
THE MOMENT OF INERTIA METHOD TO CALCULATE NON-
PROPORTIONALITY FACTORS IN MULTIAXIAL 

HISTORIES1 

 
Marco Antonio Meggiolaro 2 

   Jaime Tupiassú Pinho de Castro 2 

Abstract  
This work studies further an approach to evaluate equivalent stress and strain ranges 
in non-proportional (NP) histories, called the Moment Of Inertia (MOI) method. The 
MOI method assumes that the load path contour in the deviatoric stress or strain 
diagram behaves as a homogeneous wire with unit mass. The center of mass of 
such wire gives then the mean component of the path, while the moments of inertia 
of the wire can be used to obtain the equivalent stress or strain ranges. In this work, 
the MOI method is also generalized to calculate as well the non-proportionality factor 
Fnp of a loading history, using an alternative sub-space of the deviatoric stress or 
strain space. Experimental results for 14 different multiaxial histories prove the 
effectiveness of the MOI method to predict the observed non-proportionality factors. 
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1  INTRODUCTION 
 
To calculate the fatigue life of components under multiaxial loads, it is necessary to 
use an appropriate damage model, such as the ones proposed by Sines,(1)       
Crossland,(2) Findley,(3) McDiarmid,(4,5) Brown and Miller,(6) Fatemi e Socie,(7) and 
Smith, Watson and Topper.(8) All of them, however, require some measure of an 
equivalent stress or strain range, which may be difficult to obtain for non-proportional 
(NP) multiaxial histories. In addition, to account for NP hardening effects, it is 
necessary to correctly evaluate the non-proportionality factor Fnp and the NP cyclic 
hardening coefficient np associated with the load history. The factor Fnp depends 
solely on the shape of the history path,(9) while np depends not only on the material 
and its microstructure, but also on the strain amplitudes involved in the history, 
estimated from 
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where IP and OP are the equivalent Mises stress amplitudes obtained under the 
same strain level for, respectively, in-phase (Fnp = 0) and 90o out-of-phase (Fnp = 1) 
loadings. This OP/IP ratio is usually calculated at high plastic strains, however it can 
be defined at any strain level, resulting in some strain amplitude dependence of np. 
If np is eliminated from the Fnp equation, then Fnp can be obtained for a Mises stress 
amplitude  through 
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as long as  is measured in the same material and under a similar strain level as the 
one from IP and OP. Using the above equation, Fnp can be calculated from 
experiments without the need to explicitly obtain np or to worry about its strain 
amplitude dependence. In the absence of experimental data to measure , IP and 
OP, the NP factor Fnp must be estimated from the load history path. 
Then, to calculate the fatigue damage induced by a generic NP load history, it is 
necessary to first project it onto a specified plane at the analyzed point.(10) The 
projected history must be counted using a multiaxial rainflow algorithm to identify 
individual cycles.(11) For each cycle, the equivalent stress or strain range is often 
computed using the so-called convex enclosure methods,(12-16) which try to find 
circles, ellipses or rectangles that contain the entire path in the 2D case, or 
hyperspheres, hyperellipsoids or hyperprisms in a generic 5-dimensional (5D) 
equivalent stress space. The traditional convex enclosure methods have been 
reviewed in Meggiolaro and Castro:(17) the Minimum Ball (MB),(12) Minimum 
Circumscribed Ellipsoid (MCE),(13) Minimum Volume Ellipsoid (MVE), Minimum F-
norm Ellipsoid (MFE),(14) Maximum Prismatic Hull (MPH)(14,16) and Maximum Volume 
Prismatic Hull (MVPH). These methods make use of stress and strain parameters 
such as the Mises effective stress Mises and strain Mises, the octahedral (or Mises) 
shear stress Mises and strain Mises, and the Mises stress and strain ranges Mises 
and Mises (also known as relative Mises stress and strain RMises and RMises), 
defined by: 
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(6) 
where pl el el pl el(0.5 ) ( )         is the mean (or effective) Poisson coefficient, 

while el and pl are the elastic and plastic components of the strains, and el and pl 
are the elastic and plastic Poisson coefficients (pl = 0.5, assuming plastic strains 
conserve the material volume). 
Extensive simulations showed that the Minimum F-norm Ellipsoid and all four 
prismatic hull models are efficient to predict equivalent amplitudes in NP histories. 
However, all presented convex enclosure methods can lead to poor predictions of the 
mean stresses or strains, if they are assumed as located at the center of the ball, 
ellipse or prism, as seen in the top example in Figure 1, which shows a stress or 
strain path shaped very differently from an ellipse and its MFE hull. 
 

