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Abstract 
In this work, finite-element models and upper-bound solutions are proposed to 
analyze the processing of a commercial copper via equal channel angular extrusion 
technique (ECAE). In this way, a dislocation density constitutive formulation is 
adopted to account for the work-hardening and recovery phenomena which take 
place in this process. In relation to numerical modeling, the three-dimensional 
general integration procedure based upon the elastic-predictor and plastic-corrector 
algorithm is firstly presented within the context of the plastic flow theory along with 
isotropic work-hardening. Then, the implemented dislocation density model is 
validated for both implicit and explicit finite element integration techniques vis-à-vis to 
the experimental uniaxial tensile data reported in the literature for single ECAE pass 
of a commercial copper. Otherwise, by using the upper-bound method, the extrusion 
force is calculated regarding the effects of friction, tooling geometry and also material 
mechanical behavior with effective stress measure provided by dislocation density 
constitutive model. The introduction of backpressure effect showed consistent 
increasing of extrusion force, effective plastic strain and density dislocation in 
comparison with the predictions that neglected this parameter. Finally, the proposed 
upper-bound solutions could be validated in terms of processing load, effective 
plastic strain and density dislocation by equivalent obtained numerical predictions. 
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1 INTRODUCTION 
 
The equal channel angular extrusion (ECAE) is a severe plastic deformation process 
employed to produce bulk ultra-fine grained materials with improved mechanical 
properties(1,2). In the ECAE process, a well lubricated billet is forced to pass through a 
two-channel die with constant cross-sectional area. The workpiece undergoes a large 
amount of plastic strain by simple shear within the deformation zone located at the 
channels die intersection(3). Thus, the knowledge of the kinematics of deformation is 
essential to understand the basic mechanisms controlling the grain refinement in the 
ECAE processing. Semiatin el al.(4) reviewed the models proposed in the literature to 
describe the mechanics and the deformation pattern resulting from the ECAE 
process. Some analytical and numerical modeling approaches are recalled hereafter. 
Firstly, the macroscopic deformation models based upon classical metal forming 
analytical solutions such as the slip-line field and upper-bound theorem(5-8). Secondly, 
the flow models wherein the actual strain history during the ECAE process is derived 
from the descriptions of the kinematics of deformation. In this framework, the 
crystallographic texture and microstructural evolution associated with the deformation 
histories resulting from different ECAE routes can be directly evaluated via 
polycrystalline plasticity approaches, as in Gholinia et al.(9), Beyerlein et al.(10) and 
Tóth et al.(11). Lastly, the continuum models based upon the finite element method 
which has been broadly adopted to analyze the effects of relevant parameters such 
as geometrical, tribological and rheological as well as processing conditions on the 
billet stress-strain distributions, extrusion force, temperature changes, grain 
refinement and mechanical properties(12-15). Into this context, upper-bound and finite 
element density dislocation-based models are proposed to investigate the influence 
of rhelology and processing conditions during the single pass deformation of a 
commercial copper by means of equal channel angular extrusion technique. 
 
2 METHODS 
 
2.1 Constitutive Equations 
 
Firstly, the total strain-rate tensor is described by the additive decomposition 
assuming the small deformation theory as: 

pe    (1)
In Equation 1 the elastic part e is described by the linear isotropic elasticity Hooke’s 
law defined as: 

  :See
 (2)

Where Se is the elastic compliances forth order tensor and   is the Cauchy        
stress-rate tensor. The plastic part p is defined assuming the associated plastic flow 
rule where the plastic potential is identified by the yield function as: 





fp

 
(3)

In Equation 3   is the effective plastic strain-rate and f is the yield function defined 
under the isotropic work-hardening assumption as: 

  ((( ), Ff  (4)

Where F() is a first degree homogeneous stress function which describes the yield 
locus and   is an effective stress measure which, in turn, may depend of either the 
accumulated plastic strain or strain-rate effective quantities. In order to describe the 
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experimental yield loci of quasi-isotropic BCC and FCC metals the Drucker’s isotropic 
yield criterion is adopted. This criterion is defined as a function of the second J2 and 
third J3 invariants of the deviatory stress tensor and a material parameter c as: 
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The recommended c-values to fit polycrystalline yield loci for isotropic BCC and FCC 
isotropic metals are equal to 1.35 and 2.025 (used here), respectively (16). 
The effective stress measure is described by a Voce type law as: 
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Where 0  and 0  are the strain and stress measures corresponding to the yield 

stress whereas s  is flow-stress saturation that corresponds to strain relaxation r . 
The strain relaxation is calculated by: 

m1

1

s
r

ε̂

ε

αMGbk

σ2
ε











 



 
(7)

Where in M, G, b, k1,  and m denote Taylor factor, shear modulus, Burger’s vector,  
material parameter associated to dislocation storage, material constant and the 
strain-rate sensitivity exponent, respectively. Also, the flow-stress saturation is given 
by: 
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Where soσ̂  is the saturation stress at the reference condition o

.

