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Resumo
Este trabalho teve como objetivo a modelagem preditiva, com Inteligência Artificial, das
propriedades mecânicas de perfis de aço ARBL laminados a quente. Os modelos foram
baseados em dados históricos de propriedades mecânicas, e na composição química
das corridas e parâmetros do processo de laminação. Foi utilizada uma plataforma
Auto-Machine Learning. Esta ferramenta é capaz de testar simultaneamente dezenas de
algoritmos visando o menor erro. Modelos simplificados foram construídos com base em
análises estatísticas da base de dados, e modelos ampliados foram desenvolvidos
utilizando todos os dados disponíveis. Os modelos foram desenvolvidos para serem
metalurgicamente coerentes com as tendências científicas, apesar da precisão
matemática. Os resultados alinharam-se bem com as tendências esperadas na maioria
dos casos. Foi possível avaliar o efeito isolado das variáveis. Os modelos expandidos
foram capazes de gerar previsões com menor erro estatístico. A variabilidade dos dados
é um fator importante para o sucesso dos modelos preditivos. Tais modelos permitem
que o projeto de liga seja realizado com maior precisão, menores custos de produção e
melhor compreensão do efeito da variável de entrada. A tomada de decisões baseada
em dados nas atividades de produção e P&D é aprimorada com o uso de ferramentas
preditivas baseadas em Inteligência Artificial.
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USE OF ARTIFICIAL INTELLIGENCE, AUTO MACHINE LEARNING, FOR
PREDICTIVE MODELLING OF METALLURGICAL PROPERTIES OF HOT-ROLLED

STEEL PRODUCTS
Abstract
This work aimed at the predictive modeling, with Artificial Intelligence, of the mechanical
properties of hot-rolled structural steel sections, produced in High Strength and Low Alloy
steel, HSLA. The models were based on historical data of mechanical properties as well
as the chemical composition of the heats and rolling process parameters. An
Auto-Machine Learning (Auto-ML) platform was used. This tool is capable of
simultaneously testing dozens of algorithms aiming for the lowest error. Simplified
models were built based on database statistical analyses, and expanded models were
developed using all available data. The models were developed to be metallurgically
coherent with scientific trends, despite mathematical precision. The results aligned well
with expected trends in most cases. It was possible to evaluate the isolated effect of the
variables. The expanded models were able to generate predictions with lower statistical
error. The variability of the data is an important factor for the success of predictive
models. Such models allow the steel chemical composition design to be carried out with
greater accuracy, lower production costs, and improved understanding of the effect of
input variable. Data-Driven Decision-Making in production and R&D activities are
enhanced with the use of predictive tools based on Artificial Intelligence.
Keywords: Artificial Intelligence; Machine Learning; HSLA; Modelling.
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1. INTRODUCTION

The rolling process of structural steel sections presents a major challenge in
adjusting the chemical composition to meet the metallurgical properties required by
different international standards. This challenge arises from understanding the effect
of various variables involved in the evolution of the properties throughout the rolling
process. Numerous techniques have been applied with the aim of modeling the
rolling process, providing not only predictive capability but also a greater
understanding of the phenomena involved. Artificial Intelligence techniques are
particularly efficient in predicting the results of mechanical tests with low error and
high correlation, often aligning with the metallurgical phenomena involved.

The application of machine learning techniques in materials science serves a crucial
purpose in accelerating the discovery of novel materials. Over time, as materials
science research has advanced, a substantial amount of data from experimental or
simulation studies has been amassed and continues to grow steadily. This
accumulation of data forms the foundation for the widespread utilization of machine
learning techniques in materials research and development processes. In line with
the progress in materials data science, the Materials Genome Initiative (MGI) was
introduced by the United States [1]. This initiative aims to expedite the research cycle
and reduce economic costs through the adoption of high-throughput computing,
data-driven methods, big data technologies, and more. In terms of methodology,
machine learning methods based on data mining are closely related to applied
statistics, given that machine learning forms a pivotal component of data science,
primarily focusing on statistical data processing. Hence, machine learning methods
typically encompass data preprocessing and the selection of suitable algorithms for
training, testing, and validation [1-2]. Machine learning techniques facilitate the
establishment of associations between composition, microstructure, process, and
performance, enabling the prediction of new materials with exceptional performance
in unknown domain spaces, a commonly employed strategy in materials
development. Despite the emergence of numerous novel materials, no metal material
has yet surpassed steel's dominant role as one of the fundamental structural
materials. Steel material differs from others in terms of data characteristics, with the
accumulation of substantial data during its development process providing a
favorable environment for exploring artificial intelligence strategies [1-2].

