RESISTÊNCIA A OXIDAÇÃO DE CERÂMICAS DE CARBETO DE SILÍCIO SINTERIZADAS POR FASE LÍQUIDA¹

Claudinei dos Santos² Kurt Strecker³ Marcelo José Bondioli⁴

Resumo

Neste trabalho foram preparados materiais cerâmicos à base de carbeto de silício, sinterizados com a adição de AIN-Y₂O₃. Quatro composições foram obtidas, variando-se as quantidades e teores dos aditivos. Ensaios de oxidação foram realizados em temperaturas variadas (1200, 1300 e 1400°C), fixando o tempo de exposição em 120h. Os resultados foram relacionados com a densificação e composição das amostras. A partir dos resultados do ganho de massa em função da área superficial, obtiveram-se os valores do coeficiente de crescimento parabólico da taxa de oxidação (k_p). Dos resultados obtidos, observou-se que as composições apresentam um comportamento parabólico da taxa de oxidação, em todas as composições estudadas. Observou-se ainda um aumento efetivo da oxidação em função do grau de porosidade em algumas amostras. Por outro lado, a estequiometria utilizada na composição dos aditivos influenciou os resultados. Aditivos com maior teor de Y₂O₃ em relação ao teor de AIN apresentaram melhores resultados com menores taxas de oxidação.

Palavras-chave: Materiais cerâmicos; SiC; Oxidação.

OXIDATION RESISTANCE OF A LIQUID PHASE SINTERED SILICON CARBIDE

Abstract

In this work, silicon carbide ceramics were developed by liquid phase sintering using AIN-Y₂O₃ as additive. Four compositions were obtained using β -SiC powders and different stoichiometry and contents of AIN-Y₂O₃. The oxidation behavior was investigated and related to the densification and additive-content and -composition. Samples were submitted to the tests at 1200, 1300 or 1400 °C, in air for 120 hours. Weight gain of the samples is plotted as function of the exposure time, obtaining the evolution of the oxidation on the surface of the samples. Based on the results, the parabolic oxidation content (k_p) was determined. The results indicate that the samples present parabolic behavior in all conditions. Furthermore, a relationship between oxidation temperature was determined.

Key words: Ceramic materials; SiC; Oxidation.

¹ Contribuição técnica ao 62° Congresso Anual da ABM – Internacional, 23 a 27 de julho de 2007, Vitória – ES, Brasil.

² Professor do Departamento de Engenharia de Materiais – Escola de Engenharia de Lorena – DEMAR-EEL-USP

³ Professor do Departamento de Engenharia Mecânica – Universidade Federal de São João del'Rei – UFSJ.

⁴ Doutor em Engenharia de Materiais – Escola de Engenharia de Lorena – DEMAR-EEL-USP

1 INTRODUÇÃO

O carbeto de silício é um material cerâmico sintético que apresenta densidade relativamente baixa, alta dureza, elevada estabilidade térmica e boa condutividade térmica, resultando em boa resistência ao desgaste e ao choque térmico. Devido a essas propriedades, materiais à base de carbeto de silício são amplamente utilizadas como abrasivos e refratários. Normalmente, o SiC é sinterizado via fase sólida com pequenas adições de C, Al C, AlN etc. Normalmente, o SiC é sinterizado via fase sólida com pequenas adições de carbono e boro ou alumínio e seus compostos como por exemplo B4C, Al₄C, AlN etc.^[1-3] Estes tipos de aditivos têm a desvantagem que em pequenas quantidades, em torno de 1 a 2% em peso, dificultam a preparação de misturas homogêneas e densificação. Um método alternativo à sinterizaram SiC a altas densidades relativas, via fase líquida, usando misturas de Al₂O₃ e Y₂O₃ como aditivos.

