

SÍNTESE, CARACTERIZAÇÃO E DEPOSIÇÃO DE MATERIAIS DO TIPO-PEROVSKITA (ABO₃) A BAIXAS TEMPERATURAS*

Natasha Gruginskie¹ Tiago Bender Wermuth² Nadir Ana Wiederkehr³ Annelise Kopp Alves⁴ Carlos Pérez Bergmann⁵

Resumo

O presente trabalho apresenta rota não-aquosa para a obtenção de compostos sólidos e sistemas de filmes finos do tipo ABO₃ (PbTiO₃ e PbZrO₃). Os compostos foram caracterizados por meio da técnica de difração de raios X (DRX) e teste de ângulo de contato e os filmes por espectrofotometria, elipsometria espectral e microscopia de força atômica (AFM), tendo sido depositados sobre substratos de baixo ponto de fusão por técnicas de *spin-coating*. Os resultados indicam a formação de nanoestruturas cristalinas e sugerem a sua utilização como atuadores ou piezo-atuadores.

Palavras-chave: Óxidos tipo *Perovskita*; Filmes finos; Constantes Ópticas; Nanoestruturas cristalinas; Piezo-atuadores.

SYNTHESIS, CHARACTERIZATION AND DEPOSITION OF *PEROVSKITE* – TYPE (ABO₃) MATERIALS AT LOW TEMPERATURES.

Abstract

This paper presents a non-aqueous route to obtain solid compounds and thin film of the systems ABO₃-type (PbTiO₃ and PbZrO₃). The compounds were characterized by the technique of X-ray diffraction (XRD) and contact angle test and the thin films by spectrophotometry, spectral ellipsometry and atomic force microscopy (AFM), deposited onto low melting point substrates using spin-coating techniques. The results indicate the formation of crystalline nanostructures, suggesting their use as actuators or piezo-actuators.

Keywords: *Perovskite-type oxide*; Thin films; Optical Constants; Crystalline nanostructures; Piezo-actuators.

- Bacharela em Engenharia em Energia UERGS, Mestranda em Engenharia (PPGE3M) Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brasil.
- Bacharel em Engenharia Ambiental UNISC, Mestrando em Engenharia (PPGE3M) Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brasil.
- Doutora em Ciências École Polytechnique Féderale de Lausanne, Suiça, Pesquisadora do Programa de Pós-Graduação em Engenharia de Minas, Metalúrgica e de Materiais (PPGE3M), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brasil.
- Doutora em Engenharia UFRGS, Professora do Programa de Pós-Graduação em Engenharia de Minas, Metalúrgica e de Materiais (PPGE3M), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brasil.
- Doutor em Engenharia Rheinisch Westfälische Technische Hochschule Aache, Alemanha. Professor do Programa de Pós-Graduação em Engenharia de Minas, Metalúrgica e de Materiais (PPGE3M), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brasil.

1 INTRODUÇÃO

Materiais piezo-elétricos apresentam dipolos elétricos permanentes que podem ser alternados; como exemplo o titanato de chumbo (PbTiO₃), cujo momento de dipolo local é induzido pelo deslocamento do átomo de titânio no centro da estrutura do óxido. Sistemas de filmes finos similares ao titanato de chumbo têm sido estudados, substituindo-se o titânio pelo zircônio (PbZrO₃). O íon Zr⁴⁺ é mais estável que o íon Ti⁴⁺ e tem um tamanho iônico maior, conferindo expansão da estrutura *Perovskita* [1]. Zirconato de chumbo (PbZrO₃) é tipicamente um material anti-ferroelétrico a temperatura ambiente, e possui estrutura ortorrômbica tipo *Perovskita* [2].

Neste contexto, o presente estudo objetiva a síntese, deposição dos filmes a baixas temperaturas sobre substratos comerciais (PMMA), a caracterização morfológica e óptica dos materiais PbTiO₃ e PbZrO₃, sugerindo aplicações tais como atuadores ou piezo-atuadores [1,3].