Further advancements in materials science, has led to machine learning techniques
based on data-driven approaches emerging as a prominent focus in current materials
research [2–12]. Unlike traditional physical modeling methods with intricate
mechanisms, machine learning methods require sufficient data for training to uncover
underlying rules. They excel in identifying correlations among multiple data points,
making them effective for addressing multivariate nonlinear problems and potentially
establishing accurate prediction models based on existing data [13]. The utilization of
multi-objective optimization methods in conjunction with neural network adjustments
to simultaneously reduce prediction error and average temperature difference has
resulted in the identification of a model with enhanced predictability [14]. Additionally,
the application of genetic algorithms (GA) has rendered the alloy discovery and
optimization process computationally more affordable [15]. Advancements in
microstructural observations facilitated by AI technology have paved the way for the
automatic recognition of steel microstructures. This progress signifies a significant
development in the understanding and control of steel microstructures, offering an
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effective tool for researchers. Moreover, a design system integrating machine
learning (ML) and high-throughput optimization algorithms has been devised to
derive optimal solutions for reduced activation ferritic/martensitic (RAFM) steels. This
system incorporates composition and treatment process modifications aimed at
improving both yield strength and impact toughness [16]. Automated Machine
Learning, also known as AutoML, refers to tools and services that abstract the details
and knowledge required to perform Machine Learning, automating tasks necessary
for ML to occur. Typically, they cover steps such as data normalization and feature
engineering; training models of different types and with different hyperparameters;
and evaluating and comparing results. There are also other tools, libraries, and
services that assist in these tasks, but with a lower level of abstraction, and thus are
not called AutoML. The goal of AutoML is to democratize access to analytical tools
for non-data scientists by providing tools that do not require code or require very little
code [17, 18].

The present work focuses on modeling the relationship between tensile test results
(Yield Strength, Tensile Strength, and Elongation) of hot-rolled products, which are
the output data calculated from the models, and the results of chemical composition
and rolling parameters. The training process also utilized historical tensile test data
as input.

2. DEVELOPMENT

2.1. Materials and Methods

2.1.1. The steel section

A steel section, produced in HSLA (High Strength Low Alloy) steel, with a nominal
thickness of 11.0 mm was chosen due to the following characteristics:

● Tensile testing sampling taken from the flange, resulting in lower variability of
results.

● High quantity of tests conducted according to ASTM A572-50 standard. For the
present study, a total of 461 sets of results were used.

The following information was used in the development of the Mechanical Properties
Prediction Models: Steel chemical composition, final rolling temperature on the
flange, measured thickness of the test specimen from the flange of the steel section
(The flange thickness is the same as that of the test specimen) and historical data for
Tensile Strength (LR), Yield Strength (LE), and Elongation (A). For the calculation of
the percentage reduction during the rolling process, the initial thickness was taken as
the thickness of the cast raw material in the flange region (equation 1).

%𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 =
(𝐸

𝑓
−𝐸

𝑖
)

𝐸
𝑖

* 100

(1)

In this equation, Ef represents the final thickness of the rolled profile at the sampling
location, and Ei represents the initial thickness of the cast raw material.
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2.1.2. Database statistical treatment

The following analyses and actions were carried out:

● Correlation analysis between the various input variables and the outputs.
● Statistical characterization of the input data.
● Data Treatment: Range within +/- 3 standard deviations.
● Elimination of outliers.

These techniques were used to eliminate the presence of data that could
compromise the reliability of the database and the final models.