 
Figure 1: History path examples showing the inadequacy of convex hull methods (such as the MFE) 
to predict mean components (top diagram) or the non-proportionality factor Fnp (bottom diagram). 
 
In addition, all convex enclosure methods can lead to poor predictions of the load 
history non-proportionality factor Fnp, if it is measured from the aspect ratio of such 
hulls. The bottom example in Figure 1 shows a path that does not encircle the origin 
of the diagram, while entirely located far away from it. Despite the almost circular 
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shape of the enclosing MFE, which would suggest Fnp  1, the principal direction in 
fact varies very little along such loading path, since the angle between each point in 
the path and the origin of the 2D diagram varies very little during each cycle – thus, 
the actual Fnp should be very small in this example. 
Another notable example is a loading path formed by a straight line that does not 
cross the origin of the diagram, which can result in a large variation of the principal 
directions, implying in Fnp > 0. However any convex enclosure method would predict 
Fnp = 0 for such a straight line loading path. 
Note also that the convex enclosure methods can lead to poor Fnp preditions even in 
paths that encircle the origin, in special when the path shape is very different from an 
ellipse or rectangle, or when the mean value of the path is not located close to the 
origin.  
The MOI method proposed in Meggiolaro and Castro,(17) on the other hand, is able to 
predict the equivalent stress and strain ranges of NP history paths, at least as well as 
the better convex enclosure methods do. This work shows that, after a few 
modifications, the MOI method can also estimate the non-proportionality factor Fnp. 
The MOI idea is reviewed next. 

 
2  THE MOMENT OF INERTIA (MOI) METHOD 
 
The Moment Of Inertia (MOI) method(17) is useful to calculate alternate and mean 
components of complex NP load histories for fatigue analysis purposes. To 
accomplish that, the history must first be represented in a 2D stress-subspace of the 
transformed 5D Euclidean stress-space E5 (for stress histories) or strain-space E5 
(for strain histories). These 5D equivalent spaces represent the stress and strain 
states using the tensors S '  and e ' , which consist of sub-spaces of the 9-
dimensional (9D) representation of the deviatoric stresses and strains 
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; then these reduced-order 

deviatoric stress and strain tensors S '  and e '  are given by 
T

1 2 3 4 5S ' [ S S S S S ]         (8) 

T
1 2 3 4 5e ' [ e e e e e ]         (9) 

Note that the 5D stress-space used in the MOI method is a scaled version of the 
Euclidean space proposed in Papadopoulos et al.(18) 
Thus, similarly to the convex enclosure methods, the MOI method should only be 
applied to 2D histories, involving one normal and one shear stress or strain 
components (e.g. represented in the x  xy3 or x  xy3/(2+2 ) diagrams) or two 
shear components acting on the same plane (e.g. represented in the xz3  xy3 or 
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xz3/(2+2 )  xy3/(2+2 ) diagrams). It would lead to significant errors if directly 
applied to 3D, 4D or 5D load histories, because the MOI method would be calculated 
on different planes at different points in time.(10) Instead, any 3D, 4D or 5D history 
should be projected onto a candidate plane. Then, the history of the two shear 
stresses (or strains) acting parallel to the crack plane would be represented in a 2D 
diagram, where the MOI method would be applied. Thus, only the 2D formulation of 
the MOI method will be presented here. 
The MOI method assumes that the 2D path/domainD, represented by a series of 
points (X, Y) from the stress or strain variations along it, is a homogeneous wire with 
unit mass. Note that X and Y can have stress or strain units, but they are completely 
unrelated to the directions x and y usually associated with the material surface. The 
mean component of D is assumed, in the MOI method, to be located at the center of 
gravity of this imaginary homogeneous wire shaped as the loading history path. Such 
center of gravity is located at the perimeter centroid (Xc, Yc) of D, calculated from 
contour integrals along the entire path 

c c
1 1

X X dp, Y Y dp, p dp
p p

                     (10) 

where dp is the length of an infinitesimal arc of the path and p is the path perimeter, 
see Figure 2.(17) 

 

Figure 2: Loading history path, assumed as a homogeneous wire with unit mass. 