Desde então nota-se um interesse crescente para o SiC sinterizado via fase líquida, porque esse tipo de material oferece a possibilidade de alcançar uma maior tenacidade à fratura via controle da microestrutura.^[5-8] Nos materiais cerâmicos a base de carbeto de silício sinterizado via fase líquida há a formação de uma fase amorfa, entre os grãos de SiC, resultante da reação entre as partículas de SiC e a fase líquida formada pelos aditivos durante a sinterização. Esta fase amorfa apresenta um efeito significativo nas propriedades mecânicas a altas temperaturas, que pode ser contornado através de dois métodos efetivos: o aumento de refratabilidade da fase de contornos de grãos e a promoção de uma cristalização da fase amorfa.^[9]

Rixecker et al.^[10] investigaram a sinterização normal de SiC com oxinitretos como aditivos, partindo de misturas de AIN e Y_2O_3 . Eles reportaram um aumento significativo da resistência mecânica após tratamento de oxidação a 1200 °C durante 10 minutos, devido a formação de fases cristalinas na superfície de um volume específico maior do que das fases intergranulares, introduzindo dessa maneira tensões de compressão na superfície, resultando em resistência à fratura por flexão superior a 1000 MPa.

Este trabalho visa investigar a resistência à oxidação de um material cerâmico a base de SiC sinterizado por fase líquida com a adição de Y_2O_3 e AIN, em função da variação quantitativa do sistema de aditivos utilizado.

2 MATERIAIS E MÉTODOS

2.1 Processamento

Foram utilizadas como matérias primas das misturas, β -SiC (H.C. Starck, BF-12), α -SiC (Lonza, UF15), AIN (H.C. Starck, tipo C) e Y₂O₃ (H.C. Starck, tipo C), conforme proporções apresentadas na Tabela 1.

Designação	β -SiC	α-SiC	AIN	Y ₂ O ₃		
S10Y20	89	1	4,21	5,79		
S20Y20	79	1	8,42	11,58		
S10Y60	89	1	1,08	8,92		
S20Y60	79	1	2,16	17,84		

Tabela 1 – Composição das misturas de pós (em %peso)

A homogeneização das misturas foi realizada em moinho de atrito, com álcool isopropílico, utilizando jarro e bolas de Si₃N₄ sinterizado, com velocidade de 1000 rpm durante 4 horas. Após a mistura, o material foi passado em peneira ABNT 230, para separação das bolas e da suspensão cerâmica. Logo após, a suspensão foi seca em evaporador rotativo a 80 °C. O material seco foi posteriormente passado em peneira ABNT 40 para desaglomeração do material proveniente da secagem e em seguida, caracterizados. A sinterização das amostras foi realizada em um forno de resistência de grafite, Thermal Technology Inc., tipo 1000-4560-FP20. As amostras foram colocadas em um cadinho de grafite, utilizando-se camas de sinterização, de pós com composição idêntica à das amostras. O ciclo de sinterização utilizado consistiu em aquecimento sob vácuo, até 1000 °C (com uma de aquecimento de 20 C/min), Nesse instante é injetado 0,1 MPa de taxa nitrogênio, seguido por um aquecimento até 1600 °C com uma isoterma de 30 min. Ao final deste estágio, a pressão foi aumentada para 0,2 MPa e finalmente as amostras foram aquecidas, com uma taxa de aquecimento de 10 °C/min até a temperatura de 2080 °C, com um patamar de sinterização de 1h.

2.2 Caracterização

A densidade das amostras sinterizadas foi determinada pelo método de Arquimedes em água destilada, de acordo com a Equação (1):

$$\rho_s = \frac{m_d}{m_d - m_i} \rho_{H2O} \tag{1}$$

onde ρ_s representa a densidade da amostra sinterizada, m_d a massa da amostra seca, m_i a massa da amostra em água e ρ_{H2O} a densidade da água. A variação de massa das amostras durante a sinterização foi determinada pela diferença da massa das amostras antes e após a sinterização.

A dureza Vickers foi determinada pela aplicação de uma carga de 10 kg por 30s. A dureza Vickers HV10 foi então calculada, utilizando-se a equação (2):

$$HV = \frac{1,8544P}{d^2}$$
(2)

onde HV representa a dureza Vickers, P a carga aplicada e d o diâmetro da marca de indentação.