2.1.3. Models Development

A total of six different models were built, comprising three simplified models and three
expanded models. The output variables are Yield Strength (LE), Ultimate Tensile
Strength (LR), and Elongation (A). The simplified models used a smaller amount of
process parameters (YS, UTS, Elongation, %C, %Mn, %Si, %S, %Cr, %Nb, %N,
Final Rolling Temperature [TFL] in °C, and Reduction) while the expanded models
used all available data (YS, UTS, Elongation, %C, %Mn, %Si, %P, %S, %Cu, %Ti,
%Cr, %Ni, %Nb, %Mo, %V, %B, %Al, %Sn, %W, %Zr, %As, %Ca, %Co, %Sb, %N,
%Te, Final Rolling Temperature [TFL], and %Reduction). The goal was to understand
if simplified models, initially less complex, could provide superior results in terms of
correlation and mean errors. Regressive models were used through cross-validation,
choosing a k-fold (randomized subsets obtained from the training bases, thus
reducing bias in model training) equal to 5, for a base partitioned into 90% training
and 10% testing. Using the Average Percentage Error (MAPE) as the error
measurement metric. As an advantage of using the Auto ML software the data quality
verification steps, as well as the field engineering (feature engineering), are carried
out automatically. The last step is disabled due to the need to explain the variables
that make up the model [18]. With the results obtained, it was possible to visualize all
the modeling stages, both in the descriptive and predictive parts, since the
adjustment curves were carried out, as well as the analysis of the residuals of the
model.

2.2. Results

2.2.1. Selection of model parameters

● Simplified Models: Correlation analysis was carried out between the output
variables and the input variables (chemical composition and rolling variables).
The choice of input variables was made based on the correlation analysis
between these and the output variables, involving the elaboration of the
correlation matrix, the evaluation of the correlation coefficients obtained, and the
elimination of chemical elements considered residual, that is, not intentionally
added in the steelmaking process. The following variables were included in the
simplified models:

o Chemical Composition: Only the elements C, Mn, Si, S, Cr, Nb and N.
o Process Variables: Final Rolling Temperature and Total Rolling Reduction.
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After this step and the elimination of discrepant data points, a database was obtained
with 461 occurrences with the variables indicated in table 1 (a).

● Expanded Models: The variables shown in table 1 (b) were used together with the
variables shown in table 1 (a) to build this model. The maximum and the minimum
values for additional variables can be seen in the table 1:

Table 1: Input and output variables (LE, LR and A) included in the simplified models
(a) and expanded models (b).

2.2.2. Architecture of the AI models

The Auto ML tool features competition between models, enabling functions such as
mixing models (Blend Models) in addition to modeling in parallel with different
families of models, highlighting the Ensemble, Neural Networks and Traditional
Regressive models with their strands. This type of modeling allows the indication of
the most appropriate model and, depending on the need for use, the user will be able
to choose the one that had the best performance combined with the best way of
presenting the results. This architecture allowed obtaining the optimal result in a few
minutes, since the adjustment of missing data had already been carried out in an
automated way, with the recommendation of the widely used modeling methodology
(cross-validation), it was possible to obtain models with appropriate metrics for
applications found in literature and academic works, according to the master's thesis
of one of the authors.

2.2.3. Training of the models: Expanded LR Model

The blue "Forecast" line, in the Lift Chart, figure 3 (a), displays the average prediction
score for the rows in that bin. The orange, "Actual" line, displays the actual
percentage of the lines in that bin. A strong correlation between these two lines
signifies the model's predictive accuracy; a steadily increasing line is another positive
indicator of satisfactory model performance. Another important key aspect: There is
an alternation of real values above or below the line of predicted values. This
indicates that the model is not biased. At the extremes, where there is little data, the
model tends to have a good accuracy. The Matrix Plot on the figure 3 (b) shows the
association between the process variables (input and output data). This matrix
provides information about the strength of association between numeric and
categorical feature pairs that are visually indicated by color opacity and feature
clusters. The greater the opacity of the pair, the weaker the association between the
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variables. The lower the opacity of the pair, the stronger the association between the
variables. LR has a strong association with Als, Alt, C, Cr, Mn, N, Nb, P, S, Si, Mo,
Reduction and As. LR has weak association with Pb, Sb, Te, Zr, Ca, Co, Ti, V, W,
Final Rolling Temperature [TFL], B, Cu and Sn. Clusters, or families of resources
indicated by colors in the matrix, are resources partitioned into groups based on their
membership structure.

