Anais dos Seminários de Redução, Minério de Ferro e Aglomeração


ISSN 2594-357X

Título

PREVISÃO DE RESISTÊNCIA À COMPRESSÃO DE PELOTAS DE MINÉRIO DE FERRO USANDO REDE NEURAL ARTIFICIAL

PREDICTION OF THE COLD CRUSHING STRENGTH OF IRON ORE PELLETS USING AN ARTIFICIAL NEURAL NETWORK

DOI

10.5151/2594-357X-32134

Downloads

Baixar Artigo 240 Downloads

Resumo

"Um modelo de rede neural artificial de duas camadas feed-forward foi usado para prever a resistência à compressão (CCS) das pelotas, de acordo com os dados de produção da usina de Pelotização da Vallourec Soluções Tubulares do Brasil S.A. de Jeceaba. O algoritmo de otimização utilizado para o treinamento de rede foi o de Levenberg-Marquardt, obtendo resultados satisfatórios para o peso das variáveis inseridas como entradas, onde suas respostas se apresentavam dentro do desvio padrão obtidos na planta, com a vantagem de apresentar os valores em tempo real. "

 

A two-layered feedforward neural network model was developed in order to predict the cold crushing strength (CCS) of iron ore pellets, according to the laboratory results of the pellets produced in the Pelletizing Plant of Vallourec Soluções Tubulares do Brasil S.A. in Jeceaba. The optimization algorithm used to train the network was Levenberg-Marquardt, which showed satisfactory results for the variable weights inserted as inputs, with outputs between the standard deviations of the plant data, and giving the advantage of presenting real-time results of the produced iron ore pellets.

Palavras-chave

RESISTÊNCIA À COMPRESSÃO; PELOTA; REDE NEURAL ARTIFICIAL.

Cold Crushing Strength; Iron Ore Pellets; Artificial Neural Network

Como citar

Teixeira, Letícia Pereira; Santos, Alan; Sabará, Flávio Augusto Ribeiro; Neiva, Rafael Motta; Andrade, Ramon Bonela. PREVISÃO DE RESISTÊNCIA À COMPRESSÃO DE PELOTAS DE MINÉRIO DE FERRO USANDO REDE NEURAL ARTIFICIAL , p. 230-237. In: 6° Simpósio Brasileiro de Aglomeração de Minérios, São Paulo, 2018.
ISSN: 2594-357X , DOI 10.5151/2594-357X-32134