2 MATERIAIS E MÉTODOS

A síntese dos compostos consistiu na reação de esterificação para a qual se utilizou o ácido acético como catalisador e uma mistura de álcoois (contendo entre 1 a 4 átomos de carbono). Todos os solventes utilizados no presente trabalho foram destilados duas vezes, e os demais reagentes de grau analítico foram utilizados sem previa purificação. A produção do PbTiO₃ se deu mediante agitação e aumento gradativo de temperatura (80°C-90°C). O precursor butóxido de titânio IV (C₁₆H₃₆O₄Ti) e acetato de chumbo II neutro (CH₃COO)₂Pb.3H₂O foram misturados em quantidades equimolares [proporção 1:1 (m/m)] à mistura de ésteres, obtendo-se assim a completa dissolução na forma de uma solução límpida e transparente. Os reticuladores de rede responsáveis pela poliesterificação do sistema em estudo foram: polietileno glicol (PEG), monoetileno glicol (MEG) e polipropileno glicol (PPG). foi espontaneamente gelificado, mediante repouso aproximadamente 24 horas. Para a remoção dos solventes orgânicos, o gel foi submetido a um pré-tratamento térmico a 250°C e subsequentemente colocado em uma mufla com taxas de aquecimento de 5º C/min a uma temperatura de patamar de sinterização a 750°C, durante 90 minutos.

Para produção de filmes de PbZrO₃ seguiu-se a mesma rota, alterando apenas o alcóxido precursor do elemento 'B', substituindo-se o butóxido de titânio por butóxido de zircônio IV (Zr[OC(CH₃)₃]₄).

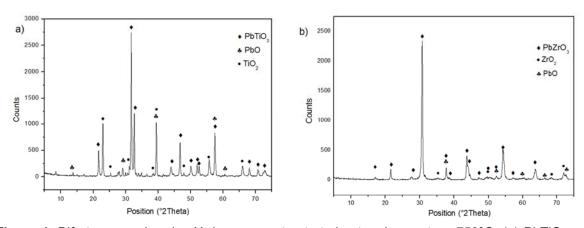
Métodos de obtenção de filmes finos a baixas temperaturas possibilitam a utilização de substratos comerciais de baixo ponto de fusão, tais como o polimetilmetacrilato (PMMA) (acrílicos), objetivando a redução dos custos e o desenvolvimento de tecnologias de processamento mais limpas. A deposição foi feita em substratos de PMMA com dimensões 324 mm², pelo método *spin-coating*. O equipamento usado foi o *TC100 Spin Coater*, com velocidade de rotação de 1300 RPM por 30 segundos. Os substratos foram fixados em posições opostas (90° e 180°) do disco base com fita dupla face comum. Em seguida, as amostras foram colocadas para secagem em chapa de aquecimento (80°C por 5 minutos). O processo se repete para amostras que recebem mais de uma deposição. Foram depositadas de 1 a 4 camadas seguindo este procedimento.

O composto sólido previamente seco foi macerado e passado por peneira 325 *mesh* e então, submetido à análise por difração de raios X (DRX). Para isso foi utilizado um difratômetro de Raios X da marca Philips (modelo X'Pert MPD), equipado com

monocromador curvado de grafite e ânodo fixo de cobre, operando a 40 kV e 40 mA. Intervalo de ângulos analisados de 5° a 75° 20 com fendas de divergência e antiespalhamento de 1°, fenda programável de recebimento de 0,1 mm e máscara de 10mm. Passo utilizado de 0,05°/1 s.

Filmes com monocamadas de PbTiO $_3$ e PbZrO $_3$, foram selecionados para tratamento térmico nas temperaturas de 60°C, 90°C e 120°C. Através de análise AFM (SPM 9500J3, Shimadzu), em uma área de 4 μ m 2 , obtiveram-se imagens da estrutura topográfica superficial dos filmes formados após o tratamento térmico.

A transmitância (T%) dos filmes foi analisada utilizando-se espectroscopia UV-Vis (Cary 7000), no intervalo de comprimento de onda entre 350 nm a 800 nm.


A espessura dos filmes e o índice de refração complexo foram determinados utilizando elipsometria espectral (SOPRA GES-E) com ângulo de incidência de 68°, nos comprimentos de onda entre 400 a 800 nm.

A determinação do ângulo de contato (gota/substrato) pela deposição do líquido precursor sobre o substrato foi feita por medidor de ângulo de contato PixieLink, captura de imagem por câmera digital e utilização do software *Image tools* na determinação do ângulo de contato.

A determinação da aderência foi feita em substratos monocamadas sem tratamento térmico através do método de *cross-cut* segundo a norma ASTM D 3359-09.

3 RESULTADOS E DISCUSSÃO

Os resultados da análise DRX do composto sólido tratado termicamente a 750°C estão apresentados nas Figuras 1 (a) e 1 (b). Os padrões foram analisados com o software *X'Pert HighScore Plus*, e estão assinalados nas figuras os picos associados aos padrões em referência.