A tenacidade a fratura foi determinada pelo método da indentação Vickers, através do comprimento das trincas surgindo dos cantos da impressão do indentador, de acordo com a equação 3:⁽¹¹⁾

$$K_{IC} = 0,018HV\sqrt{a} \left(\frac{E}{HV}\right)^{0,4} \left(\frac{c}{a} - 1\right)^{0,5}$$
(3)

onde K_{IC} representa a tenacidade a fratura, HV a dureza Vickers, a é a metade do diâmetro de indentação, c é o comprimento da trinca e E o módulo de elasticidade (400 MPa, para LPS-SiC). A equação (C) é válida se a razão c/a < 3.5.⁽¹¹⁾

2.3 Ensaios de Oxidação

Os ensaios de oxidação foram realizados em um aparato, consistindo de um forno elétrico horizontal, trabalhando com temperatura máxima de 1600 °C, e no interior do qual foi inserido um tubo de Al_2O_3 . Dentro desse tubo, foi inserido um cadinho (navícula) de Al_2O_3 , no interior do qual foram posicionados dois fios finos de uma liga Fe-Cr-Al (Kanthal A1). Os corpos-de-prova foram posicionados sobre esses fios de Kanthal A1 e em seguida o cadinho foi inserido no tubo. Os ensaios foram realizados em três temperaturas, 1200, 1300 e 1400 °C, sendo utilizado um corpo-de-prova para cada composição e temperatura. Todos os ensaios foram encerrados após 120 horas.

Periodicamente a massa dos corpos-de-prova foi medida, utilizando-se uma balança analítica de alta precisão, avaliando o ganho de massa em função do tempo de teste. Para isso, o tubo foi aberto, retirando o cadinho que imediatamente foi colocado em um jarro fechado de vidro, dentro do qual ele resfria. Em seguida, foi feita a pesagem apenas dos corpos de prova. Após este processo, que durou em torno de cinco minutos, os cadinhos foram novamente inseridos no interior do tubo, fechando-se sua abertura.

Os resultados de oxidação foram plotados em função do ganho de massa x tempo (em horas), determinando assim o tipo de comportamento de oxidação e as taxas de oxidação dos materiais.

3 RESULTADOS E DISCUSSÃO

3.1 Sinterização e Propriedades Mecânicas

As Tabelas 2 e 3 apresentam respectivamente, os resultados de massa específica após a sinterização (ρ_{sint}), densidade relativa (DR), variação de massa (Δ_m), e os resultados de dureza Vickers e tenacidade à fratura, das amostras sinterizadas

Tabela 2 - Massa específica após a sinterização (ρ_{sint}), densidade relativa (DR) e variação de massa (Δ_m), das amost<u>ras sinterizadas</u>.

Amostra	ρ _{sint} (g/cm²)	DR (%)	Δ _m (%)
S10Y20	3,048±0,039	92,73±1,21	-3,26±0,17
S20Y20	3,220±0,027	95,85±0,82	-3,06±0,74
S10Y60	2,832±0,072	84,29±2,13	-1,51±0,71
S20Y60	3,384±0,072	98,41±2,10	-1,76±0,15

Tabela 3. Densidad<u>e relativa, dureza (HV) [GPa] e tenacidade a fratura (K_{ic}) [MPam^{1/2}]</u>

Amostra	HV (GPa)	K _{ic} (MPam ^{1/2})
S10Y20	18,99±0,92	4,5±0,2
S20Y20	16,58±1,01	5,1±0,5
S10Y60	11,37±0,68	-
S20Y60	22,10±0,16	5,2±0,5

Observa-se, de acordo com os resultados apresentados pela Tabela 2 que as amostras com menor teor de Y_2O_3 em relação ao teor de AIN, composições S10Y20 e S20Y20, apresentaram maiores perdas de massa (Δm -) durante a sinterização, do que as amostras nas quais suas composições apresentam maior teor de Y_2O_3 em relação ao AIN (S10Y60 e S20Y60). Este comportamento pode ser atribuído ao fato

da proporção de aditivos utilizado neste caso equivaler a proporção 80% AIN / 20% Y_2O_3 (em %mol), de acordo com o diagrama de fases do sistema AIN- Y_2O_3 .⁽¹²⁾ Nesta proporção há a formação de AIN + vapor (rico em AIN), na temperatura de sinterização de 2080 °C, o que possivelmente influenciou a perda de massa das amostras, devido à evaporação de parte dos aditivos.