 
Note that this perimeter centroid (PC) is in general different from the area centroid 
(AC), which is the center of gravity of a uniform density sheet bounded by the shape 
of a closed path D.  
The MOI method makes use of the mass moments of inertia (MOI) of such 
homogeneous wire, calculated with respect to the origin O of the diagram 

O 2 O 2 O
XX YY XY

1 1 1
I Y dp, I X dp, I X Y dp

p p p
                           (11) 

The moments of inertia of this wire with respect to its center of gravity (Xc, Yc) are 
then obtained through the parallel axis theorem 

      O 2 O 2 O
XX XX c YY YY c XY XY c cI I Y , I I X , I I X Y                   (12) 

The MOI method then makes use of the perpendicular axis theorem to define the 
equivalent stress or strain ranges as 
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In the next sextion, the MOI method is modified and extended to predict the non-
proportionality factor Fnp. 

 
3  CALCULATION OF THE NON-PROPORTIONALITY FACTOR Fnp 
 
Most Fnp estimates under plane stress loading conditions are based on diagrams 
involving a single normal strain x and a shear strain xy. Usually, the contribution of 
y, the normal strain history perpendicular to the considered x direction, is overlooked 
in the calculation of Fnp. This can lead to very large errors. For instance, a 90º out-of-
phase traction-torsion linear elastic history x  xy3 in a biaxial state y = x could 
generate circles in both x  xy3 and y  xy3 diagrams, suggesting a highly non-
proportional history. However, such history would be proportional since the principal 
stress directions p = 45o are fixed, because y = x implies that tan p = xy/(x – y) 
 ∞, see Figure 3. 

 
Figure 3: An apparently 90º out-of-phase tension-torsion loading history can instead be proportional if 
subjected to a biaxial state y = x. 
 
So, Fnp should be computed in such linear elastic history using a diagram based on 
the normal stress difference x  y and the shear stress xy, see Fig. 3. Analogously, 
for elastoplastic histories, the normal strain difference x  y and the shear strain xy 
should be used instead to correctly account for varying principal directions. 
Several methods have been proposed to estimate Fnp. Kanazawa. Miller and 
Brown(19) estimated Fnp as a rotation factor, defined by the ratio between the shear 
strain range at 45o from the maximum shear plane and the maximum shear strain 
range. This factor correctly tends to the limits Fnp = 0 for proportional loadings and 
Fnp = 1 for 90o out-of-phase strain histories (assuming the relation a a(1 )      

between strain amplitudes for Case A cracks, defined in Socie and Marquis.(10). But it 
fails to correctly compute Fnp for more complex histories. Other Fnp estimates can be 
found in Doong and Socie.(20) 
Kida et al.(21) estimated Fnp using a contour integral definition along the path. This 
Itoh-Socie method searches for the direction of maximum strain in the path, and then 
it performs an integral average along the entire path of the absolute value of the 
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strain components perpendicular to such direction. The ratio between this strain 
average and the maximum strain is used to estimate Fnp. A reasonable agreement 
between the predictions from Itoh-Socie’s method and experimental data indicates 
that an integral definition of Fnp seems to work very well. Since the presented MOI 
method also involves integrals in its definitions, it might be a good option as well to 
compute Fnp, as described next. 
A variation of the Moment Of Inertia (MOI) method is now proposed to evaluate the 
non-proportionality factor Fnp. To accomplish that, consider a projection from the 6D 
deviatoric stress space onto a 5D stress-subspace E5* slightly different from the one 
proposed by Papadopoulos et al.:(18) 
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as well as a slightly different projection E5* from the 6D deviatoric strain-space: 
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Both projections above have the same properties as the ones presented in [17]. The 
reason for picking these new sub-spaces is that using them the principal direction p 
with respect to the x axis can now be represented by 