 . 
In this work, the Kocks (17) of is used to estimate a multiscale relationship between the 
effective measures of stress and strain, that is, 
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According to Taylor hardening theory, the mesoscopic yield stress, 

σ , can be related 

with a given dislocation density, , by: 
ρGbαMσ̂   (10)

And a viscoplastic rule to the mesoscopic saturation stress, sσ̂ (17): 
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Where n is the work-hardening exponent. 
The macroscopic effective stress defined in Equation 6 is here estimated by using 
the Kocks-Mecking (18) dislocation density model. Thus, the differential evolution of 

dislocation density, , associated to the effective plastic strain   is given by: 

 ρkρkM
εd

dρ
2

1/2
1 

 
(12)

where k2 is related to dynamic recovering phenomenon. Also, the Taylor factor 
although be highly depends of deformation path, it is fixed in the present work.       
Equation 12 can be written in an incremental form to be solved as, 
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  ερkρkMρ 02
1/2
01   (13)

Where 0 denotes the initial dislocation density. And 
 ofρ  (14)

Where f defines the final dislocation density attributed to the workpiece after a single 
pass of ECAE. The values assumed for M, k1, k2 and 0 were experimentally 
obtained to pure copper by Dalla Torre et al. (19) and they are listed in Table 1. 
 
Table 1. Parameters estimated to pure copper processed by ECAE(19) 

k1 (mm-1) k2  b (mm) 0 (mm-2) M m o (s-1) 
8,32 x 107 4,777 0,33 2,56 x 10-7 2,90 x 107 3,06 500 1 
 

Assuming the hypothesis of accumulated effective plastic strain, it is clear that   

varies from zero to the final value attained after the processing, that is,   =  . Thus, 
Equation 13 can be rewritten as, 

  ερkρkMρ 02
1/2
01   (15)

The elastic-plastic behavior is then completed by introducing the evolution of the 
effective stress which can be given in a rate form by: 

  (H  (16)
 
2.2 ECAE Analytical Modeling 
 
The upper bound method is based on the virtual works principle providing a 
maximum value to the work rate dissipated on a certain surface. In plasticity 
problems, for instance, in metal forming analysis, this upper limit is achieved by 
considering a kinematically admissible velocity field that satisfies both 
incompressibility and velocity boundary conditions. Thus, the energy portion 
dissipated by the external forces is equated to that resulting from the plastic 
deformation process. According to Kobayashi et al. (20), the upper bound method is 
defined as: 
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Where the first term denotes the power dissipated due to realized plastic work during 
the material processing, the second portion represents the energy dissipated along 
the discontinuity velocity surfaces and the third term is associated to power 
dissipated by external forces imposed on the material. 
Pérez and Luri (21), using the upper-bound method, and adopting the hypothesis of 
constant pressing velocity, V0, proposed solutions for estimating the pressing force, 
P, for perfectly plastic materials and introducing the effects of tooling geometry. 
However, the effect of external prescribed forces, also called as backpressure, which 
must be introduced in the third term of Equation 17, was not considered by these 
authors. Thus, 
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Where , , f, H, L e W denote the pure shear yield stress, die channels intersection 
angle, friction factor and sample geometrical parameters, respectively. Also,         
Rinner and Router denote the inner and outer tooling fillet radii. 
The angle  related to the die geometries showed in Fig. 1 is calculated by (21), 
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(a) (b) 

Figure 1. Die geometries considered in the upper-bound modeling (22). (a) Rinner < outer, Router, 
and (b) Rinner > Router. 

