

RESISTÊNCIA À CORROSÃO DE AÇO PATINÁVEL EXPOSTO POR 36 MESES EM ATMOSFERA MARINHA*

Adalberto Calazans de Souza Júnior¹ Viviane Azambuja Favre-Nicolin²

Resumo

Os aços patináveis são oriundos dos aços que continham Cu no início do século XX. São aços com baixo teor de C e resistência à corrosão incrementada quando acrescidos (até 3 a 5 %) de elementos como Cu, P, Si, Cr e Ni e, adicionalmente quando submetidos a condições climáticas específicas com ciclos de molhamento e secagem. Por meio deste estudo analisou-se o comportamento eletroquímico de um aço patinável (aço B) exposto durante 36 meses em ambiente marinho, comparando-se com um aço carbono comum (aço A), por meio do levantamento de curvas potenciodinâmicas com eletrólito de NaCl 3,5%, que simula a atmosfera marinha, e eletrólito de Na₂SO₄ 0,5M, que simula a atmosfera industrial. A pátina formada na superfície da amostra do aço B apresentou desempenho eficaz na proteção à corrosão do material em relação à amostra sem pátina desse mesmo aço, diminuindo a densidade de corrente de troca em 88,54%, aumentando o potencial de corrosão na solução de NaCl 3,5%, em 26,29% na solução de NaCl 3,5% e aumentando-o em 17,1% na solução de Na₂SO₄ 0,5M.

Palavras-chave: Aços patináveis; Curva de polarização; Resistência à corrosão.

CORROSION BEHAVIOUR OF WEATHERING STEEL EXPOSED FOR 36 MONTHS IN MARINE ATMOSPHERE

Abstract

Weathering steels come from steels containing Cu at the beginning of the 20th century. They are steels with low C content and increased corrosion resistance due addition (up to 3 to 5%) of elements such Cu, P, Si, Cr and Ni, that are subjected to specific climatic conditions with wet/dry cycles. Through this study, it was analysed the electrochemical behaviour of a weathering steel (steel B) exposed for 36 months in marine atmosphere, by comparison with carbon steel (steel A), using potenciodynamic polarization tests with 3.5% NaCl electrolyte and 0,5M Na₂SO₄ electrolyte. The patina formed in the sample of weathering steel presented a higher performance in the corrosion behaviour in relation to the sample without patina, reducing the density current in 88.54% in the NaCl solution, increasing the corrosion potential in 26.29% in the NaCl solution and increasing by 17.1% in the 0.5 M Na₂SO₄ solution.

Keywords: Weathering steels; Potentiodynamic Polarization; Corrosion Resistance.

¹ Mestrando em Engenharia Metalúrgica e de Materiais/Engenheiro Metalúrgico, Instituto Federal do Espírito Santo, Vitória, Espírito Santo, Brasil.

² Doutora em Engenharia Metalúrgica, Professora titular, Instituto Federal do Espírito Santo, Vitória, Espírito Santo, Brasil.

1 INTRODUÇÃO

Os aços resistentes à corrosão atmosférica são aços que possuem adições de até 3 a 5% de elementos de liga tais como Cu, P, Si, Cr e Ni e possuem como característica principal a formação de uma camada de óxido protetiva chamada pátina. Essa camada de óxido é distinguida daquela formada em aços carbono comuns pelo fato de ser densa e aderente. A pátina retarda a progressão da corrosão, ou seja, diminui a taxa de corrosão do material, consequentemente reduz sua perda mássica. Esses aços, conhecidos como aços patináveis, são utilizados em estruturas de aço como, por exemplo, em pontes. A pátina formada permite que esses aços possam ser utilizados durante décadas com poucas perdas em sua espessura [1; 2; 3; 4; 5].

Entretanto, a pátina não se forma sob quaisquer circunstâncias. Essa camada de óxido origina-se a partir da ação do intemperismo, envolvendo ciclos de molhamento e secagem do material. É necessário que se conheça o clima do local de aplicação desse tipo de aço, pois a composição ideal do aço patinável depende dos parâmetros ambientais dessa região [6; 7].