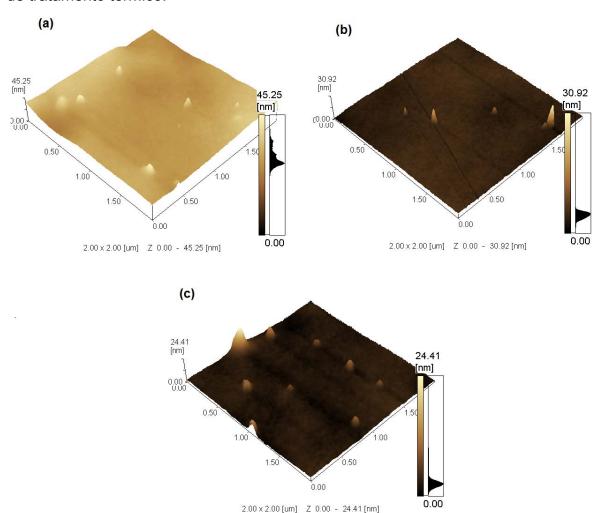
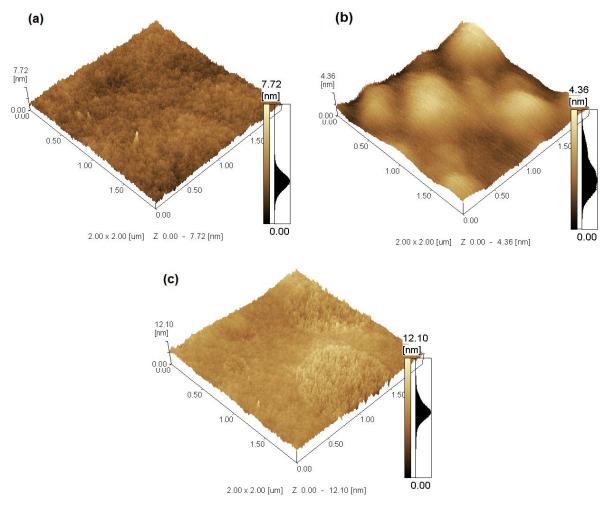


Figura 1. Difratograma de raios X dos compostos tratados termicamente a 750°C: (a) PbTiO₃ e (b) PbZrO₃.

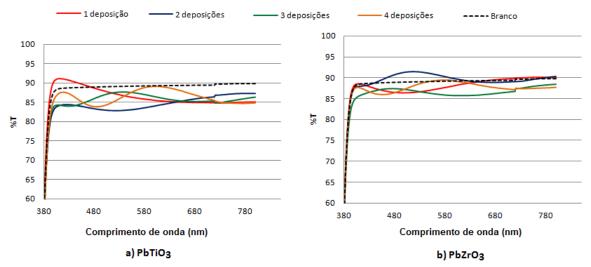
O difratograma do composto PbTiO₃ apresentou picos que tiveram sobreposição com os picos do padrão, identificados pela ficha: 00-006-0452, correspondente ao *PbTiO₃ tetragonal*, e os padrões referentes a ficha: 00-038.1477, correspondentes ao PbO e ficha 00-029.1360 correspondente ao TiO₂, estes identificados como quantidades residuais de PbTiO₃ na forma dissociada (compósitos PbO e TiO₂). O composto PbZrO₃ apresentou picos que tiveram sobreposição com os picos do padrão, identificados pela ficha: 00-048-1050 correspondente ao PbZrO₃ e, e os padrões referentes a ficha: 00-052-0752, correspondentes ao PbO e ficha padrão



00-017-0923 correspondente ao ZrO_2 , estes igualmente identificados como quantidades residuais de $PbZrO_3$ na forma dissociada (compósitos PbO e ZrO_2). As Figuras 2 a, b e c mostram as micrografias obtidas por AFM dos filmes monocamadas de $PbTiO_3$ tratados a 60, 90 e 120 °C, respectivamente. As Figuras 3 a, b e c mostram as micrografias dos filmes de $PbZrO_3$, nestas mesmas condições de tratamento térmico.

Figura 2: Imagens AFM dos filmes PbTiO₃ com diferentes temperaturas de tratamento térmico: (a) 60°C, (b) 90°C e (c) 120°C.

Figura 3: Imagens AFM dos filmes PbZrO₃ com diferentes temperaturas de tratamento térmico: (a) 60°C, (b) 90°C e (c) 120°C.


O ponto de amolecimento do PMMA, próximo de 155°C, sugere um efeito adicional devido à expansão térmica diferencial do filme sobre o substrato. Os filmes monocamadas de PbTiO₃ submetidos à temperatura de 120 ° C [Fig. 3 (c)] mostram descontinuidades ocasionadas devido aos diferentes coeficientes de expansão térmica do filme e do substrato, causando o aparecimento de tensão residual [4].

