, MG: Fundação Crhistiano Ottoni, Escola de Engenharia da UFMG, 1995.
- 2 SANTOS, M.B. Mudanças organizacionais: técnicas e métodos para a inovação. Belo Horizonte: Inovart, 2004.

BIBLIOGRAFIA

- 1 CAMPOS, VICENTE FALCONI,1940, TQC: Controle da Qualidade Total (no estilo japonês) / Vicente Falconi Campos. Belo Horizonte, MG: Fundação Christiano Ottoni, Escola de Engenharia da UFMG, 1992 (Rio de Janeiro: Bloch Ed.)
- 2 CAMPOS, VICENTE FALCONI, 1940, Gerenciamento da rotina do trabalho do dia-a-dia / Vicente Falconi Campos. Belo Horizonte, MG: Editora de Desenvolvimento Gerencial, 2001.
- 3 CAMPOS, VICENTE FALCONI, 1940, Gerenciamento pelas diretrizes / Vicente Falconi Campos. Belo Horizonte, MG: Fundação Christiano Ottoni, Escola de Engenharia da UFMG, 1996.
- 4 AGUIAR, SILVIO, Integração das Ferramentas da Qualidade ao PDCA e ao Programa Seis Sigma / Silvio Aguiar. Belo Horizonte: Editora de Desenvolvimento Gerencial, 2002.