Dentre as técnicas experimentais para se designar o potencial de corrosão destacase o ensaio de polarização. O potencial de corrosão é importante para a análise de processos corrosivos e para o monitoramento de sistemas de proteção anticorrosiva [8].

O principal objetivo deste trabalho é investigar a resistência à corrosão de um aço patinável, denominado neste trabalho como aço B, exposto durante 36 meses em ambiente predominantemente marinho, comparando-o consigo mesmo (retirada a camada de pátina formada, por meio de lixamento e polimento) e com uma referência básica, a saber: aço ao carbono, denominado como aço A. Tal investigação foi conduzida utilizando-se de técnica eletroquímica de polarização potenciodinâmica, com eletrólito de NaCl 3,5%, simulando assim o meio marinho, e com eletrólito de Na2SO₄ 0,5M, simulando o meio industrial.

2 DESENVOLVIMENTO

Os materiais utilizados neste estudo são um aço patinável (aço B) e, para efeito de comparação, um aço carbono comum (aço A). As especificações químicas do aço A e B usados no presente estudo estão explicitadas na tabela 1. Os aços deste trabalho são provenientes de fabricação industrial, não tendo, portanto, nenhum tratamento especial para a realização dos ensaios deste estudo. As quantidades de outros elementos químicos presentes nessas amostras não são significativas para o estudo em questão.

Tabela T. Composição química dos aços utilizados no estudo							
Elemento de liga (% em peso)	С	Si	Mn	S	Р	Cu + Ni + Cr	
Aço A	0,1	< 0,10	< 0,60	<0,010	<0,015	<0,030	
Aço B	0,05	0,53	1,5	<0,010	<0,08	<0,8	

Tabela 1. Composição química dos aços utilizados no estudo

2.1 Caracterização Metalográfica

A análise metalográfica foi realizada no microscópio óptico (MO) Leica, modelo DML, com aumento de 500 vezes. Foram obtidas as micrografias ilustradas pela figura 1.

A partir da figura 1 é possível observar que a amostra de aço A possui matriz de ferrita e perlita, enquanto a amostra de aço B possui matriz ferrítica com grãos muito finos.

Figura 1. Imagens das amostras analisadas com aumento de 500x no microscópio óptico

A fim de se caracterizar a camada de pátina formada e as matrizes dos aços estudados, foram realizadas imagens em microscópio eletrônico de varredura (MEV) Jeol com sistema FEG (*Field Emission Gun*), modelo GSM 7100F, e aumento de 10.000 vezes. Para revelar as microestruturas das amostras foi utilizado o ataque com Nital 2%. As imagens obtidas estão mostradas na figura 2. Examinando a figura 2, pode-se notar, na amostra do aço A, que a sua matriz é ferrítica e perlítica, enquanto a amostra de aço B possui uma matriz ferrítica com carbonetos distribuídos em toda sua microestrutura.

Figura 2. Imagens das amostras analisadas com aumento de 10.000x no MEV

Para caracterizar a camada de pátina propriamente dita, foi realizada a análise em MEV. Com o uso da imagem obtida no MEV e realizando-se espectroscopia de energia dispersiva (EDS), foi possível obter espectros de análise química das regiões externa e interna da camada de pátina. A imagem obtida com a análise microscópica está ilustrada pela figura 3 e os espectros das regiões externa e interna da pátina para a análise das diferenças de composição química entre essas regiões é mostrada na figura 4. Analisando-se a figura 3, pode-se notar que a camada de pátina formada apresenta uma sutil diferença de colocação entre a sua região interna e externa. Além disso, essa camada de óxido não apresenta porosidade, sendo compacta e homogênea, conforme a literatura previa em trabalhos com aços contendo Cu, Ni e Cr [9]. A partir da figura 4, pode-se notar que, na camada externa, há, além de Fe e O, os elementos Mn e Cl [10]. Já a camada

interna da pátina teve o enriquecimento de Mn, Cr e Si, conforme também previsto pela literatura [10; 11]. O equipamento de corte (*cut-off*) pode ter gerado trincas na pátina formada durante a preparação do corpo de prova para a análise em MEV.