Figure 3: Training results for the expanded LR Model: (a) Lift Chart, (b) Matrix Plot.

The impact of the variables in the LR parameter can be seen in the plot 4 (a) (Figure
4). The variables that most impact LR are: %C, %Mn, %Al, %Nb, %Ti and
%Reduction. Mn has approximately 60% of the influence of C. The variables that
have the least impact on LR are %S, %Cu, %N, %Si and %P. These results are in
line with what was expected, metallurgically.

Figure 4: (a) Variable Impact and residual analysis, (b) LR Predicted vs, LR Actual
and (c) Residues Analysis for the expanded LR Model.
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2.2.4. Influence of the input variables on the output variables (LR)

It was possible to assess the individual impact of input variables, such as each of the
chemical elements and process parameters, for LE, LR, and A. This assessment is
done through partial dependence plots, which show the average partial relationship
between a set of predictors and the predicted output. In these plots, the yellow partial
dependence data represent the marginal effect of a feature on the target variable
after accounting for the average effects of all other predictive features. It indicates
how, while keeping all other variables constant, the value of this feature affects the
prediction. In the figure below, it is possible to assess those plots:

* Contribuição técnica ao 26° Seminário de Automação e TI, parte integrante da ABM Week
8ª edição, realizada de 03 a 05 de setembro de 2024, São Paulo, SP, Brasil.



Figure 5 (a) to (z): Partial dependence plots for all the input variables and LR as an
output: (a) LR x C, %; (b) LR x Mn, %; (c) LR x Si, %; (d) LR x S, %; (e) LR x Cr, %;
(f) LR x Nb, %; (g) LR x N, %; (h) LR x P, %; (i) LR x Cu, %; (j) LR x Mo, %; (k) LR x
V, %; (l) LR x Al, %; (m) LR x Sn, %; (n) LR x Ti, %; (o) LR x Ni, %; (p) LR x Co, %;
(q) LR x Sb, %; (r) LR x Zr, %; (s) LR x As, %; (t) LR x Te, %; (u) LR x B, %, (v) LR x
Ca, %; (x) LR x W, %; (y) LR x Reduction, % and (z) LR x Temperature, °C.

According to partial dependence plots it is possible to obtain some interesting
information about how each input variable impacts the output variable, considering
LE, LR and A. The interpretation of these plots are exhibited in table 2.

Table 2: (a) Impact of the input variables on the LE, LR and A. (b) Alignment of the
impact with technical literature for LR.

Table 2 (a) shows the impact of the input variables on the output variables, LE, LR
and A. This impact is divided into 5 different categories, from a substantial increase in
mechanical properties to a substantial reduction in these properties. Some of the
input variables, such as C, Mn, Nb, Final Rolling Temperature [TFL] and Reduction,
have a great influence in the output variables. Table 2 (b) shows the analysis result of
the input variables influence (or impact) in the LR for the expanded model and
whether this influence is in accordance with the available technical literature. It is
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possible to see that for most of the input variables there is an alignment, including for
some residual chemical elements, with the literature and for those cases in which
there was no alignment, all elements are residual.