 
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 
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
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Therefore, the angle   2p of each state in the S1  S3 diagram is equal to each 
angle  measured from the center of successive Mohr circles, which in turn is equal 
to twice each principal direction p. 
The E5* and E5* sub-spaces provide then a graphical way to visualize the intensity 
of the stresses or strains at each principal direction p  /2 (for normal vs. shear 
diagrams) or p   (for shear vs. shear diagrams), since the Mises stress or strain is 
the magnitude of the vector r.  
Thus, to calculate the directions suffering larger stress or strain magnitudes, the load 
history path D can be imagined as a homogeneous wire with unit mass, as it was 
assumed before to calculate the Mises ranges. This is physically sound, since the 
mass moments of inertia IXX

* and IYY
* of such wire with respect to the origin in the 

horizontal (X) and vertical (Y) directions are a measure of how much the path 
stretches in the Y and X directions, respectively. 
If the path crosses more than once some direction , then it is reasonable to assume 
that the point with maximum magnitude r among them is the one that better 
represents the contribution of the Mises stresses or strains in this direction. This 
means that the MOI equations to compute Fnp must be evaluated only for the 
enclosing hull (which is not necessarily convex) defined by the outer perimeter of the 
entire history path. Note that this hull must be computed for the entire history (since 
the specimen was virgin up to a certain point in time) to be able to account for all 
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non-proportional hardening suffered along the specimen life until now (the previously 
presented MOI method for the range and mean calculations, on the other hand, do 
not make use of any hull, and they are computed for each rainflow-counted cycle, not 
for the entire history). If p is the perimeter of such enclosing hull, then the moments 
of inertia of the hull are obtained from 

* 2 * 2 *
XX YY XY

1 1 1
I Y dp, I X dp, I X Y dp, p dp

p p p
                          (17) 

The MOI Ie* in the direction e of the maximum projected deviatoric strain emax* from 
the history (see Figure 4) is then 

* * * *
*XX YY XX YY

e e XY e
I I I I

I * cos 2 I sin 2
2 2

  
         (18) 

The NP factor Fnp is then defined in the MOI method as 

 np e max*F 2 I / e*             (19) 

 
Figure 4: Loading history path in a 2D sub-space of the E5* diagram, showing the direction with 
maximum projected deviatoric strain emax* and its associated MOI Ie*. 
 
Note that Kida et al.(21) definition of Fnp uses an integral average of strain components 
perpendicular to emax*, while the MOI method uses an integral root-mean-square 
average, through the use of Ie*. Therefore, both MOI and Itoh-Socie’s methods use 
similar physical principles to estimate Fnp.  
An interesting remark is that the direction low of the enclosing hull lowest principal 
MOI can indicate the crack initiation direction p (p  low/2 for normal vs. shear 
diagrams or p  low for shear vs. shear diagrams), where low satisfies 

 * * *
low XY XX YYtan 2 I /( I I )            (20) 

To evaluate the effectiveness of the MOI method to obtain Fnp, a few typical history 
paths are considered, all of them represented in a 2D sub-space of the E5* diagram. 
For the proportional path shown in Fig. 5, represented by a straight line with length L 
inclined by e, the perimeter and MOI with respect to the origin are given by 

    

 

* 2 2
XX e

* 2* 2 2
XY e eYY e

p 2L, I L sin / 12,

I L sin cos / 12I L cos / 12,


 

      (21) 

resulting in Fnp = 0, as expected: 
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e np
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*2 I 2 0
*I 0 F 0

e* L / 2
      (22) 

 
Figure 5: Calculation of Fnp using the MOI method for proportional, circular and elliptic loading history 
paths, in a 2D sub-space of the E5* diagram. 
 
In another example, for a 90o out-of-phase strain history, represented by a circular 
path with diameter L (see Figure 5), the MOI method obtains Fnp = 1, as expected: 

         * * 2 *
XX YY XYp L, I I L / 8, I 0          (23) 

 
    

2
e

e XX np
max

*2 I 2 L / 8*I * I F 1
e* L / 2

            (24) 

Finally, it can be shown that for an elliptical strain history centered at the origin, with 
semi axes a and b (a  b, see Figure 5), that the resulting value of Fnp can be 
approximated by 


 e

np
max

*2 I b
F

e* a
         (25) 

within 0.02 in average. Such Fnp agrees with the expected value of the aspect ratio 
b/a of the ellipse, validating once again the MOI method predictions. 