Figura 3. Camada de óxido (pátina) formada durante 36 meses de exposição em atmosfera marinha no aço B

Figura 4. Espectro 1 e 2 realizados na pátina da amostra do aço B

Para a análise do tamanho de grão e contagem de fase utilizou-se o *software* LAS (Leica Application Suite) v 4.1. Aferiu-se o tamanho de grão e mensurou-se a fração de perlita de cada amostra. Esses resultados estão mostrados na tabela 2. A partir da tabela 2 é possível notar que a amostra de aço A possui o maior tamanho de grão, enquanto a amostra de aço B possui o menor tamanho de grão e possui apenas traços de perlita.

Tabela 2. Valores dos potenciais de corrosão (E _{Corr}) e densidades de corrente de troca (I _{Corr})					
Aço	Tamanho de grão	Área de Perlita (%)			
Aço A	9,2 µm	7,3			
Aço B	13,5 µm	1,3			

O ensaio de microdureza Vickers foi realizado no microdurômetro Shimadzu modelo HMV-G com uma carga de 200 gf. Para fins de representatividade os ensaios foram efetuados três vezes em áreas aleatórias desses corpos de prova. Os valores de microdureza Vickers foram obtidos a partir da média dos três ensaios realizados em cada amostra. Os valores de microdureza obtidos estão mostrados na tabela 3. Nota-se, a partir da tabela 3, que o aço A é o mais macio dentre os aços analisados (125 HV). Isso ocorreu devido à presença de perlita esferoidizada nesse aço, como foi observado na figura 2 e a amostra de aço B apresenta o maior valor de microdureza Vickers (226 HV) devido aos carbonetos dispersos em sua matriz, como foi visto na figura 2.

Tabela 3. Microdureza Vickers das amostras analisadas				
Aço	Microdureza Vickers (HV)			
Aço A	125			
Aço B	226			

2.2 Caracterização Eletroquímica

O equipamento utilizado para os ensaios de polarização deste estudo foi o Autolab modelo PGSTAT 302N. Para o ensaio de polarização os corpos de prova foram cortados de modo que a área de cada um fosse igual a 1 cm². Como a superfície original do material era isenta de arranhões, os respectivos corpos de prova foram lixados somente em lixas de grana 600 *mesh* e polidos com alumina de 1 µm. A única superfície que não foi lixada e polida foi a superfície amostra do aço B, pois somente essa amostra possuía uma camada de pátina. Os eletrólitos utilizados neste trabalho foram a solução de NaCl 3,5% e de Na₂SO₄ 0,5M. A solução de NaCl 3,5% (água do mar sintética) foi escolhida para investigar o comportamento dos materiais na presença de cloreto – correspondente à atmosfera marinha e a solução de enxofre – correspondente à atmosfera marinha e a solução de enxofre – correspondente à atmosfera industrial.

Para se conhecer melhor os materiais a serem estudados e, assim poder definir melhor os parâmetros dos ensaios, foi realizado um ensaio de polarização no aço A242 (cujos resultados não constam no presente trabalho) com intervalo entre -1,5 V até 1,5 V, faixa compreendida na literatura [2; 5; 6], taxa de varredura de 10 mV/s e passo de 5 mV. A partir desse ensaio, definiram-se os parâmetros utilizados no potenciostato, que foram: intervalo de -1,2 V a 0,5 V, taxa de varredura de 1,667

mV/s e passo de 5 mV. Todos os ensaios foram realizados em temperatura do eletrólito igual a 25°C.

A fim de se garantir a repetibilidade dos testes, para cada análise foram realizados no mínimo três testes, validando-os a partir de análises estatísticas de desviopadrão e desvio quadrático médio. As curvas que serão mostradas mais adiante neste trabalho são o resultado da média entre esses três testes previamente validados. A partir dessas curvas e, utilizando-se da Análise de Tafel, foi possível determinar os valores de potencial de corrosão (Ecorr) e da densidade de corrente de troca (icorr) das amostras analisadas.