For example, in microalloyed steels, microalloying elements such as niobium can
interact with the movement of austenite grain boundaries in two different ways.
Firstly, the dispersion of Nb-containing precipitates exerts a retarding pressure on the
grain boundaries, which ends up having a pronounced effect on the growth of the
austenitic grain. The magnitude of this effect depends on the size, shape, and
volume fraction of these precipitates, typically Nb(C,N), or Nb carbonitrides.
Secondly, a moving interface drags an atmosphere of solute elements, which exerts
a retarding force on this interface. Thus, elements in solution can significantly reduce
the mobility of austenitic grain boundaries. This phenomenon is generally known as
the solute drag effect [19]. From the LR results for the expanded model, it can be
seen that Nb contributes 0.56MPa for every 0.001% addition, being in line with the
known resistance increase mechanism. In other words, the addition of Nb contributes
to the increase in mechanical resistance and the expanded model, as well as the
simplified model, demonstrate this trend. Zirconium [20], being a resource little used
currently as a microalloying element, presents antagonistic results in quenched and
tempered samples of HSLA steels, depending on its content. The increase in Zr
content causes the refinement of carbon-containing inclusions and the precipitation
of the inclusions consumes the amount of carbon in solid solution present in these
HSLA steels, thus reducing the effect of increasing strength by solid solution. Being a
strong carbide former, when its content is higher, zirconium can easily combine with
carbon to form ZrC. Since the hardness of ZrC is high compared to other carbides,
the hardness of these tempered HSLA steels increases with the increase in Zr
content. Other studies [21] showed that particles such as ZrC, ZrN, as well as other
complex particles, in austenitic steels had coarse characteristics and caused a
reduction in yield and resistance limits at high temperatures. It is concluded, then,
that the addition of Zr plays a dubious role in improving the mechanical resistance of
steels. The constructed model indicates a reduction in LR of 0.09MPa for each
addition of 0.0001% of Zr, remembering that in this case the levels are residual, that
is, there was no intentional addition of Zr to this HSLA steel.

2.2.5. Comparison between the models

The table below illustrates a comparison between some variables of the modeling.

Table 3: Statistical comparison between the models.

2.2.6. Comparison with previous projects
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The same dataset was subjected to modeling aiming at the construction of predictive
models [22], similar to the simplified model named in this paper. Artificial Neural
Networks and Multiple Linear Regression were used. The results can be viewed in
Table 4.

Table 4: Average prediction error according to the model and algorithm and output
variable.

It is observed that the simplified model shows superior results compared to the ANN
model, except for variable A, where the ANN result was even superior. The expanded
model had an even better result than the simplified model.

3. CONCLUSION

● A tool based on a modelling like Auto-ML allows alloy design to be carried out
virtually, i.e., before actual production. This implies in a reduction of product
development cycle and total cost. Possible heat disqualifications can be
minimized because of design errors that may occur during the research. All
learned lessons, from past productions, can be used to boost the model
efficiency.

● The models proved to be consistent with the metallurgical trends established in
most of the analyzed variables and reflected the previously observed trends in the
conducted statistical analyses. The models can be used to study the effect of
each variable in isolation.

● The use of AutoML showed enormous potential for building predictive models for
use in the steel industry. The expanded model, based in the majority of the
available data, was able to make predictions with lower mean error and higher
correlations. Comparing with simulations using other algorithms, it is clear that the
AutoML models are more accurate, presenting lower error and higher correlation
(expanded model).

● It was possible to verify the influence of all input variables on the final results. The
tool used is capable of recognizing new patterns in a wide range of input
variables. This feature shows the potential to investigate unknown relationships
between variables and enables the use of new and innovative approaches for the
development and research of new products.

● Important limitations encountered:
o Quality of the database: The industrial origin of the data leads to high data

dispersion within its range of variation with low correlations between input
and output variables. The model developed for the Elongation [A, %], had
significantly poorer performance (Lower correlation coefficient, R2, see
table 3, and higher average error, %, see table 4) compared to the other
two models.
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o The currently available database, although storing a large number of
variables, lacked variables of great importance such as, for example:
reductions according to the pass schedule, time inter passes, temperatures
for each rolling pass and cooling rate, after the end of rolling.

The Automated Machine Learning (Auto-ML) tool appears as a strategic asset for
aiding in the formulation of alloys destined for structural purposes and other
steel-based products. This tool eases the research and development (R&D) phase by
initially simulating various alloy design scenarios in a virtual environment, thus
perfecting the process before actual production begins. By conducting virtual
production trials prior to the physical implementation, significant reductions in
development expenses and project lead times are achieved. Notably, the empirical
models prove commendable predictive accuracy, showed by minimal prediction
errors (less than 2% for all LE and LR). Consequently, these empirical models play a
pivotal role in data-informed decision-making processes, fostering innovation and
substantial cost savings within the steel industry.
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