 
4  COMPARISONS AMONG THE Fnp PREDICTIONS 
 
The MOI predictions of the non-proportionality factor Fnp are now compared to 
experimental measurements from Kida et al.(21) in a 304 stainless steel. Thirteen 
periodic loading histories are studied, represented by the block loadings shown in 
Fig. 6 for Cases 0 through 12. In addition, two histories from Shamsaei, Fatemi and 
Socie(22) are considered, named FRI and FRR. For each block of the FRI loading, 
360 cycles are applied to the specimen, with principal directions varying in 1o 
increments. For the FRR loading, the principal direction of each of the 360 cycles is 
randomly chosen, leading to abrupt changes in principal directions, see Figure 6. 
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Figure 6: Loading history paths used in the experimental validation of the Fnp predictions. 

 
Note that most loadings shown in Fig. 6 consider 1 cycle per block, except for Cases 
1 through 4, which consider 2 cycles per block, and the FRI and FRR loadings, with 
360 cycles per block. The number of cycles in each block can be deterministically 
obtained using the Modified Wang Brown rainflow algorithm, described in Meggiolaro 
and Castro.(23) 
Table 1 presents the experimentally obtained Fnp for low (0.35%-0.5%) and high 
(0.7%-0.8%) levels of strain range  ,(21) along with the MOI and Itoh-Socie’s 
predictions. Note that the MOI method predicts in average better values for Fnp than 
Itoh-Socie’s method, in special for Cases 1 through 4 and for the FRI and FRR paths. 
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Table 1. Predicted Fnp from the MOI and Itoh-Socie’s methods, compared with measured values for a 
304 stainless steel at low and high strain range levels 

0.320.9 - 1.00.901.00FRR

0.320.5 – 1.00.350.81FRI

0.770.700.560.59Case 12

0.460.450.480.30Case 11

0.770.810.700.81Case 10

0.770.810.760.77Case 9

0.770.810.700.83Case 8

0.200.200.270.26Case 7

0.100.100.140.12Case 6

0000Case 5

0.390.570.620.83Case 4

0.390.570.620.73Case 3

0.340.480.470.59Case 2

0.340.480.590.70Case 1

0000Case 0

Itoh-
Socie

MOIhigh 
.7.8%

low 
.35-.5%

path / Fnp

0.320.9 - 1.00.901.00FRR

0.320.5 – 1.00.350.81FRI

0.770.700.560.59Case 12

0.460.450.480.30Case 11

0.770.810.700.81Case 10

0.770.810.760.77Case 9

0.770.810.700.83Case 8

0.200.200.270.26Case 7

0.100.100.140.12Case 6

0000Case 5

0.390.570.620.83Case 4

0.390.570.620.73Case 3

0.340.480.470.59Case 2

0.340.480.590.70Case 1

0000Case 0

Itoh-
Socie

MOIhigh 
.7.8%

low 
.35-.5%

path / Fnp

 

 
5  CONCLUSIONS 
 
The MOI method is able to efficiently predict the non-proportionality factor Fnp, 
without the need for adjustable parameters or for very complex incremental plasticity 
calculations. From a philosophical point of view, it is difficult to justify that a convex 
enclosure that does not represent well Fnp or the mean component of a path could be 
used to calculate the equivalent stress or strain ranges/amplitudes. This is even more 
difficult to justify when the path has a very odd shape. The MOI method, on the other 
hand, can calculate all these quantities using the same concepts, showing a much 
better coherence than any convex enclosure method. And, since it accounts for the 
contribution of every single segment of the path, the MOI method can deal with an 
arbitrarily shaped history without losing information about such shape, as a convex 
enclosure method would. Note that the Fnp calculations use only the outer perimeter 
of the entire history in a 2D sub-space of the E5* or E5* space. Experimental results 
demonstrated the effectiveness of the MOI method for all studied cases. 
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