Os resultados obtidos pelos ensaios de polarização podem ser observados na figuras 5 e 6 e os valores nominais de potencial de corrosão e de densidade de corrente de troca podem ser vistos na tabela 4.

Figura 5. Curvas de polarização obtidas com o eletrólito de Na₂SO₄ 0,5M

Ambiente Marinho (NaCl 3,5%)

Figura 6. Curvas de polarização obtidas com o eletrólito de NaCl 3,5%

* Contribuição técnica ao 74º Congresso Anual da ABM – Internacional, parte integrante da ABM Week 2019, realizada de 01 a 03 de outubro de 2019, São Paulo, SP, Brasil.

Tabela 4. Valores dos potenciais de corrosão (Ecorr) e densidades de corrente de troca (Icorr) e
respectivos valores de desvio padrão (DP)

	E _{Corr} (mV _{ECS})			I _{Corr} (μΑ/cm²)				
Identificação	NaCI 3,5%	DP	Na₂SO₄ 0,5 M	DP	NaCI 3,5%	DP	Na₂SO₄ 0,5 M	DP
Aço A	-819	13,1	-691	50,3	6,75	0,0102	11,06	0,0137
Aço B - Polido	-913	8,3	-929	8,0	5,76	0,0018	3,55	0,0028
Aço B - Pátina	-673	9,9	-770	69,9	0,66	0,0008	3,54	0,0016

Sabe-se que, quanto maior for o valor de E_{Corr} , maior é a capacidade de o material resistir à corrosão em determinada condição e que, quanto menor for o valor de I_{Corr} , menor será a quantidade de corrente elétrica passando pela área do metal e, portanto, menor a troca de elétrons entre o material e o meio, e dessa forma será também menor a taxa de corrosão.

Ao se analisar o material com eletrólito de NaCl, a amostra do aço B com pátina foi a que apresentou o valor mais nobre de potencial de corrosão (-673 mV_{ECS}), sendo que a amostra com o pior desempenho foi a do aço B polido (-913 mV_{ECS}). Em outras palavras, pode-se dizer que o aço B, após a exposição em atmosfera marinha por três anos e consequente formação da pátina, aumentou 26,29% o seu potencial de corrosão em NaCl 3,5%.

Pode-se notar, a partir dos resultados obtidos com eletrólito de Na₂SO₄ 0,5M, que houve um aumento de 17,1% no valor de potencial de corrosão do aço B com pátina em relação ao seu par polido. Esses resultados obtidos pelo aço B com pátina corroboram com a literatura [2; 6], pois há um aumento no valor de potencial de corrosão no material que possui pátina em relação ao mesmo material polido.

Ao analisar os resultados gerais obtidos utilizando o eletrólito Na₂SO₄ 0,5M, foi possível verificar que o material que possui o valor mais nobre de E_{Corr} foi o aço A (-691 mV_{ECS}), seguido pelo aço B com pátina (-770 mV_{ECS}). Tal resultado da amostra de aço A se mostrou um tanto atípico pelo fato de não possuir nenhuma camada superficial e apresentar um ótimo valor de E_{Corr} . Quanto ao aço A sabe-se que é um material que não possui boa resistência à corrosão atmosférica, portanto, pode-se dizer que outros fatores não analisados aqui podem ter contribuído para que o valor de E_{Corr} tenha sido nobre.