 
For an in-plane pure shear (S12 = S21 =  other Sij = 0) we have (22), 






























6/1

27

c4
1

3

1
κ (20)

Adopting the solutions proposed by Luri et al (23) to the calculation of the shear plastic 
strain and according to Medeiros et al. (22): 
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The deformation time used to predict the effective plastic strain rate in Eq. (6) when 
the material crosses the die geometries presented in Fig. 1, is calculated by (22): 
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Where V0 defines the pressing velocity. 
The extrusion force was calculated for two distinct cases. Firstly, neglecting 
backpressure effect by using Equation 18 with the yield shear stress  calculated with 
the presented dislocation density formulation by Equations 6 and 20. Then, the 
backpressure, named as pBP, was introduced in the third term of Equation 23 and the 
pressing force was predicted by: 
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(23)

It is important to note that the backpressure force increases the pressing force due its 
additive contribution in Equation 23. In fact, the parameter pBP is contrary to the 
passage of the billet towards die exit channel, as shown later in Figure 2.  
In the analytical evaluations, it was considered a billet with 20 mm of width and 80 
mm length. Also, the tooling channels were intersected at  = 90º and without fillet 
radii. Also, for purposes of comparison, the predictions of extrusion force, effective 
plastic strain and density dislocation were obtained for the cases without and with the 
imposition of a backpressure of 25 MPa, according to the experiments performed by 
Dalla Torre et al. (19) with pure cooper. On the other hand, a friction factor of 0.14 was 
attributed along the workpiece-tooling interfaces to reproduce an ideal lubrication 
condition according to Drucker’s plasticity criterion. In all analyzed cases, the 
extrusion velocity of 2 mm/s was assumed. 

 
2.3 ECAE Numerical Modeling 
 
2.3.1 General integration method 
The Abaqus finite element commercial code provides at the beginning of the time 
step, for each element integration point, the stress tensor components, ij, the 
increments of the total strain tensor, ij, and all the internal or user defined state 
variables. Bearing in mind deformation-driven problems, as in displacement based 
and mixed finite element formulations, the stress state at the end of the time step in 
then obtained from the strain history by means of an integration of the rate 
constitutive equations. The general integration procedure is based upon the elastic 
predictor-plastic corrector commonly known as the return mapping algorithm. In order 
to abridge the notation, let us denote t as the current value of all variables at the 
beginning of the time step, Trial as the quantities referring to the elastic prediction 
and t+t as the corrected values determined at the end of the time step. 
Firstly, the trial stress components are computed from an elastic prediction using the 
generalized Hooke’s law together with the total strain increments, namely, 

kl
t
ij

Trial
ij  e

ijklC
 (24)

Where 
e
ijklC

 is the 4th order linear isotropic elasticity tensor defined as a function of 
the Lamè’s coefficients as: 

)(C jkiljlikklij
e
ijkl 

 (25)

The elastic-plastic loading may occur during the current time step if the yield 
condition given by Equation 4 is violated by the trial state of stress, that is, 

0),)  ttTrial
ij (( F

 (26)

Then, the new state of stress is obtained from the plastic correction of the trial state 
according to the implicit and explicit integration techniques available in the ABAQUS 
FE code. The integration procedure is detailed elsewhere (24) 

 
2.4 ECAE FE Modeling 
 
In this work, is considered the experimental results obtained by Dalla Torre et al. (19) 
for a commercial copper processed via ECAE with route BC. Two distinct cases is 
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simulated, that is, the first neglecting the effect of backpressure and the second with 
a back-pressure of 25 MPa. In both cases a plunger speed of 2 mm/s is employed. 
The workpiece has a square cross-section of 20 mm wide and 80 mm length. Since 
the main deformation mode of the ECAE process is simple shear and the workpiece 
cross-section remains unchanged, a plane-strain finite element model is proposed to 
reduce the computational time. The tooling is described by analytical rigid surfaces 
whereas the workpiece is modeled by 5,000 plane-strain CPE4R solid elements with 
reduced integration, as depicted in Figure 2. Also, the friction between the tooling 
and workpiece is described by the Coulomb’s law with μ = 0.08. The numerical 
simulations were performed with the ABAQUS 6.9 with implicit temporal integration 
as a quasi-static analysis. 
 

 
Figure 2. ECAE plane strain finite element model. 