As rugosidades médias das amostras de PbTiO₃ tratadas a 60°C, 90°C e 120°C são, respectivamente 2,610 nm, 0,671 nm e 0,670 nm. Percebe-se que o tratamento térmico tem efeito direto na rugosidade das amostras, ocasionando sua diminuição sobtemperaturas mais altas. Já para as amostras de PbZrO₃, a rugosidade das amostras apresenta aumento pouco acentuado proporcional à temperatura. As rugosidades médias das amostras são 0,427 nm, 0,520 nm e 0,752 nm, para os filmes tratados a 60°C, 90°C e 120°C respectivamente.

De modo geral, ambos os compostos formaram filmes uniformes, com o PbZrO₃ apresentando maior regularidade. Percebe-se que o filme de PbZrO₃ tratado a 120°C apresenta a formação de núcleos circulares, comportamento que será estudado em trabalhos futuros, com o prolongamento do tempo de tratamento térmico.

Os resultados de transmitância para os filmes PbTiO₃ e PbZrO₃ sem tratamento térmico estão ilustrados na Figura 4:

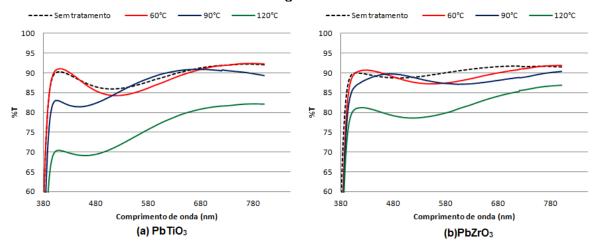


Figura 4: Transmitância dos filmes (a) PbTiO₃ e (b) PbZrO₃ com diferentes números de camadas em função do comprimento de onda.

A transmitância entre 350 a 800 nm apresenta atenuação em função do número de camadas depositadas, com variações de 2% para sistemas monocamadas até 6% para sistemas multicamadas (4 camadas). Em função dos resultados obtidos, os filmes podem ser considerados transparentes no intervalo de comprimento de onda correspondente a região do espectro visível.

Os resultados de transmitância para os filmes PbTiO₃ e PbZrO₃ submetidos a tratamento térmico estão ilustrados na Figura 5:

Figura 5: Transmitância dos filmes (a) $PbTiO_3$ e (b) $PbZrO_3$ com diferentes temperaturas de tratamento em função do comprimento de onda.

O tratamento térmico dos filmes ocasionou diminuição nas suas transmitâncias, mostrando-se mais intensa para os filmes tratados a 120°C. Este resultado fortalece a hipótese de que são formadas tensões residuais em função dos diferentes coeficientes de expansão térmica do filme e do substrato, em temperaturas próximas à de amolecimento do PMMA.

A análise por elipsometria espectral mede a modificação do estado de polarização da luz ao interagir com um meio material, sendo diretamente relacionada com suas propriedades físicas [5]. As medidas do estado de polarização são realizadas por reflexão de luz sobre a amostra, seja no substrato (branco) ou com filme depositado. A partir desta técnica determinaram-se as espessuras dos filmes sem tratamento térmico. Os valores obtidos estão representados na Tabela 1.

Tabela 1: Espessura dos filmes PbTiO₃ e PbZrO₃ sem tratamento térmico em relação ao número de camadas.

Composto	Número de deposições	Espessura (nm)	R²
PbTiO₃	1	206	0,998380
	2	397	0,998648
	3	413	0,997265
	4	408	0,998338
PbZrO ₃	1	257	0,999056
	2	375	0,998648
	3	366	0,998870
	4	389	0,996555

A espessura dos filmes obtidos sem tratamento térmico após a segunda deposição apresenta valores de mesma ordem de grandeza, em torno de 400 nm e 370 nm, para os filmes de PbTiO₃ e PbZrO₃, fato este explicado pelas interações multicamadas que podem ter ocorrido.

A técnica de elipsometria espectral permite a determinação do índice de refração complexo dos filmes, composto pelo índice de refração (N, parte real) e índice de absorção (K, parte imaginária). Estes índices estão indicados na Tabela 2 para os filmes sem tratamento térmico. A parte real (N) correlaciona a velocidade de propagação da luz no material (v) com a velocidade da luz no vácuo (c) através da relação N = c / v [5].

Tabela 2: Valores das partes reais (N) e imaginárias (K) do índice de refração complexo.