Comparando-se os resultados de dureza Vickers e tenacidade à fratura, apresentados na Tabela 3, para as amostras S10Y20 e S20Y20, observa-se que o aumento da quantidade de aditivos (de 10 para 20%) resulta em uma diminuição da dureza Vickers (fase intergranular menos dura que a matriz de SiC) e assim em um aumento da tenacidade à fratura (maior densificação). Contudo, tal comparação não foi possível nas amostras S10Y60 e S20Y60, devido à alta porosidade da amostra S10Y60, ocasionada pela sua baixa densificação, conforme resultado mostrado na Tabela 3, o que impossibilitou a medição de sua tenacidade à fratura.

A amostra S10Y20, apesar de ter uma dureza Vickers superior ao da amostra S20Y20, possui tenacidade a fratura inferior. Conforme observado na Tabela 2, ambas possuem variações de massa semelhantes, e densidades relativas diferentes. Mas por apresentar uma densidade relativa maior, as amostras S20Y20 possuem tenacidade a fratura (K_{IC}) maior que o da amostra S10Y20. Por outro lado, a dureza é reduzida na amostra S20Y20, fato este que pode ser atribuído a uma maior quantidade de aditivos utilizada (20%), o que corresponde a uma grande quantidade de fase intergranular, notadamente de menor dureza que a matriz de SiC. Isso leva a uma redução global da dureza na amostra S20Y20, quando comparadas à amostra S10Y20.

3.2 Ensaios de Oxidação

As Figuras 1 (a) – (c) mostram os resultados dos ensaios de oxidação correlacionando o ganho de massa por unidade de área $(\Delta m/A_0)$ com o tempo (t). Os valores de ganho de massa por unidade de área após o término dos ensaios (120h) estão sumarizados na Tabela 4.

Figura 1 – Ganho de área por massa em função do tempo e temperatura. (a) 1200 °C, (b) 1300 °C e (c) 1400 °C.

Amostra	Ganho de massa após 120h [mg/cm²]				
	1200 °C	1300 °C	1400 °C		
S10Y20	0,25	0,72	4,25		
S20Y20	0,22	3,52	9,73		
S10Y60	23,08	9,35	4,30		
S20Y60	0,56	0,89	2,37		

Tabela 4 – Ganho de massa por unidade de área após 120h, em função da temperatura do ensaio.

Comparando-se os resultados do ganho de massa por unidade de área das amostras S10Y20 e S20Y20, cuja composição possui maior teor de AIN em relação ao teor de Y_2O_3 em seus sistemas de aditivos, sumarizados na Tabela 4, observa-se que ao aumentar a quantidade de aditivos na mistura (de 10%, S10Y20, para 20%, S20Y20) houve um aumento do ganho de massa por unidade de área, em todas as temperaturas estudadas. Observa-se que os valores de densidade relativa das duas amostras são próximos, não sendo possível correlacionar os resultados dos ensaios de oxidação com a densificação das amostras. Neste caso, é mais provável que o fator determinante na oxidação seja a quantidade de aditivos utilizada.

A Tabela 5 lista os valores do coeficiente de crescimento parabólico da taxa de oxidação (k_p), obtidos através do ajuste linear das curvas apresentadas na Figura 1, conforme Figuras 2 (a) – (c), em função da temperatura de oxidação.

Tabela 5 – Coeficiente de crescimento parabólico da taxa de oxidação (k_p) em função da temperatura do ensaio.

Figura 2 – Quadrado do ganho de massa em função do tempo, durante os ensaios de oxidação. (a) 1200 °C, (b) 1300 °C, (c) 1400 °C.

Baseado nos ajustes lineares apresentados nas Figuras 2 (a)-(c), observa-se que a cinética de oxidação, para todas as amostras é do tipo parabólico.⁽¹³⁻¹⁵⁾ Dessa forma, o comportamento à oxidação é governado pela equação parabólica (4):

$$\Delta W^2 = k_p t \tag{4}$$

onde ΔW é o ganho de massa por unidade de área exposta (em mg/cm²), em um determinado tempo (t) e k_p é o coeficiente de crescimento parabólico da taxa de oxidação (em mg²cm⁻⁴s⁻¹), dependente da temperatura.