 
3 RESULTS AND DISCUSSION 
 
Figure 3 presents the results of extrusion force obtained with the proposed finite 
element models during the processing of pure cooper by single-pass of ECAE. One 
can observe that the curves display similar tendencies, that is, an abrupt increasing 
of load after ~ 7 mm of punch displacement until their maximum values, 
characterized by static friction (25) and then it was noted a decreasing of the force until 
15 mm followed by successive oscillations. These oscillations are related to 
continuous plastic deformation imposed on the workpiece when it crosses the die 
channels intersection region. However, by comparing both load diagrams, it is clear 
that when the backpressure is introduced into the ECAE tooling, the needed 
processing force increased to 166 kN after 7 mm of displacement, see the green 
solid curve, while without backpressure and for the same punch movement the 
maximum load prediction obtained was ~ 164 kN. It is important to explain that the 
small influence provided to the backpressure on the extrusion force is due to low 
processing velocity of 2 mm/s, i.e., we have a quasi static simulation that permits a 
better accommodation of the severe work-hardening into the material. Nevertheless, 
the elevation of the pressing force associated to backpressure guarantees the 

2098



consistency of the proposed model once it represents a physical obstacle to the billet 
passage towards the die exit channel. 
 

Figure 3. Numerical predictions of extrusion force. 

 
Figure 4 shows the results calculated with the finite element models of effective 
plastic strain and dislocation density during ECA extrusion of pure cooper. These 
results were determined for a defined block of finite element and, therefore, represent 
average predictions. Consistently with the previous discussion about the predictions 
of processing force, the backpressure caused an stabilization of the effective plastic 
strain at 1.21 while neglecting this effect the maximum observed value was ~ 1.13 
after 31 mm of displacement in both cases, see Figure 4a. At the same time, as the 
density dislocation is strongly affected by the effective plastic strain in the Kocks-
Mecking (19) solution defined in Equation 12, the increasing of the effective plastic 
strain associated to backpressure provided higher predictions of density dislocations, 
as presented in Figure 4b. 
 

 
(a) (b) 

Figure 4. Finite - element results of: (a) effective plastic strain and (b) dislocation density versus 
effective plastic strain. 

Figure 5 displays the iso-contours of effective plastic strain and density dislocation 
obtained with the finite element model with backpressure. It is observed a higher 
uniform zone of effective plastic strain, light green colored in Figure 5a, and the 
associated distribution of dislocation density along the billet surface that is 
represented in red (Figure 5b). These deformed geometries are very useful to 
reinforce the Kocks-Mecking (19) description of the high dependence between 
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dislocation density evolution and the effective plastic strain attributed to material 
during its severe extrusion process characterized by the ECAE technique.  
 

(a) 

(b) 
Figure 5. FE iso-contours of: (a) effective plastic strain and (b) dislocation density. 

 
Table 2 lists the analytical and numerical maximum predictions of extrusion force, 
effective plastic strain and density dislocation for the distinct evaluated conditions in 
the present work, that is, without backpressure and considering this effect with a 
magnitude of 25 MPa. Considering the appreciable proximity between the calculated 
results, it is observed that the proposed analytical model can be validated by the 
comparing the associated finite element values and it is able to reproduce the 
materials multiscale plastic behavior during single-pass ECAE processing at room 
temperature with backpressure effect. 
 
Table 2. Comparison between analytical and numerical results 

Performed analyses 

Without backpressure Backpressure = 25 MPa 

Analytical  FEM Analytical FEM 

model model model model 

Extrusion force (kN) 170.50 163.80 180.50 166.00 

Effective plastic strain 1.155 1.126 1.155 1.215 

Dislocation density (mm-2) 3.03x108 3.02x108 3.03x108 3.03x108 

 
 
 
4 CONCLUSIONS 
 
From Kocks – Mecking (19) dislocation-density model, upper-bound solutions and 
plane strain finite element models were proposed to estimate the extrusion force by 
including the backpressure effect after single pass processing of pure cooper at room 
temperature via ECAE technique. Also, the predictions of effective plastic strain and 
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dislocation density evolution were obtained. Based on the present study the following 
conclusions can be outlined: 

 A consistent increasing of extrusion force associated to inclusion of 
backpressure effect was observed with the finite-element simulations for 
comparison to the case which this condition was neglected;  

 The numerical results of effective plastic strain and density dislocation showed 
a stabilization at higher values when the backpressure effect was considered 
in the tooling modeling. It agreed with the behavior observed to extrusion 
force. Also, the influence of backpressure on the relationship between 
effective plastic strain and density dislocation evolution could be verified and 
associated to uniform regions developed along the deformed workpiece 
surface; 

 The proposed analytical model to predict extrusion force, effective plastic 
strain and density dislocation that includes the backpressure effect could be 
validated for comparison with the results provided by finite element simulations 
due to consistency of obtained theoretical predictions. 
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