Amostra	Para λ = 400 nm		Para λ = 800 nm	
-	N	K	N	K
PbTiO₃ 1 camada	1,840	8,367E-03	1,803	4,860E-02
PbTiO₃ 2 camadas	1,787	2,047E-02	1,727	3,051E-02
PbTiO₃ 3 camadas	1,763	4,229E-02	1,709	3,487E-02
PbTiO₃ 4 camadas	1,749	2,998E-02	1,700	3,622E-02
PbZrO₃ 1 camada	1,694	4,711E-03	1,701	1,376E-02
PbZrO₃ 2 camadas	1,678	2,197E-03	1,638	1,283E-02
PbZrO₃ 3 camadas	1,669	2,197E-03	1,631	1,283E-02
PbZrO ₃ 4 camadas	1,678	4,404E-03	1,635	1,485E-02

Percebe-se a diminuição do índice de refração (N) e o aumento do índice de absorção (K) dos filmes a cada deposição. Filmes mais espessos apresentam menor refração e maior absorção da radiação incidente.

O ângulo de contato (entre a gota e o substrato) foi determinado a partir da análise utilizando software *image tool*. O ângulo de contato determinado foi de 11,73° para o PbTiO₃ e 12,75 para o PbZrO₃, caracterizando, então, os dois compostos como líquidos molhantes [6], validando o emprego da técnica *spin-coating* para os sistemas investigados.

O teste de aderência com fita adesiva realizado em filmes monocamadas sem tratamento térmico apresentou classificação 3B para ambos os compostos, o que caracteriza remoção de uma área inferior a 15% da área destacada [7]. Este resultado demonstra boa aderência entre o substrato e os filmes em estudo.

4 CONCLUSÃO

O presente trabalho validou a preparação através de rota sol-gel não aquosa para os compostos PbTiO₃ e PbZrO₃ e sua deposição de sobre substratos PMMA (acrílico comercial), através do método de *Spin Coating*. Os padrões de DRX dos compostos sólidos demonstraram o caráter cristalino dos compostos.

As análises por AFM mostram a relação entre a rugosidade do material e o tratamento térmico dos filmes, obtendo-se uma superfície mais regular em filmes tratados a 120°C. Os filmes apresentam transmitâncias maiores que 90 %, na região do visível o que os caracteriza como filmes transparentes. O número de deposições feitas não altera significativamente a transmitância.

A espessura dos filmes formados encontra-se na faixa de 200 nm, característico de filmes finos. Após a segunda deposição não foi verificado aumento significativo na espessura dos filmes formados. As propriedades óticas dos filmes indicam a diminuição do índice de refração e o aumento do índice de absorção por deposição adicional de camadas.

Os resultados preliminares comprovam a validação da técnica de deposição a baixas temperaturas, considerando a reprodutibilidade operacional e o processamento a baixo custo. Nossa projeção para trabalhos futuros propõe a preparação de compostos mistos ABB'O₃, tais como Pb(Ti_{0,5}Zr_{0,5})O₃ e a sua aplicabilidade imediata como piezo-atuadores multicamadas.

Agradecimentos

Os autores agradecem à Agência Nacional de Petróleo, Gás Natural e Biocombustíveis (ANP) pelo auxílio financeiro para a execução deste projeto.

REFERÊNCIAS

- S. Sarangui, T. Badapanda, B. Behera, S. Anwar. Frequency and temperature dependence delectric behavior of barium titanate nanocrystalline powder obtained by mechanochemical synthesis. J Mater Sci: Mater Electron DOI 10.1007/s1085-013-1358-0 published online (2013).
- A. A. Khan, M. Arif, Y. Iqball. Processing and characterization of lead zirconate (PbZrO₃) via mix-oxide sintering route. J Pak Mater Soc 2008; 2(2) 87-90.
- T. B. Wermuth, N. A. Wiederkehr, A. K. Alves, C. P. Bergmann. Síntese e caracterização de filmes finos de Ba_{0,5}Pb_{0,5}TiO₃ tipo perovskita depositados por spin coating a baixas temperaturas. 21° CBECIMAT (2014) 1454-1461.
- 4 S. Sarangui, T. Badapanda, B. Behera, S. Anwar. J Mater Sci: Mater Electron DOI 10.1007/s1085-013-1358-0 published online (2013).
- P. A. Soave. Estudo de filmes de PC/PMMA voltados para aplicações em dispositivos termo-opticos. Tese de doutorado. UFRGS, 2010.
- 6 Karmanov, I. Wetting or non-wetting liquid. Phys. Edu., v.77, p. 58, 2000.
- 7 ASTM International, Standard Test Methods for Measuring Adhesion by Tape Test.