Conforme as Figuras 2 (a) e (c), nota-se que nas amostras S10Y60 oxidada a 1200 e 1300 °C, S20Y60 oxidada a 1200 °C e S20Y20 oxidada a 1400 °C, há o indício da atuação de dois mecanismos de oxidação distintos. Em um primeiro intervalo de

tempo, ocorre um aumento extensivo da oxidação, de caráter não parabólico, influenciado por uma não uniformidade da camada oxidada, formada na superfície do material, que por sua vez poderá ser influenciado por defeitos superficiais, possivelmente presentes no início do processo de oxidação. Além disso, a reação de O_2 atmosférico nos contornos e na matriz possuem taxas diferentes, que somente se estabilizam quando uma camada uniforme é formada na superfície do material. Uma vez formada uma camada oxidada uniforme na superfície das amostras, é observado,em todas as temperaturas, que o comportamento parabólico é predominante até o fim dos ensaios.⁽¹⁶⁾

Comparando-se o valor do coeficiente de crescimento parabólico da taxa de oxidação (k_p) das amostras S10Y20 (10% de aditivos e menor teor de Y₂O₃ em relação ao AIN), com o das amostras S20Y60 (20% de aditivos e maior teor de Y₂O₃ em relação ao AIN), de acordo com a Tabela 5, observa-se que a 1200 °C e 1300 °C, as amostras com menor teor de Y₂O₃ em relação ao AIN (S10Y20) apresentam k_p inferior, enquanto a 1400 °C, o valor do coeficiente de crescimento parabólico da taxa de oxidação (k_p) destas amostras é cerca de 3 vezes maior do que a das amostras com maior teor de Y₂O₃ em relação ao AIN.

Comparando-se os valores apresentados na Tabela 5 pelas amostras que possuem 20% em peso de aditivos, observa-se que o coeficiente de crescimento parabólico da taxa de oxidação (k_p) das amostras com menor teor de Y_2O_3 em relação ao AIN (S20Y20), com o das amostras com 10% de aditivos e menor teor de Y_2O_3 em relação ao AIN (S20Y60), é menor, na temperatura de 1200 °C. Porém, com o aumento da temperatura, o coeficiente de crescimento parabólico da taxa de oxidação (k_p) também aumenta, de modo que a 1400 °C, o k_p da amostra S20Y20 é quase 17x maior do que o da amostra S20Y60.

As observações citadas anteriormente indicam que em temperaturas mais elevadas (1400 $^{\circ}$ C), fases intergranulares com maior teor de Y₂O₃ com relação ao AIN, são mais resistentes à oxidação que as fases intergranulares com menor teor de Y₂O₃, mesmo que o percentual de fase intergranular seja maior.

A Figura 3 mostra os valores do coeficiente de crescimento parabólico da taxa de oxidação (k_p) plotados em função da temperatura de ensaio.

Figura 3 – Evolução do coeficiente de crescimento parabólico da taxa de oxidação (k_p), em função da temperatura do ensaio.

De acordo com a Figura 3, pode ser observado que ao correlacionar o coeficiente de crescimento parabólico da taxa de oxidação (k_p) em função da temperatura, as

mesmas se ajustam perfeitamente, com equações exponenciais aparentadas. Desta maneira torna-se possível estimar valores do coeficiente de crescimento parabólico da taxa de oxidação (kp) em função da variação de temperatura de ensaio, em amostras submetidas a temperaturas diferentes das utilizadas nesses testes.

4 CONCLUSÕES

De acordo com os resultados obtidos, pode-se concluir que:

1) As cerâmicas de SiC, sinterizado via fase líquida com a adição de Y₂O₃/AIN apresentam comportamento parabólico da cinética de oxidação.

2) A densificação e as propriedades mecânicas influenciam na resistência a oxidação em temperaturas elevadas (acima de 1400°C). Em temperatura menores (abaixo de 1400°C), a quantidade e teor de aditivos e a fase intergranular presente são fatores preponderantes na resistência a oxidação.