Analisando-se os valores de densidade de corrente de troca, pode-se notar que a amostra de aço B polida e a amostra de aço B com pátina tiveram os menores valores de densidade de corrente de troca tanto para a solução de NaCl 3,5% quanto para a solução de Na₂SO₄ 0,5 M. Destaca-se que a amostra de aço B com pátina apresentou o menor valor de densidade de corrente de troca para ambos os eletrólitos, o que indica que a pátina existente nesse material dificultou a passagem de elétrons para o eletrólito, conforme previsto na literatura [6]. Essa pátina se forma devido à presença de Cu, P, Ni. Si e Cr, elementos presentes nessa amostra [4]. O fato de a amostra de aço B apresentar aumento nos valores de E_{Corr} foi devido à presença da pátina em suas superfícies, como foi observado também nos experimentos encontrados na literatura [2; 6]. A amostra de aço A, por sua vez, apresentou um valor de E_{Corr} maior que a amostra de aço B polido, o que ocasionou uma surpresa por se tratar de um aço sem adições de Cu, P, Ni, Si e Cr.

Destaca-se que a amostra B com pátina apresentou desempenho eficaz na proteção à corrosão do material em relação à amostra B polida desse mesmo aço, diminuindo

a densidade de corrente de troca em 88,54% em eletrólito que simula ambiente marinho, o que indica que a pátina existente nesse material dificultou a passagem de elétrons para o eletrólito [6].

3 CONCLUSÃO

A camada de óxido (pátina) formada na superfície da amostra de aço B apresentou desempenho eficaz na proteção à corrosão do material, aumentando de forma considerável o valor de potencial de corrosão e diminuindo o valor de densidade de corrente de troca. Isso pode ser correlacionado ao fato de a pátina ser homogênea, compacta e aparentemente isenta de poros em sua estrutura. Não é possível identificar se o aço patinável terá ou não boa resistência à corrosão atmosférica somente a partir de ensaios de polarização de superfícies sem pátina, visto que a amostra de aço A se mostrou com valor de potencial de corrosão superior ao da amostra de aço B polido no eletrólito de Na₂SO₄ 0,5M.

Agradecimentos

Ao grupo ArcelorMittal por fornecer as amostras para o presente trabalho e ao Instituto Federal do Espírito Santo por fornecer a estrutura e laboratórios para os ensaios de polarização.

REFERÊNCIAS

- 1 Montoya P *et al.* An study on accelerated corrosion testing of weathering steel. Materials Chemistry and Physics, 2013. 220-228.
- 2 Chiavari C *et al.* Atmospheric corrosion of Cor-Ten steel with different surface finish: Accelerated ageing and metal release. Materials Chemistry and Physics, 2012. 477-486.
- 3 Guedes IC *et al.* The influence of copper and chromium on the semiconducting behaviour of passive films formed on weathering steels. Thin Solid Films, May 2006. 2167-2172.
- 4 Llewellyn DT; Hudd, RC. Steels Metallurgy & Applications. Woburn: Butterworth-Heinemann, 2004.
- 5 Saha JK. Simulation of Atmospheric Field Conditions on Weathering Steels at Laboratory. Indian Institute of Metals, Kolkata, 2014. 503-509.
- 6 Dhaiveegan P *et al.* Electrochemical Characterization of Carbon and Weathering Steels Corrosion Products to Determine the Protective Ability Using Carbon Paste Electrode (CPE). Eletroanalysis, 2014. 2419-2428.
- 7 Morcillo M. et al. Atmospheric Corrosion Data of Weathering Steels. A Review. Corrosion Science, 23 August 2013. 6-24.
- 8 Wolynec S. Técnicas Eletroquímicas em Corrosão. São Paulo: EdUSP, 2003.
- 9 Zhou *et al.* "Effects of Cr, Ni and Cu on the Corrosion Behavior of Low Carbon Microalloying Steel in a CI Containing Environment." J. Mater. Sci. Technol., 2013: 168-174.
- 10 Asami K; Kikuchi M. Characterization of Rust Layers on Weathering Steels Air-Exposed for a Long Period. Materials Transactions, 4 September 2002. 2818-2825.
- 11 Shiotani K. *et al.* Analysis for Structure of Rust Layer Formed on Weathering Steel Bridge for Bare Use Exposed in Coastal Industrial Zone for 27 Years. Zairyo to Kankyo, 2000. 67-71.