3) Ocorre um aumento do coeficiente de crescimento parabólico da taxa de oxidação (k_p) em função do aumento da temperatura de oxidação, havendo uma tendência da redução da resistência à oxidação, a medida que aumenta a temperatura dos ensaios, com o aumento do teor de AIN na composição das misturas.

Agradecimentos

O autor Claudinei dos Santos agradece a FAPESP pelo apoio financeiro através do processo FAPESP 04/04386-1

Marcelo José Bondioli agradece ao CAPES pela bolsa de estudo concedida.

REFERÊNCIAS

- PROCHAZKA, S. Sintering of silicon carbide. In: Burke, J.J., Gorum, A.E., Katz, R. M. (Ed.), Proceedings of the Conference on Ceramics for high performance applications, Hyanuis, MA, 1973. Brook Hill Publishing Co., 1975. p.7-13.
- 2 PROCHAZKA, S. The role of boron and carbon in the sintering of silicon carbide. In: Special Ceramics 6, British Ceramic Res. Assoc., Stoke-on-Trent, 1975. p.171-181.
- 3 JOHNSON, C. A., PROCHAZKA, Microstructures of sintered SiC. In: Fulrath S., Park (Ed.) Ceramic Microstructures '76, 1977. p.366-378.
- 4 OMORI, M, TAKEI, H. Pressureless sintering of SiC. J. Am. Ceram. Soc., 65(6):C-92,1982
- 5 PADTURE, N.P.. In situ-toughened Silicon Carbide. J. Am. Ceram. Soc., 77(2):519-523, 1994.
- 6 KIM, J.-Y, KIM, Y.-W, MITOMO, M, ZHAN, G.-D., LEE, J-G. Microstructure and mechanical properties of a-Silicon Carbide sintered with Yttrium-Aluminium Garnet and Silica. J. Am. Ceram. Soc.,82(2):441-444, 1999.
- 7 NADER, M., ALDINGER, F., HOFFMANN, M.J.. Influence of the -SiC phase transformation on microstructural development and mechanical properties of liquid phase sintered Silicon Carbide. J. Mat. Sci., 34:1197-1204, 1999. to phase
- 8 ZHAN, G-D., XIE, R-J., MITOMO, M., KIM, Y.-W.. Effect of transformation on microstructural development and mechanical properties of fine-grained Silicon Carbide ceramics. J. Am. Ceram. Soc., 84(5):945-950, 2001.

- 9 GUO, S., HIROSAKI, N., TANAKA, H., YAMAMOTO, Y., NISHIMURA, T. Oxidation behaviour of liquid-phase sintered SiC with AIN and Er 2O3 additives between 1200 C and 1400 C. J. Eur. Cer. Soc.,23:2023-2029, 2003.
- 10 RIXECKER, G., WIEDMANN, ROSINUS, A., ALDINGER, F.. High-temperature effects in the fracture mechanical behaviour of Silicon Carbide liquid-phase sintered with AIN- Y2O3 additives. J. Eur. Cer. Soc.,21(8):1013-1019, 2001.
- 11 NIIHARA, K., MORENA, R, HASSELMANN, D.P.H.. Evaluation of KIC of brittle solids by the indentation method with low crack-to-indent ratios. J. Mat. Sci. Letters, 1(13-16) 1982.
- 12 JEUTTER, A Untersuchung der Phasenbeziehung im System Aluminiumnitrid Yttriumoxid, Tese de Doutorado, Universität Stuttgart, 1993.
- 13 LIU,D.-M.Oxidation ofpolycristalline-silicon carbide ceramic. Ceramics International, v.23,p.425-36,1997.
- 14 CHOI,H.; LEE,J.; KIM,Y. Oxidation behavior of liquid-phase sintered silicon carbide with aluminum nitride and rare-earth oxides. J. Am. Ceram. Soc.,v.85, n.9, p.2281 2286, 2002.
- 15 BISWAS,K.; RIXECKER,G.; ALDINGER,F. Improved high temperature properties of SiC-ceramics sintered with Lu₂O₃ -containing additives. Journal of the European Ceramic Society, v.23, p.1099-1104, 2003.
- 16 KOFSTAD, P. High Temperature Corrosion; Elsevier Applied Science, 1988, 558p.